TSTP Solution File: SEU717^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU717^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n113.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:54 EDT 2014

% Result   : Theorem 0.48s
% Output   : Proof 0.48s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU717^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n113.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:17:21 CDT 2014
% % CPUTime  : 0.48 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x18cde18>, <kernel.DependentProduct object at 0x18af8c0>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x15b7758>, <kernel.DependentProduct object at 0x18af170>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x18cd050>, <kernel.DependentProduct object at 0x18af248>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x18cd0e0>, <kernel.Sort object at 0x15b7098>) of role type named powersetI1_type
% Using role type
% Declaring powersetI1:Prop
% FOF formula (((eq Prop) powersetI1) (forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A))))) of role definition named powersetI1
% A new definition: (((eq Prop) powersetI1) (forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A)))))
% Defined: powersetI1:=(forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A))))
% FOF formula (<kernel.Constant object at 0x18cd0e0>, <kernel.Sort object at 0x15b7098>) of role type named subsetTI_type
% Using role type
% Declaring subsetTI:Prop
% FOF formula (((eq Prop) subsetTI) (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))) of role definition named subsetTI
% A new definition: (((eq Prop) subsetTI) (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))))))
% Defined: subsetTI:=(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))
% FOF formula (powersetI1->(subsetTI->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y))))))))) of role conjecture named powersetTI1
% Conjecture to prove = (powersetI1->(subsetTI->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(powersetI1->(subsetTI->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Parameter subset:(fofType->(fofType->Prop)).
% Definition powersetI1:=(forall (A:fofType) (B:fofType), (((subset B) A)->((in B) (powerset A)))):Prop.
% Definition subsetTI:=(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))))):Prop.
% Trying to prove (powersetI1->(subsetTI->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))))))))
% Found x0000000:=(x000000 x3):((subset X) Y)
% Found (x000000 x3) as proof of ((subset X) Y)
% Found ((x00000 x2) x3) as proof of ((subset X) Y)
% Found (((x0000 x1) x2) x3) as proof of ((subset X) Y)
% Found ((((x000 A) x1) x2) x3) as proof of ((subset X) Y)
% Found (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> (((x00 A0) x5) Y)) A) x1) x2) x3) as proof of ((subset X) Y)
% Found (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3) as proof of ((subset X) Y)
% Found (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3) as proof of ((subset X) Y)
% Found (x40 (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3)) as proof of ((in X) (powerset Y))
% Found ((x4 X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3)) as proof of ((in X) (powerset Y))
% Found (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3)) as proof of ((in X) (powerset Y))
% Found (fun (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of ((in X) (powerset Y))
% Found (fun (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of ((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))
% Found (fun (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y))))
% Found (fun (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))))
% Found (fun (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y))))))
% Found (fun (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))))))
% Found (fun (x0:subsetTI) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))))))
% Found (fun (x:powersetI1) (x0:subsetTI) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (subsetTI->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y))))))))
% Found (fun (x:powersetI1) (x0:subsetTI) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3))) as proof of (powersetI1->(subsetTI->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((in X) (powerset Y)))))))))
% Got proof (fun (x:powersetI1) (x0:subsetTI) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3)))
% Time elapsed = 0.158702s
% node=20 cost=640.000000 depth=18
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:powersetI1) (x0:subsetTI) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x Y) X) (((((fun (A0:fofType) (x5:((in X) (powerset A0)))=> ((((fun (A0:fofType)=> ((x0 A0) X)) A0) x5) Y)) A) x1) x2) x3)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------