TSTP Solution File: SEU716^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU716^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n097.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:54 EDT 2014

% Result   : Theorem 0.61s
% Output   : Proof 0.61s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU716^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n097.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:17:16 CDT 2014
% % CPUTime  : 0.61 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1f01a28>, <kernel.DependentProduct object at 0x1f00200>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1f011b8>, <kernel.DependentProduct object at 0x1f00128>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x1f01a28>, <kernel.Sort object at 0x1be3368>) of role type named powersetE_type
% Using role type
% Declaring powersetE:Prop
% FOF formula (((eq Prop) powersetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A))))) of role definition named powersetE
% A new definition: (((eq Prop) powersetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A)))))
% Defined: powersetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A))))
% FOF formula (<kernel.Constant object at 0x1f01a28>, <kernel.DependentProduct object at 0x1f00518>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1f01a28>, <kernel.Sort object at 0x1be3368>) of role type named subsetI2_type
% Using role type
% Declaring subsetI2:Prop
% FOF formula (((eq Prop) subsetI2) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B)))) of role definition named subsetI2
% A new definition: (((eq Prop) subsetI2) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B))))
% Defined: subsetI2:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B)))
% FOF formula (powersetE->(subsetI2->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))))))) of role conjecture named subsetTI
% Conjecture to prove = (powersetE->(subsetI2->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(powersetE->(subsetI2->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Definition powersetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A)))):Prop.
% Parameter subset:(fofType->(fofType->Prop)).
% Definition subsetI2:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) A)->((in Xx) B)))->((subset A) B))):Prop.
% Trying to prove (powersetE->(subsetI2->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))))
% Found x4:((in Xx) X)
% Found x4 as proof of ((in Xx) X)
% Found x4:((in Xx) X)
% Found x4 as proof of ((in Xx) X)
% Found x50000:=(x5000 x4):((in Xx) A)
% Found (x5000 x4) as proof of ((in Xx) A)
% Found ((x500 x1) x4) as proof of ((in Xx) A)
% Found (((x50 X) x1) x4) as proof of ((in Xx) A)
% Found ((((fun (B:fofType)=> ((x5 B) Xx)) X) x1) x4) as proof of ((in Xx) A)
% Found ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4) as proof of ((in Xx) A)
% Found ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4) as proof of ((in Xx) A)
% Found ((x30 ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4) as proof of ((in Xx) Y)
% Found (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4) as proof of ((in Xx) Y)
% Found (fun (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)) as proof of ((in Xx) Y)
% Found (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)) as proof of (((in Xx) X)->((in Xx) Y))
% Found (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)) as proof of (forall (Xx:fofType), (((in Xx) X)->((in Xx) Y)))
% Found (x000 (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4))) as proof of ((subset X) Y)
% Found ((x00 Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4))) as proof of ((subset X) Y)
% Found (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4))) as proof of ((subset X) Y)
% Found (fun (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of ((subset X) Y)
% Found (fun (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of ((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))
% Found (fun (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))
% Found (fun (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))
% Found (fun (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))))
% Found (fun (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))
% Found (fun (x0:subsetI2) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))
% Found (fun (x:powersetE) (x0:subsetI2) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (subsetI2->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y)))))))
% Found (fun (x:powersetE) (x0:subsetI2) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4)))) as proof of (powersetE->(subsetI2->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y))))->((subset X) Y))))))))
% Got proof (fun (x:powersetE) (x0:subsetI2) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4))))
% Time elapsed = 0.280073s
% node=59 cost=650.000000 depth=22
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:powersetE) (x0:subsetI2) (A:fofType) (X:fofType) (x1:((in X) (powerset A))) (Y:fofType) (x2:((in Y) (powerset A))) (x3:(forall (Xx:fofType), (((in Xx) A)->(((in Xx) X)->((in Xx) Y)))))=> (((x0 X) Y) (fun (Xx:fofType) (x4:((in Xx) X))=> (((x3 Xx) ((((fun (B:fofType)=> (((x A) B) Xx)) X) x1) x4)) x4))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------