TSTP Solution File: SEU667^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU667^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n104.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:45 EDT 2014

% Result   : Theorem 0.36s
% Output   : Proof 0.36s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU667^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n104.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 11:06:21 CDT 2014
% % CPUTime  : 0.36 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x20cb170>, <kernel.DependentProduct object at 0x20cb7e8>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20cd488>, <kernel.DependentProduct object at 0x20cb5a8>) of role type named dsetconstr_type
% Using role type
% Declaring dsetconstr:(fofType->((fofType->Prop)->fofType))
% FOF formula (<kernel.Constant object at 0x20cd488>, <kernel.DependentProduct object at 0x20cb758>) of role type named subset_type
% Using role type
% Declaring subset:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20cbc20>, <kernel.DependentProduct object at 0x20cb7e8>) of role type named kpair_type
% Using role type
% Declaring kpair:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x20cb488>, <kernel.DependentProduct object at 0x20cbb48>) of role type named cartprod_type
% Using role type
% Declaring cartprod:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1dae7e8>, <kernel.DependentProduct object at 0x20cbb48>) of role type named breln_type
% Using role type
% Declaring breln:(fofType->(fofType->(fofType->Prop)))
% FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))) of role definition named breln
% A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) breln) (fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))))
% Defined: breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B)))
% FOF formula (<kernel.Constant object at 0x20cbab8>, <kernel.DependentProduct object at 0x20cbdd0>) of role type named dpsetconstr_type
% Using role type
% Declaring dpsetconstr:(fofType->(fofType->((fofType->(fofType->Prop))->fofType)))
% FOF formula (((eq (fofType->(fofType->((fofType->(fofType->Prop))->fofType)))) dpsetconstr) (fun (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop)))=> ((dsetconstr ((cartprod A) B)) (fun (Xu:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((ex fofType) (fun (Xy:fofType)=> ((and ((and ((in Xy) B)) ((Xphi Xx) Xy))) (((eq fofType) Xu) ((kpair Xx) Xy)))))))))))) of role definition named dpsetconstr
% A new definition: (((eq (fofType->(fofType->((fofType->(fofType->Prop))->fofType)))) dpsetconstr) (fun (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop)))=> ((dsetconstr ((cartprod A) B)) (fun (Xu:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((ex fofType) (fun (Xy:fofType)=> ((and ((and ((in Xy) B)) ((Xphi Xx) Xy))) (((eq fofType) Xu) ((kpair Xx) Xy))))))))))))
% Defined: dpsetconstr:=(fun (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop)))=> ((dsetconstr ((cartprod A) B)) (fun (Xu:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((ex fofType) (fun (Xy:fofType)=> ((and ((and ((in Xy) B)) ((Xphi Xx) Xy))) (((eq fofType) Xu) ((kpair Xx) Xy)))))))))))
% FOF formula (<kernel.Constant object at 0x20cb488>, <kernel.Sort object at 0x1dac758>) of role type named dpsetconstrSub_type
% Using role type
% Declaring dpsetconstrSub:Prop
% FOF formula (((eq Prop) dpsetconstrSub) (forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), ((subset (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))) ((cartprod A) B)))) of role definition named dpsetconstrSub
% A new definition: (((eq Prop) dpsetconstrSub) (forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), ((subset (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))) ((cartprod A) B))))
% Defined: dpsetconstrSub:=(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), ((subset (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))) ((cartprod A) B)))
% FOF formula (dpsetconstrSub->(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), (((breln A) B) (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))))) of role conjecture named setOfPairsIsBReln
% Conjecture to prove = (dpsetconstrSub->(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), (((breln A) B) (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(dpsetconstrSub->(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), (((breln A) B) (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy))))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter dsetconstr:(fofType->((fofType->Prop)->fofType)).
% Parameter subset:(fofType->(fofType->Prop)).
% Parameter kpair:(fofType->(fofType->fofType)).
% Parameter cartprod:(fofType->(fofType->fofType)).
% Definition breln:=(fun (A:fofType) (B:fofType) (C:fofType)=> ((subset C) ((cartprod A) B))):(fofType->(fofType->(fofType->Prop))).
% Definition dpsetconstr:=(fun (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop)))=> ((dsetconstr ((cartprod A) B)) (fun (Xu:fofType)=> ((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((ex fofType) (fun (Xy:fofType)=> ((and ((and ((in Xy) B)) ((Xphi Xx) Xy))) (((eq fofType) Xu) ((kpair Xx) Xy))))))))))):(fofType->(fofType->((fofType->(fofType->Prop))->fofType))).
% Definition dpsetconstrSub:=(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), ((subset (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))) ((cartprod A) B))):Prop.
% Trying to prove (dpsetconstrSub->(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), (((breln A) B) (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy))))))
% Found x:dpsetconstrSub
% Found (fun (x:dpsetconstrSub)=> x) as proof of (forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), (((breln A) B) (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy)))))
% Found (fun (x:dpsetconstrSub)=> x) as proof of (dpsetconstrSub->(forall (A:fofType) (B:fofType) (Xphi:(fofType->(fofType->Prop))), (((breln A) B) (((dpsetconstr A) B) (fun (Xx:fofType) (Xy:fofType)=> ((Xphi Xx) Xy))))))
% Got proof (fun (x:dpsetconstrSub)=> x)
% Time elapsed = 0.030126s
% node=1 cost=3.000000 depth=1
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:dpsetconstrSub)=> x)
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------