TSTP Solution File: SEU711^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU711^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n095.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:53 EDT 2014

% Result   : Theorem 1.26s
% Output   : Proof 1.26s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU711^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n095.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:16:31 CDT 2014
% % CPUTime  : 1.26 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1b47ab8>, <kernel.DependentProduct object at 0x1b47878>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1d25200>, <kernel.DependentProduct object at 0x1b47c20>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x1b478c0>, <kernel.Sort object at 0x1a28d88>) of role type named powersetI_type
% Using role type
% Declaring powersetI:Prop
% FOF formula (((eq Prop) powersetI) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A))))) of role definition named powersetI
% A new definition: (((eq Prop) powersetI) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A)))))
% Defined: powersetI:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A))))
% FOF formula (<kernel.Constant object at 0x1b47710>, <kernel.Sort object at 0x1a28d88>) of role type named powersetE_type
% Using role type
% Declaring powersetE:Prop
% FOF formula (((eq Prop) powersetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A))))) of role definition named powersetE
% A new definition: (((eq Prop) powersetE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A)))))
% Defined: powersetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A))))
% FOF formula (<kernel.Constant object at 0x1b47ab8>, <kernel.DependentProduct object at 0x1b47d88>) of role type named binunion_type
% Using role type
% Declaring binunion:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1b47878>, <kernel.Sort object at 0x1a28d88>) of role type named binunionEcases_type
% Using role type
% Declaring binunionEcases:Prop
% FOF formula (((eq Prop) binunionEcases) (forall (A:fofType) (B:fofType) (Xx:fofType) (Xphi:Prop), (((in Xx) ((binunion A) B))->((((in Xx) A)->Xphi)->((((in Xx) B)->Xphi)->Xphi))))) of role definition named binunionEcases
% A new definition: (((eq Prop) binunionEcases) (forall (A:fofType) (B:fofType) (Xx:fofType) (Xphi:Prop), (((in Xx) ((binunion A) B))->((((in Xx) A)->Xphi)->((((in Xx) B)->Xphi)->Xphi)))))
% Defined: binunionEcases:=(forall (A:fofType) (B:fofType) (Xx:fofType) (Xphi:Prop), (((in Xx) ((binunion A) B))->((((in Xx) A)->Xphi)->((((in Xx) B)->Xphi)->Xphi))))
% FOF formula (powersetI->(powersetE->(binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A))))))))) of role conjecture named binunionT_lem
% Conjecture to prove = (powersetI->(powersetE->(binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A))))))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(powersetI->(powersetE->(binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A)))))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter powerset:(fofType->fofType).
% Definition powersetI:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A)))):Prop.
% Definition powersetE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in B) (powerset A))->(((in Xx) B)->((in Xx) A)))):Prop.
% Parameter binunion:(fofType->(fofType->fofType)).
% Definition binunionEcases:=(forall (A:fofType) (B:fofType) (Xx:fofType) (Xphi:Prop), (((in Xx) ((binunion A) B))->((((in Xx) A)->Xphi)->((((in Xx) B)->Xphi)->Xphi)))):Prop.
% Trying to prove (powersetI->(powersetE->(binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A)))))))))
% Found x5:((in Xx) B)
% Instantiate: B:=(powerset A):fofType
% Found (fun (x5:((in Xx) B))=> x5) as proof of ((in Xx) (powerset A))
% Found (fun (Xx:fofType) (x5:((in Xx) B))=> x5) as proof of (((in Xx) B)->((in Xx) (powerset A)))
% Found (fun (Xx:fofType) (x5:((in Xx) B))=> x5) as proof of (forall (Xx:fofType), (((in Xx) B)->((in Xx) (powerset A))))
% Found (x40 (fun (Xx:fofType) (x5:((in Xx) B))=> x5)) as proof of ((in B) (powerset (powerset A)))
% Found ((x4 B) (fun (Xx:fofType) (x5:((in Xx) B))=> x5)) as proof of ((in B) (powerset (powerset A)))
% Found (((x (powerset A)) B) (fun (Xx:fofType) (x5:((in Xx) B))=> x5)) as proof of ((in B) (powerset (powerset A)))
% Found (((x (powerset A)) B) (fun (Xx:fofType) (x5:((in Xx) B))=> x5)) as proof of ((in B) (powerset (powerset A)))
% Found x5:((in Xx) B0)
% Instantiate: B0:=(powerset A):fofType
% Found (fun (x5:((in Xx) B0))=> x5) as proof of ((in Xx) (powerset A))
% Found (fun (Xx:fofType) (x5:((in Xx) B0))=> x5) as proof of (((in Xx) B0)->((in Xx) (powerset A)))
% Found (fun (Xx:fofType) (x5:((in Xx) B0))=> x5) as proof of (forall (Xx:fofType), (((in Xx) B0)->((in Xx) (powerset A))))
% Found (x40 (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found ((x4 B0) (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found (((x (powerset A)) B0) (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found (((x (powerset A)) B0) (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found x5:((in Xx) B0)
% Instantiate: B0:=(powerset A):fofType
% Found (fun (x5:((in Xx) B0))=> x5) as proof of ((in Xx) (powerset A))
% Found (fun (Xx:fofType) (x5:((in Xx) B0))=> x5) as proof of (((in Xx) B0)->((in Xx) (powerset A)))
% Found (fun (Xx:fofType) (x5:((in Xx) B0))=> x5) as proof of (forall (Xx:fofType), (((in Xx) B0)->((in Xx) (powerset A))))
% Found (x40 (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found ((x4 B0) (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found (((x (powerset A)) B0) (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found (((x (powerset A)) B0) (fun (Xx:fofType) (x5:((in Xx) B0))=> x5)) as proof of ((in B0) (powerset (powerset A)))
% Found x4:((in Xx) B)
% Instantiate: Xx:=((binunion X) Y):fofType;B:=(powerset A):fofType
% Found (fun (x4:((in Xx) B))=> x4) as proof of ((in ((binunion X) Y)) (powerset A))
% Found (fun (x4:((in Xx) B))=> x4) as proof of (((in Xx) B)->((in ((binunion X) Y)) (powerset A)))
% Found x4:((in Xx) A0)
% Instantiate: A0:=(powerset A):fofType;Xx:=((binunion X) Y):fofType
% Found (fun (x4:((in Xx) A0))=> x4) as proof of ((in ((binunion X) Y)) (powerset A))
% Found (fun (x4:((in Xx) A0))=> x4) as proof of (((in Xx) A0)->((in ((binunion X) Y)) (powerset A)))
% Found x5:((in Xx) ((binunion X) Y))
% Instantiate: A0:=X:fofType;B:=Y:fofType;Xx0:=Xx:fofType
% Found x5 as proof of ((in Xx0) ((binunion A0) B))
% Found x6:((in Xx0) A0)
% Instantiate: A0:=A:fofType;Xx0:=Xx:fofType
% Found (fun (x6:((in Xx0) A0))=> x6) as proof of ((in Xx) A)
% Found (fun (x6:((in Xx0) A0))=> x6) as proof of (((in Xx0) A0)->((in Xx) A))
% Found x6:((in Xx0) B)
% Instantiate: B:=A:fofType;Xx0:=Xx:fofType
% Found (fun (x6:((in Xx0) B))=> x6) as proof of ((in Xx) A)
% Found (fun (x6:((in Xx0) B))=> x6) as proof of (((in Xx0) B)->((in Xx) A))
% Found x00000:=(x0000 Xx0):(((in Xx0) A0)->((in Xx0) A))
% Found (x0000 Xx0) as proof of (((in Xx0) A0)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> ((x000 Xx1) x2)) Xx0) as proof of (((in Xx0) A0)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> (((x00 A0) Xx1) x2)) Xx0) as proof of (((in Xx0) A0)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> ((((x0 A) A0) Xx1) x2)) Xx0) as proof of (((in Xx0) A0)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> ((((x0 A) A0) Xx1) x2)) Xx0) as proof of (((in Xx0) A0)->((in Xx) A))
% Found x00000:=(x0000 Xx0):(((in Xx0) B)->((in Xx0) A))
% Found (x0000 Xx0) as proof of (((in Xx0) B)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> ((x000 Xx1) x3)) Xx0) as proof of (((in Xx0) B)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> (((x00 B) Xx1) x3)) Xx0) as proof of (((in Xx0) B)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> ((((x0 A) B) Xx1) x3)) Xx0) as proof of (((in Xx0) B)->((in Xx) A))
% Found ((fun (Xx1:fofType)=> ((((x0 A) B) Xx1) x3)) Xx0) as proof of (((in Xx0) B)->((in Xx) A))
% Found (((x10000 x5) ((fun (Xx1:fofType)=> ((((x0 A) A0) Xx1) x2)) Xx0)) ((fun (Xx1:fofType)=> ((((x0 A) B) Xx1) x3)) Xx0)) as proof of ((in Xx) A)
% Found ((((x1000 ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) A0) Xx1) x2)) Xx0)) ((fun (Xx1:fofType)=> ((((x0 A) B) Xx1) x3)) Xx0)) as proof of ((in Xx) A)
% Found (((((x100 Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) A0) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) B) Xx1) x3)) Xx)) as proof of ((in Xx) A)
% Found ((((((x10 Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) A0) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)) as proof of ((in Xx) A)
% Found (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)) as proof of ((in Xx) A)
% Found (fun (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))) as proof of ((in Xx) A)
% Found (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))) as proof of (((in Xx) ((binunion X) Y))->((in Xx) A))
% Found (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))) as proof of (forall (Xx:fofType), (((in Xx) ((binunion X) Y))->((in Xx) A)))
% Found (x40 (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)))) as proof of ((in ((binunion X) Y)) (powerset A))
% Found ((x4 ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)))) as proof of ((in ((binunion X) Y)) (powerset A))
% Found (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)))) as proof of ((in ((binunion X) Y)) (powerset A))
% Found (fun (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of ((in ((binunion X) Y)) (powerset A))
% Found (fun (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A)))
% Found (fun (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A))))
% Found (fun (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A)))))
% Found (fun (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (forall (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A))))))
% Found (fun (x1:binunionEcases) (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A))))))
% Found (fun (x0:powersetE) (x1:binunionEcases) (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A)))))))
% Found (fun (x:powersetI) (x0:powersetE) (x1:binunionEcases) (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (powersetE->(binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A))))))))
% Found (fun (x:powersetI) (x0:powersetE) (x1:binunionEcases) (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx))))) as proof of (powersetI->(powersetE->(binunionEcases->(forall (A:fofType) (X:fofType), (((in X) (powerset A))->(forall (Y:fofType), (((in Y) (powerset A))->((in ((binunion X) Y)) (powerset A)))))))))
% Got proof (fun (x:powersetI) (x0:powersetE) (x1:binunionEcases) (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)))))
% Time elapsed = 0.922380s
% node=209 cost=2129.000000 depth=24
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:powersetI) (x0:powersetE) (x1:binunionEcases) (A:fofType) (X:fofType) (x2:((in X) (powerset A))) (Y:fofType) (x3:((in Y) (powerset A)))=> (((x A) ((binunion X) Y)) (fun (Xx:fofType) (x5:((in Xx) ((binunion X) Y)))=> (((((((x1 X) Y) Xx) ((in Xx) A)) x5) ((fun (Xx1:fofType)=> ((((x0 A) X) Xx1) x2)) Xx)) ((fun (Xx1:fofType)=> ((((x0 A) Y) Xx1) x3)) Xx)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------