TSTP Solution File: SEU747^2 by Vampire---4.8

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Vampire---4.8
% Problem  : SEU747^2 : TPTP v8.2.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule file --schedule_file /export/starexec/sandbox2/solver/bin/quickGreedyProduceRating_steal_pow3.txt --cores 8 -m 12000 -t %d %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Tue May 21 03:51:13 EDT 2024

% Result   : Theorem 0.22s 0.38s
% Output   : Refutation 0.22s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem    : SEU747^2 : TPTP v8.2.0. Released v3.7.0.
% 0.06/0.14  % Command    : vampire --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule file --schedule_file /export/starexec/sandbox2/solver/bin/quickGreedyProduceRating_steal_pow3.txt --cores 8 -m 12000 -t %d %s
% 0.15/0.35  % Computer : n024.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit   : 300
% 0.15/0.35  % WCLimit    : 300
% 0.15/0.35  % DateTime   : Sun May 19 17:59:38 EDT 2024
% 0.15/0.35  % CPUTime    : 
% 0.15/0.35  This is a TH0_THM_EQU_NAR problem
% 0.15/0.36  Running vampire_ho --input_syntax tptp --proof tptp --output_axiom_names on --mode portfolio --schedule snake_tptp_hol --cores 8 -m 12000 -t 300 /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.15/0.37  % (23797)lrs+1004_1:128_cond=on:e2e=on:sp=weighted_frequency:i=18:si=on:rtra=on_0 on theBenchmark for (2999ds/18Mi)
% 0.15/0.37  % (23791)lrs+1002_1:8_bd=off:fd=off:hud=10:tnu=1:i=183:si=on:rtra=on_0 on theBenchmark for (2999ds/183Mi)
% 0.15/0.37  % (23794)lrs+10_1:1_au=on:inj=on:i=2:si=on:rtra=on_0 on theBenchmark for (2999ds/2Mi)
% 0.15/0.38  % (23795)lrs+1002_1:128_aac=none:au=on:cnfonf=lazy_not_gen_be_off:sos=all:i=2:si=on:rtra=on_0 on theBenchmark for (2999ds/2Mi)
% 0.15/0.38  % (23794)Instruction limit reached!
% 0.15/0.38  % (23794)------------------------------
% 0.15/0.38  % (23794)Version: Vampire 4.8 HO - Sledgehammer schedules (2023-10-19)
% 0.15/0.38  % (23794)Termination reason: Unknown
% 0.15/0.38  % (23794)Termination phase: Preprocessing 3
% 0.15/0.38  
% 0.15/0.38  % (23794)Memory used [KB]: 895
% 0.15/0.38  % (23794)Time elapsed: 0.003 s
% 0.15/0.38  % (23794)Instructions burned: 2 (million)
% 0.15/0.38  % (23794)------------------------------
% 0.15/0.38  % (23794)------------------------------
% 0.15/0.38  % (23796)lrs+1002_1:1_au=on:bd=off:e2e=on:sd=2:sos=on:ss=axioms:i=275:si=on:rtra=on_0 on theBenchmark for (2999ds/275Mi)
% 0.15/0.38  % (23792)lrs+10_1:1_c=on:cnfonf=conj_eager:fd=off:fe=off:kws=frequency:spb=intro:i=4:si=on:rtra=on_0 on theBenchmark for (2999ds/4Mi)
% 0.22/0.38  % (23795)Instruction limit reached!
% 0.22/0.38  % (23795)------------------------------
% 0.22/0.38  % (23795)Version: Vampire 4.8 HO - Sledgehammer schedules (2023-10-19)
% 0.22/0.38  % (23795)Termination reason: Unknown
% 0.22/0.38  % (23795)Termination phase: Saturation
% 0.22/0.38  
% 0.22/0.38  % (23795)Memory used [KB]: 5500
% 0.22/0.38  % (23795)Time elapsed: 0.005 s
% 0.22/0.38  % (23795)Instructions burned: 3 (million)
% 0.22/0.38  % (23795)------------------------------
% 0.22/0.38  % (23795)------------------------------
% 0.22/0.38  % (23797)First to succeed.
% 0.22/0.38  % (23798)lrs+10_1:1_bet=on:cnfonf=off:fd=off:hud=5:inj=on:i=3:si=on:rtra=on_0 on theBenchmark for (2999ds/3Mi)
% 0.22/0.38  % (23792)Instruction limit reached!
% 0.22/0.38  % (23792)------------------------------
% 0.22/0.38  % (23792)Version: Vampire 4.8 HO - Sledgehammer schedules (2023-10-19)
% 0.22/0.38  % (23792)Termination reason: Unknown
% 0.22/0.38  % (23792)Termination phase: Saturation
% 0.22/0.38  
% 0.22/0.38  % (23792)Memory used [KB]: 5500
% 0.22/0.38  % (23792)Time elapsed: 0.004 s
% 0.22/0.38  % (23792)Instructions burned: 4 (million)
% 0.22/0.38  % (23792)------------------------------
% 0.22/0.38  % (23792)------------------------------
% 0.22/0.38  % (23796)Also succeeded, but the first one will report.
% 0.22/0.38  % (23797)Refutation found. Thanks to Tanya!
% 0.22/0.38  % SZS status Theorem for theBenchmark
% 0.22/0.38  % SZS output start Proof for theBenchmark
% 0.22/0.38  thf(func_def_0, type, in: $i > $i > $o).
% 0.22/0.38  thf(func_def_1, type, powerset: $i > $i).
% 0.22/0.38  thf(func_def_2, type, binunion: $i > $i > $i).
% 0.22/0.38  thf(f41,plain,(
% 0.22/0.38    $false),
% 0.22/0.38    inference(subsumption_resolution,[],[f40,f28])).
% 0.22/0.38  thf(f28,plain,(
% 0.22/0.38    ((in @ sK6 @ sK5) != $true)),
% 0.22/0.38    inference(cnf_transformation,[],[f21])).
% 0.22/0.38  thf(f21,plain,(
% 0.22/0.38    (binunionE = $true) & (((($true = (in @ sK6 @ sK4)) & ((in @ sK6 @ (binunion @ sK3 @ sK5)) = $true) & ((in @ sK6 @ sK3) != $true) & ((in @ sK6 @ sK5) != $true)) & ((in @ sK5 @ (powerset @ sK4)) = $true)) & ((in @ sK3 @ (powerset @ sK4)) = $true))),
% 0.22/0.38    inference(skolemisation,[status(esa),new_symbols(skolem,[sK3,sK4,sK5,sK6])],[f13,f20,f19,f18])).
% 0.22/0.38  thf(f18,plain,(
% 0.22/0.38    ? [X0,X1] : (? [X2] : (? [X3] : (((in @ X3 @ X1) = $true) & ($true = (in @ X3 @ (binunion @ X0 @ X2))) & ((in @ X3 @ X0) != $true) & ((in @ X3 @ X2) != $true)) & ((in @ X2 @ (powerset @ X1)) = $true)) & ((in @ X0 @ (powerset @ X1)) = $true)) => (? [X2] : (? [X3] : (((in @ X3 @ sK4) = $true) & ((in @ X3 @ (binunion @ sK3 @ X2)) = $true) & ($true != (in @ X3 @ sK3)) & ((in @ X3 @ X2) != $true)) & ((in @ X2 @ (powerset @ sK4)) = $true)) & ((in @ sK3 @ (powerset @ sK4)) = $true))),
% 0.22/0.38    introduced(choice_axiom,[])).
% 0.22/0.38  thf(f19,plain,(
% 0.22/0.38    ? [X2] : (? [X3] : (((in @ X3 @ sK4) = $true) & ((in @ X3 @ (binunion @ sK3 @ X2)) = $true) & ($true != (in @ X3 @ sK3)) & ((in @ X3 @ X2) != $true)) & ((in @ X2 @ (powerset @ sK4)) = $true)) => (? [X3] : (((in @ X3 @ sK4) = $true) & ($true = (in @ X3 @ (binunion @ sK3 @ sK5))) & ($true != (in @ X3 @ sK3)) & ($true != (in @ X3 @ sK5))) & ((in @ sK5 @ (powerset @ sK4)) = $true))),
% 0.22/0.38    introduced(choice_axiom,[])).
% 0.22/0.38  thf(f20,plain,(
% 0.22/0.38    ? [X3] : (((in @ X3 @ sK4) = $true) & ($true = (in @ X3 @ (binunion @ sK3 @ sK5))) & ($true != (in @ X3 @ sK3)) & ($true != (in @ X3 @ sK5))) => (($true = (in @ sK6 @ sK4)) & ((in @ sK6 @ (binunion @ sK3 @ sK5)) = $true) & ((in @ sK6 @ sK3) != $true) & ((in @ sK6 @ sK5) != $true))),
% 0.22/0.38    introduced(choice_axiom,[])).
% 0.22/0.38  thf(f13,plain,(
% 0.22/0.38    (binunionE = $true) & ? [X0,X1] : (? [X2] : (? [X3] : (((in @ X3 @ X1) = $true) & ($true = (in @ X3 @ (binunion @ X0 @ X2))) & ((in @ X3 @ X0) != $true) & ((in @ X3 @ X2) != $true)) & ((in @ X2 @ (powerset @ X1)) = $true)) & ((in @ X0 @ (powerset @ X1)) = $true))),
% 0.22/0.38    inference(flattening,[],[f12])).
% 0.22/0.38  thf(f12,plain,(
% 0.22/0.38    ? [X0,X1] : (? [X2] : (? [X3] : (((($true = (in @ X3 @ (binunion @ X0 @ X2))) & ((in @ X3 @ X2) != $true)) & ((in @ X3 @ X0) != $true)) & ((in @ X3 @ X1) = $true)) & ((in @ X2 @ (powerset @ X1)) = $true)) & ((in @ X0 @ (powerset @ X1)) = $true)) & (binunionE = $true)),
% 0.22/0.38    inference(ennf_transformation,[],[f9])).
% 0.22/0.38  thf(f9,plain,(
% 0.22/0.38    ~((binunionE = $true) => ! [X0,X1] : (((in @ X0 @ (powerset @ X1)) = $true) => ! [X2] : (((in @ X2 @ (powerset @ X1)) = $true) => ! [X3] : (((in @ X3 @ X1) = $true) => (((in @ X3 @ X0) != $true) => (((in @ X3 @ X2) != $true) => ($true != (in @ X3 @ (binunion @ X0 @ X2)))))))))),
% 0.22/0.38    inference(flattening,[],[f8])).
% 0.22/0.38  thf(f8,plain,(
% 0.22/0.38    ~((binunionE = $true) => ! [X0,X1] : (((in @ X0 @ (powerset @ X1)) = $true) => ! [X2] : (((in @ X2 @ (powerset @ X1)) = $true) => ! [X3] : (((in @ X3 @ X1) = $true) => (~((in @ X3 @ X0) = $true) => (~((in @ X3 @ X2) = $true) => ~($true = (in @ X3 @ (binunion @ X0 @ X2)))))))))),
% 0.22/0.38    inference(fool_elimination,[],[f7])).
% 0.22/0.38  thf(f7,plain,(
% 0.22/0.38    ~(binunionE => ! [X0,X1] : ((in @ X0 @ (powerset @ X1)) => ! [X2] : ((in @ X2 @ (powerset @ X1)) => ! [X3] : ((in @ X3 @ X1) => (~(in @ X3 @ X0) => (~(in @ X3 @ X2) => ~(in @ X3 @ (binunion @ X0 @ X2))))))))),
% 0.22/0.38    inference(rectify,[],[f3])).
% 0.22/0.38  thf(f3,negated_conjecture,(
% 0.22/0.38    ~(binunionE => ! [X3,X0] : ((in @ X3 @ (powerset @ X0)) => ! [X4] : ((in @ X4 @ (powerset @ X0)) => ! [X2] : ((in @ X2 @ X0) => (~(in @ X2 @ X3) => (~(in @ X2 @ X4) => ~(in @ X2 @ (binunion @ X3 @ X4))))))))),
% 0.22/0.38    inference(negated_conjecture,[],[f2])).
% 0.22/0.38  thf(f2,conjecture,(
% 0.22/0.38    binunionE => ! [X3,X0] : ((in @ X3 @ (powerset @ X0)) => ! [X4] : ((in @ X4 @ (powerset @ X0)) => ! [X2] : ((in @ X2 @ X0) => (~(in @ X2 @ X3) => (~(in @ X2 @ X4) => ~(in @ X2 @ (binunion @ X3 @ X4)))))))),
% 0.22/0.38    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',binunionTEcontra)).
% 0.22/0.38  thf(f40,plain,(
% 0.22/0.38    ((in @ sK6 @ sK5) = $true)),
% 0.22/0.38    inference(subsumption_resolution,[],[f39,f29])).
% 0.22/0.38  thf(f29,plain,(
% 0.22/0.38    ((in @ sK6 @ sK3) != $true)),
% 0.22/0.38    inference(cnf_transformation,[],[f21])).
% 0.22/0.38  thf(f39,plain,(
% 0.22/0.38    ((in @ sK6 @ sK3) = $true) | ((in @ sK6 @ sK5) = $true)),
% 0.22/0.38    inference(trivial_inequality_removal,[],[f38])).
% 0.22/0.38  thf(f38,plain,(
% 0.22/0.38    ((in @ sK6 @ sK5) = $true) | ((in @ sK6 @ sK3) = $true) | ($true != $true)),
% 0.22/0.38    inference(superposition,[],[f37,f30])).
% 0.22/0.38  thf(f30,plain,(
% 0.22/0.38    ((in @ sK6 @ (binunion @ sK3 @ sK5)) = $true)),
% 0.22/0.38    inference(cnf_transformation,[],[f21])).
% 0.22/0.38  thf(f37,plain,(
% 0.22/0.38    ( ! [X3 : $i,X4 : $i,X5 : $i] : (($true != (in @ X4 @ (binunion @ X5 @ X3))) | ((in @ X4 @ X3) = $true) | ($true = (in @ X4 @ X5))) )),
% 0.22/0.38    inference(trivial_inequality_removal,[],[f36])).
% 0.22/0.38  thf(f36,plain,(
% 0.22/0.38    ( ! [X3 : $i,X4 : $i,X5 : $i] : (($true != $true) | ($true != (in @ X4 @ (binunion @ X5 @ X3))) | ($true = (in @ X4 @ X5)) | ((in @ X4 @ X3) = $true)) )),
% 0.22/0.38    inference(definition_unfolding,[],[f22,f32])).
% 0.22/0.38  thf(f32,plain,(
% 0.22/0.38    (binunionE = $true)),
% 0.22/0.38    inference(cnf_transformation,[],[f21])).
% 0.22/0.38  thf(f22,plain,(
% 0.22/0.38    ( ! [X3 : $i,X4 : $i,X5 : $i] : (((in @ X4 @ X3) = $true) | ($true != (in @ X4 @ (binunion @ X5 @ X3))) | ($true = (in @ X4 @ X5)) | (binunionE != $true)) )),
% 0.22/0.38    inference(cnf_transformation,[],[f17])).
% 0.22/0.38  thf(f17,plain,(
% 0.22/0.38    ((binunionE = $true) | (((in @ sK1 @ sK0) != $true) & ($true = (in @ sK1 @ (binunion @ sK2 @ sK0))) & ((in @ sK1 @ sK2) != $true))) & (! [X3,X4,X5] : (((in @ X4 @ X3) = $true) | ($true != (in @ X4 @ (binunion @ X5 @ X3))) | ($true = (in @ X4 @ X5))) | (binunionE != $true))),
% 0.22/0.38    inference(skolemisation,[status(esa),new_symbols(skolem,[sK0,sK1,sK2])],[f15,f16])).
% 0.22/0.38  thf(f16,plain,(
% 0.22/0.38    ? [X0,X1,X2] : (($true != (in @ X1 @ X0)) & ((in @ X1 @ (binunion @ X2 @ X0)) = $true) & ($true != (in @ X1 @ X2))) => (((in @ sK1 @ sK0) != $true) & ($true = (in @ sK1 @ (binunion @ sK2 @ sK0))) & ((in @ sK1 @ sK2) != $true))),
% 0.22/0.38    introduced(choice_axiom,[])).
% 0.22/0.38  thf(f15,plain,(
% 0.22/0.38    ((binunionE = $true) | ? [X0,X1,X2] : (($true != (in @ X1 @ X0)) & ((in @ X1 @ (binunion @ X2 @ X0)) = $true) & ($true != (in @ X1 @ X2)))) & (! [X3,X4,X5] : (((in @ X4 @ X3) = $true) | ($true != (in @ X4 @ (binunion @ X5 @ X3))) | ($true = (in @ X4 @ X5))) | (binunionE != $true))),
% 0.22/0.38    inference(rectify,[],[f14])).
% 0.22/0.38  thf(f14,plain,(
% 0.22/0.38    ((binunionE = $true) | ? [X0,X1,X2] : (($true != (in @ X1 @ X0)) & ((in @ X1 @ (binunion @ X2 @ X0)) = $true) & ($true != (in @ X1 @ X2)))) & (! [X0,X1,X2] : (($true = (in @ X1 @ X0)) | ((in @ X1 @ (binunion @ X2 @ X0)) != $true) | ($true = (in @ X1 @ X2))) | (binunionE != $true))),
% 0.22/0.38    inference(nnf_transformation,[],[f11])).
% 0.22/0.38  thf(f11,plain,(
% 0.22/0.38    (binunionE = $true) <=> ! [X0,X1,X2] : (($true = (in @ X1 @ X0)) | ((in @ X1 @ (binunion @ X2 @ X0)) != $true) | ($true = (in @ X1 @ X2)))),
% 0.22/0.38    inference(flattening,[],[f10])).
% 0.22/0.38  thf(f10,plain,(
% 0.22/0.38    ! [X0,X2,X1] : ((($true = (in @ X1 @ X0)) | ($true = (in @ X1 @ X2))) | ((in @ X1 @ (binunion @ X2 @ X0)) != $true)) <=> (binunionE = $true)),
% 0.22/0.38    inference(ennf_transformation,[],[f6])).
% 0.22/0.38  thf(f6,plain,(
% 0.22/0.38    ! [X0,X2,X1] : (((in @ X1 @ (binunion @ X2 @ X0)) = $true) => (($true = (in @ X1 @ X0)) | ($true = (in @ X1 @ X2)))) <=> (binunionE = $true)),
% 0.22/0.38    inference(fool_elimination,[],[f5])).
% 0.22/0.38  thf(f5,plain,(
% 0.22/0.38    (! [X0,X1,X2] : ((in @ X1 @ (binunion @ X2 @ X0)) => ((in @ X1 @ X2) | (in @ X1 @ X0))) = binunionE)),
% 0.22/0.38    inference(rectify,[],[f1])).
% 0.22/0.38  thf(f1,axiom,(
% 0.22/0.38    (! [X1,X2,X0] : ((in @ X2 @ (binunion @ X0 @ X1)) => ((in @ X2 @ X0) | (in @ X2 @ X1))) = binunionE)),
% 0.22/0.38    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',binunionE)).
% 0.22/0.38  % SZS output end Proof for theBenchmark
% 0.22/0.38  % (23797)------------------------------
% 0.22/0.38  % (23797)Version: Vampire 4.8 HO - Sledgehammer schedules (2023-10-19)
% 0.22/0.38  % (23797)Termination reason: Refutation
% 0.22/0.38  
% 0.22/0.38  % (23797)Memory used [KB]: 5500
% 0.22/0.38  % (23797)Time elapsed: 0.007 s
% 0.22/0.38  % (23797)Instructions burned: 3 (million)
% 0.22/0.38  % (23797)------------------------------
% 0.22/0.38  % (23797)------------------------------
% 0.22/0.38  % (23788)Success in time 0.009 s
% 0.22/0.38  % Vampire---4.8 exiting
%------------------------------------------------------------------------------