TSTP Solution File: SEU714^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU714^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n113.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:54 EDT 2014

% Result   : Theorem 0.41s
% Output   : Proof 0.41s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU714^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n113.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:16:56 CDT 2014
% % CPUTime  : 0.41 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0xe06758>, <kernel.DependentProduct object at 0xc5fc68>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0xd89290>, <kernel.DependentProduct object at 0xc5fab8>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0xe060e0>, <kernel.Sort object at 0x8971b8>) of role type named powersetI_type
% Using role type
% Declaring powersetI:Prop
% FOF formula (((eq Prop) powersetI) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A))))) of role definition named powersetI
% A new definition: (((eq Prop) powersetI) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A)))))
% Defined: powersetI:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A))))
% FOF formula (<kernel.Constant object at 0xe06680>, <kernel.DependentProduct object at 0xc5f680>) of role type named setminus_type
% Using role type
% Declaring setminus:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0xe060e0>, <kernel.Sort object at 0x8971b8>) of role type named setminusEL_type
% Using role type
% Declaring setminusEL:Prop
% FOF formula (((eq Prop) setminusEL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->((in Xx) A)))) of role definition named setminusEL
% A new definition: (((eq Prop) setminusEL) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->((in Xx) A))))
% Defined: setminusEL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->((in Xx) A)))
% FOF formula (powersetI->(setminusEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A)))))) of role conjecture named complementT_lem
% Conjecture to prove = (powersetI->(setminusEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(powersetI->(setminusEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Definition powersetI:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A)))):Prop.
% Parameter setminus:(fofType->(fofType->fofType)).
% Definition setminusEL:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((setminus A) B))->((in Xx) A))):Prop.
% Trying to prove (powersetI->(setminusEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A))))))
% Found x000:=(x00 X):(forall (Xx:fofType), (((in Xx) ((setminus A) X))->((in Xx) A)))
% Found (x00 X) as proof of (forall (Xx:fofType), (((in Xx) ((setminus A) X))->((in Xx) A)))
% Found ((x0 A) X) as proof of (forall (Xx:fofType), (((in Xx) ((setminus A) X))->((in Xx) A)))
% Found ((x0 A) X) as proof of (forall (Xx:fofType), (((in Xx) ((setminus A) X))->((in Xx) A)))
% Found (x20 ((x0 A) X)) as proof of ((in ((setminus A) X)) (powerset A))
% Found ((x2 ((setminus A) X)) ((x0 A) X)) as proof of ((in ((setminus A) X)) (powerset A))
% Found (((x A) ((setminus A) X)) ((x0 A) X)) as proof of ((in ((setminus A) X)) (powerset A))
% Found (fun (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X))) as proof of ((in ((setminus A) X)) (powerset A))
% Found (fun (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X))) as proof of (((in X) (powerset A))->((in ((setminus A) X)) (powerset A)))
% Found (fun (A:fofType) (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X))) as proof of (forall (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A))))
% Found (fun (x0:setminusEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A))))
% Found (fun (x:powersetI) (x0:setminusEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X))) as proof of (setminusEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A)))))
% Found (fun (x:powersetI) (x0:setminusEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X))) as proof of (powersetI->(setminusEL->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->((in ((setminus A) X)) (powerset A))))))
% Got proof (fun (x:powersetI) (x0:setminusEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X)))
% Time elapsed = 0.083409s
% node=14 cost=-95.000000 depth=11
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:powersetI) (x0:setminusEL) (A:fofType) (X:fofType) (x1:((in X) (powerset A)))=> (((x A) ((setminus A) X)) ((x0 A) X)))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------