TSTP Solution File: SEU539^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU539^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n109.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:24 EDT 2014

% Result   : Theorem 0.79s
% Output   : Proof 0.79s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU539^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n109.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:35:06 CDT 2014
% % CPUTime  : 0.79 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x11abf38>, <kernel.DependentProduct object at 0x11ab9e0>) of role type named in
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (forall (A:fofType) (Xphi:(fofType->Prop)), (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False))) of role conjecture named quantDeMorgan4
% Conjecture to prove = (forall (A:fofType) (Xphi:(fofType->Prop)), (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (A:fofType) (Xphi:(fofType->Prop)), (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Trying to prove (forall (A:fofType) (Xphi:(fofType->Prop)), (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)))
% Found x000:=(x00 x3):(Xphi x1)
% Found (x00 x3) as proof of (Xphi x1)
% Found ((x0 x1) x3) as proof of (Xphi x1)
% Found ((x0 x1) x3) as proof of (Xphi x1)
% Found (x4 ((x0 x1) x3)) as proof of False
% Found (fun (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))) as proof of False
% Found (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))) as proof of (((Xphi x1)->False)->False)
% Found (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))) as proof of (((in x1) A)->(((Xphi x1)->False)->False))
% Found (and_rect00 (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))) as proof of False
% Found ((and_rect0 False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))) as proof of False
% Found (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))) as proof of False
% Found (fun (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))) as proof of False
% Found (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))) as proof of (((and ((in x1) A)) ((Xphi x1)->False))->False)
% Found (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))) as proof of (forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->False))
% Found (ex_ind00 (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))))) as proof of False
% Found ((ex_ind0 False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))))) as proof of False
% Found (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))))) as proof of False
% Found (fun (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))))) as proof of False
% Found (fun (x:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))) (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))))) as proof of ((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)
% Found (fun (Xphi:(fofType->Prop)) (x:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))) (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))))) as proof of (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False))
% Found (fun (A:fofType) (Xphi:(fofType->Prop)) (x:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))) (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))))) as proof of (forall (Xphi:(fofType->Prop)), (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)))
% Found (fun (A:fofType) (Xphi:(fofType->Prop)) (x:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))) (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3))))))) as proof of (forall (A:fofType) (Xphi:(fofType->Prop)), (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))->((forall (Xx:fofType), (((in Xx) A)->(Xphi Xx)))->False)))
% Got proof (fun (A:fofType) (Xphi:(fofType->Prop)) (x:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))) (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))))))
% Time elapsed = 0.483208s
% node=55 cost=318.000000 depth=20
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (A:fofType) (Xphi:(fofType->Prop)) (x:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False))))) (x0:(forall (Xx:fofType), (((in Xx) A)->(Xphi Xx))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) ((Xphi x)->False))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) ((Xphi Xx)->False)))) P) x1) x)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) ((Xphi x1)->False)))=> (((fun (P:Type) (x3:(((in x1) A)->(((Xphi x1)->False)->P)))=> (((((and_rect ((in x1) A)) ((Xphi x1)->False)) P) x3) x2)) False) (fun (x3:((in x1) A)) (x4:((Xphi x1)->False))=> (x4 ((x0 x1) x3)))))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------