TSTP Solution File: SEU614^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU614^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n094.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:36 EDT 2014

% Result   : Theorem 0.78s
% Output   : Proof 0.78s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU614^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n094.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:53:56 CDT 2014
% % CPUTime  : 0.78 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x1988b48>, <kernel.DependentProduct object at 0x1dc0c20>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x19886c8>, <kernel.DependentProduct object at 0x1988fc8>) of role type named symdiff_type
% Using role type
% Declaring symdiff:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x1988518>, <kernel.Sort object at 0x184ec20>) of role type named symdiffE_type
% Using role type
% Declaring symdiffE:Prop
% FOF formula (((eq Prop) symdiffE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi)))))) of role definition named symdiffE
% A new definition: (((eq Prop) symdiffE) (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi))))))
% Defined: symdiffE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi)))))
% FOF formula (symdiffE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False))))) of role conjecture named symdiffIneg1
% Conjecture to prove = (symdiffE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False))))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(symdiffE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False)))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter symdiff:(fofType->(fofType->fofType)).
% Definition symdiffE:=(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) ((symdiff A) B))->(forall (Xphi:Prop), ((((in Xx) A)->((((in Xx) B)->False)->Xphi))->(((((in Xx) A)->False)->(((in Xx) B)->Xphi))->Xphi))))):Prop.
% Trying to prove (symdiffE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False)))))
% Found x2:((in Xx) ((symdiff A) B))
% Instantiate: A0:=A:fofType;Xx0:=Xx:fofType;B0:=B:fofType
% Found x2 as proof of ((in Xx0) ((symdiff A0) B0))
% Found x4:(((in Xx0) A0)->False)
% Instantiate: B0:=A0:fofType
% Found (fun (x4:(((in Xx0) A0)->False))=> x4) as proof of (((in Xx0) B0)->Xphi)
% Found (fun (x4:(((in Xx0) A0)->False))=> x4) as proof of ((((in Xx0) A0)->False)->(((in Xx0) B0)->Xphi))
% Found x2:((in Xx) ((symdiff A) B))
% Instantiate: A0:=A:fofType;Xx0:=Xx:fofType;B0:=B:fofType
% Found x2 as proof of ((in Xx0) ((symdiff A0) B0))
% Found x4:(((in Xx0) A0)->False)
% Instantiate: B0:=A0:fofType
% Found (fun (x4:(((in Xx0) A0)->False))=> x4) as proof of (((in Xx0) B0)->Xphi)
% Found (fun (x4:(((in Xx0) A0)->False))=> x4) as proof of ((((in Xx0) A0)->False)->(((in Xx0) B0)->Xphi))
% Found x50:=(x5 x1):False
% Found (x5 x1) as proof of Xphi
% Found (fun (x5:(((in Xx0) B0)->False))=> (x5 x1)) as proof of Xphi
% Found (fun (x4:((in Xx0) A0)) (x5:(((in Xx0) B0)->False))=> (x5 x1)) as proof of ((((in Xx0) B0)->False)->Xphi)
% Found (fun (x4:((in Xx0) A0)) (x5:(((in Xx0) B0)->False))=> (x5 x1)) as proof of (((in Xx0) A0)->((((in Xx0) B0)->False)->Xphi))
% Found x40:=(x4 x0):False
% Found (x4 x0) as proof of Xphi
% Found (fun (x5:((in Xx0) B0))=> (x4 x0)) as proof of Xphi
% Found (fun (x4:(((in Xx0) A0)->False)) (x5:((in Xx0) B0))=> (x4 x0)) as proof of (((in Xx0) B0)->Xphi)
% Found (fun (x4:(((in Xx0) A0)->False)) (x5:((in Xx0) B0))=> (x4 x0)) as proof of ((((in Xx0) A0)->False)->(((in Xx0) B0)->Xphi))
% Found (((x3000 x2) (fun (x4:((in Xx0) A0)) (x5:(((in Xx0) B0)->False))=> (x5 x1))) (fun (x4:(((in Xx0) A0)->False)) (x5:((in Xx0) B0))=> (x4 x0))) as proof of False
% Found (((x3000 x2) (fun (x4:((in Xx0) A0)) (x5:(((in Xx0) B0)->False))=> (x5 x1))) (fun (x4:(((in Xx0) A0)->False)) (x5:((in Xx0) B0))=> (x4 x0))) as proof of False
% Found ((((fun (x4:((in Xx0) ((symdiff A0) B0)))=> ((x300 x4) False)) x2) (fun (x4:((in Xx0) A0)) (x5:(((in Xx0) B0)->False))=> (x5 x1))) (fun (x4:(((in Xx0) A0)->False)) (x5:((in Xx0) B0))=> (x4 x0))) as proof of False
% Found ((((fun (x4:((in Xx) ((symdiff A0) B0)))=> (((x30 Xx) x4) False)) x2) (fun (x4:((in Xx) A0)) (x5:(((in Xx) B0)->False))=> (x5 x1))) (fun (x4:(((in Xx) A0)->False)) (x5:((in Xx) B0))=> (x4 x0))) as proof of False
% Found ((((fun (x4:((in Xx) ((symdiff A0) B)))=> ((((x3 B) Xx) x4) False)) x2) (fun (x4:((in Xx) A0)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A0)->False)) (x5:((in Xx) B))=> (x4 x0))) as proof of False
% Found ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0))) as proof of False
% Found (fun (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of False
% Found (fun (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (((in Xx) ((symdiff A) B))->False)
% Found (fun (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (((in Xx) B)->(((in Xx) ((symdiff A) B))->False))
% Found (fun (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False)))
% Found (fun (B:fofType) (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (forall (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False))))
% Found (fun (A:fofType) (B:fofType) (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (forall (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False))))
% Found (fun (x:symdiffE) (A:fofType) (B:fofType) (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False))))
% Found (fun (x:symdiffE) (A:fofType) (B:fofType) (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0)))) as proof of (symdiffE->(forall (A:fofType) (B:fofType) (Xx:fofType), (((in Xx) A)->(((in Xx) B)->(((in Xx) ((symdiff A) B))->False)))))
% Got proof (fun (x:symdiffE) (A:fofType) (B:fofType) (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0))))
% Time elapsed = 0.455102s
% node=87 cost=3618.000000 depth=17
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:symdiffE) (A:fofType) (B:fofType) (Xx:fofType) (x0:((in Xx) A)) (x1:((in Xx) B)) (x2:((in Xx) ((symdiff A) B)))=> ((((fun (x4:((in Xx) ((symdiff A) B)))=> (((((x A) B) Xx) x4) False)) x2) (fun (x4:((in Xx) A)) (x5:(((in Xx) B)->False))=> (x5 x1))) (fun (x4:(((in Xx) A)->False)) (x5:((in Xx) B))=> (x4 x0))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------