TSTP Solution File: SEU778^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU778^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n118.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:33:05 EDT 2014

% Result   : Theorem 0.50s
% Output   : Proof 0.50s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU778^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n118.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:27:01 CDT 2014
% % CPUTime  : 0.50 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xdf5f38>, <kernel.DependentProduct object at 0xdf59e0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xfe3488>, <kernel.DependentProduct object at 0xdf59e0>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xdf5830>, <kernel.DependentProduct object at 0xdf5d40>) of role type named kpair_type
% Using role type
% Declaring kpair:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0xdf55f0>, <kernel.DependentProduct object at 0xdf5c20>) of role type named cartprod_type
% Using role type
% Declaring cartprod:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0xdf56c8>, <kernel.DependentProduct object at 0xdf5830>) of role type named breln_type
% Using role type
% Declaring breln:(fofType->(fofType->(fofType->Prop)))
% FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))) of role definition named breln
% A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))))
% Defined: breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))
% FOF formula (<kernel.Constant object at 0x124a0e0>, <kernel.DependentProduct object at 0xdf59e0>) of role type named dpsetconstr_type
% Using role type
% Declaring dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType)))
% FOF formula (<kernel.Constant object at 0xdf5d40>, <kernel.DependentProduct object at 0xdf5368>) of role type named breln1_type
% Using role type
% Declaring breln1:(fofType->(fofType->Prop))
% FOF formula (((eq (fofType->(fofType->Prop))) breln1) (fun (A:fofType) (R:fofType)=> (((breln A) A) R))) of role definition named breln1
% A new definition: (((eq (fofType->(fofType->Prop))) breln1) (fun (A:fofType) (R:fofType)=> (((breln A) A) R)))
% Defined: breln1:=(fun (A:fofType) (R:fofType)=> (((breln A) A) R))
% FOF formula (<kernel.Constant object at 0xdf5368>, <kernel.Sort object at 0x10a3cf8>) of role type named setOfPairsIsBReln1_type
% Using role type
% Declaring setOfPairsIsBReln1:Prop
% FOF formula (((eq Prop) setOfPairsIsBReln1) (forall (A:fofType) (Xphi:(fofType->(fofType->Prop))), ((breln1 A) (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))))) of role definition named setOfPairsIsBReln1
% A new definition: (((eq Prop) setOfPairsIsBReln1) (forall (A:fofType) (Xphi:(fofType->(fofType->Prop))), ((breln1 A) (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy))))))
% Defined: setOfPairsIsBReln1:=(forall (A:fofType) (Xphi:(fofType->(fofType->Prop))), ((breln1 A) (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))))
% FOF formula (<kernel.Constant object at 0xdf5c20>, <kernel.DependentProduct object at 0xdf5f38>) of role type named breln1compset_type
% Using role type
% Declaring breln1compset:(fofType->(fofType->(fofType->fofType)))
% FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) breln1compset) (fun (A:fofType) (R:fofType) (S:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair Xx) Xz)) R))) ((in ((kpair Xz) Xy)) S)))))))) of role definition named breln1compset
% A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) breln1compset) (fun (A:fofType) (R:fofType) (S:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair Xx) Xz)) R))) ((in ((kpair Xz) Xy)) S))))))))
% Defined: breln1compset:=(fun (A:fofType) (R:fofType) (S:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair Xx) Xz)) R))) ((in ((kpair Xz) Xy)) S)))))))
% FOF formula (setOfPairsIsBReln1->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S))))))) of role conjecture named breln1compprop
% Conjecture to prove = (setOfPairsIsBReln1->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(setOfPairsIsBReln1->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S)))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter subset:(fofType->(fofType->Prop)).
% Parameter kpair:(fofType->(fofType->fofType)).
% Parameter cartprod:(fofType->(fofType->fofType)).
% Definition breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))):(fofType->(fofType->(fofType->Prop))).
% Parameter dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType))).
% Definition breln1:=(fun (A:fofType) (R:fofType)=> (((breln A) A) R)):(fofType->(fofType->Prop)).
% Definition setOfPairsIsBReln1:=(forall (A:fofType) (Xphi:(fofType->(fofType->Prop))), ((breln1 A) (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy))))):Prop.
% Definition breln1compset:=(fun (A:fofType) (R:fofType) (S:fofType)=> (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair Xx) Xz)) R))) ((in ((kpair Xz) Xy)) S))))))):(fofType->(fofType->(fofType->fofType))).
% Trying to prove (setOfPairsIsBReln1->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S)))))))
% Found x20:=(x2 (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S)))))):((breln1 A) (((dpsetconstr A) A) (fun (Xx:fofType) (Xy:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair Xx) Xz)) R))) ((in ((kpair Xz) Xy)) S)))))))
% Found (x2 (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S)))))) as proof of ((breln1 A) (((breln1compset A) R) S))
% Found ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S)))))) as proof of ((breln1 A) (((breln1compset A) R) S))
% Found (fun (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of ((breln1 A) (((breln1compset A) R) S))
% Found (fun (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S)))
% Found (fun (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of (forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S))))
% Found (fun (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S)))))
% Found (fun (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of (forall (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S))))))
% Found (fun (x:setOfPairsIsBReln1) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of (forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S))))))
% Found (fun (x:setOfPairsIsBReln1) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S))))))) as proof of (setOfPairsIsBReln1->(forall (A:fofType) (R:fofType), (((breln1 A) R)->(forall (S:fofType), (((breln1 A) S)->((breln1 A) (((breln1compset A) R) S)))))))
% Got proof (fun (x:setOfPairsIsBReln1) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S)))))))
% Time elapsed = 0.165401s
% node=10 cost=-154.000000 depth=8
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:setOfPairsIsBReln1) (A:fofType) (R:fofType) (x0:((breln1 A) R)) (S:fofType) (x1:((breln1 A) S))=> ((x A) (fun (x6:fofType) (x50:fofType)=> ((ex fofType) (fun (Xz:fofType)=> ((and ((and ((in Xz) A)) ((in ((kpair x6) Xz)) R))) ((in ((kpair Xz) x50)) S)))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------