TSTP Solution File: SEU697^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU697^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n092.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:51 EDT 2014

% Result   : Theorem 0.52s
% Output   : Proof 0.52s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU697^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n092.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:14:11 CDT 2014
% % CPUTime  : 0.52 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x217eb48>, <kernel.DependentProduct object at 0x1da1950>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x21d95f0>, <kernel.DependentProduct object at 0x1da16c8>) of role type named dpsetconstr_type
% Using role type
% Declaring dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType)))
% FOF formula (<kernel.Constant object at 0x217ea28>, <kernel.DependentProduct object at 0x1da1710>) of role type named lam_type
% Using role type
% Declaring lam:(fofType->(fofType->((fofType->fofType)->fofType)))
% FOF formula (((eq (fofType->(fofType->((fofType->fofType)->fofType)))) lam) (fun (A:fofType) (B:fofType) (Xf:(fofType->fofType))=> (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> (((eq fofType) (Xf Xx)) Xy))))) of role definition named lam
% A new definition: (((eq (fofType->(fofType->((fofType->fofType)->fofType)))) lam) (fun (A:fofType) (B:fofType) (Xf:(fofType->fofType))=> (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> (((eq fofType) (Xf Xx)) Xy)))))
% Defined: lam:=(fun (A:fofType) (B:fofType) (Xf:(fofType->fofType))=> (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> (((eq fofType) (Xf Xx)) Xy))))
% FOF formula (forall (A:fofType) (B:fofType) (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))))) of role conjecture named lam2lamEq
% Conjecture to prove = (forall (A:fofType) (B:fofType) (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (A:fofType) (B:fofType) (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType))).
% Definition lam:=(fun (A:fofType) (B:fofType) (Xf:(fofType->fofType))=> (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> (((eq fofType) (Xf Xx)) Xy)))):(fofType->(fofType->((fofType->fofType)->fofType))).
% Trying to prove (forall (A:fofType) (B:fofType) (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))))
% Found eq_ref00:=(eq_ref0 (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))):(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))
% Found (eq_ref0 (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) as proof of (((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))
% Found ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) as proof of (((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))
% Found (fun (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))) as proof of (((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))
% Found (fun (Xf:(fofType->fofType)) (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))) as proof of ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))))
% Found (fun (B:fofType) (Xf:(fofType->fofType)) (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))) as proof of (forall (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))))
% Found (fun (A:fofType) (B:fofType) (Xf:(fofType->fofType)) (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))) as proof of (forall (B:fofType) (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))))
% Found (fun (A:fofType) (B:fofType) (Xf:(fofType->fofType)) (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))) as proof of (forall (A:fofType) (B:fofType) (Xf:(fofType->fofType)), ((forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B)))->(((eq fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx))))))
% Got proof (fun (A:fofType) (B:fofType) (Xf:(fofType->fofType)) (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))))
% Time elapsed = 0.199671s
% node=12 cost=-167.000000 depth=6
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (A:fofType) (B:fofType) (Xf:(fofType->fofType)) (x:(forall (Xx:fofType), (((in Xx) A)->((in (Xf Xx)) B))))=> ((eq_ref fofType) (((lam A) B) (fun (Xx:fofType)=> (Xf Xx)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------