TSTP Solution File: SEU537^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU537^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n183.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:24 EDT 2014

% Result   : Theorem 0.58s
% Output   : Proof 0.58s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU537^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n183.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:33:56 CDT 2014
% % CPUTime  : 0.58 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x194aa28>, <kernel.DependentProduct object at 0x1d7ba28>) of role type named in
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (forall (A:fofType) (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False))) of role conjecture named quantDeMorgan2
% Conjecture to prove = (forall (A:fofType) (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(forall (A:fofType) (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False)))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Trying to prove (forall (A:fofType) (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False)))
% Found x3:=(x x1):(((in x1) A)->((Xphi x1)->False))
% Found (x x1) as proof of (((in x1) A)->((Xphi x1)->False))
% Found (x x1) as proof of (((in x1) A)->((Xphi x1)->False))
% Found (and_rect00 (x x1)) as proof of False
% Found ((and_rect0 False) (x x1)) as proof of False
% Found (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1)) as proof of False
% Found (fun (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))) as proof of False
% Found (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))) as proof of (((and ((in x1) A)) (Xphi x1))->False)
% Found (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))) as proof of (forall (x:fofType), (((and ((in x) A)) (Xphi x))->False))
% Found (ex_ind00 (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1)))) as proof of False
% Found ((ex_ind0 False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1)))) as proof of False
% Found (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1)))) as proof of False
% Found (fun (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))))) as proof of False
% Found (fun (x:(forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))) (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))))) as proof of (((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False)
% Found (fun (Xphi:(fofType->Prop)) (x:(forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))) (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))))) as proof of ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False))
% Found (fun (A:fofType) (Xphi:(fofType->Prop)) (x:(forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))) (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))))) as proof of (forall (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False)))
% Found (fun (A:fofType) (Xphi:(fofType->Prop)) (x:(forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))) (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1))))) as proof of (forall (A:fofType) (Xphi:(fofType->Prop)), ((forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))->(((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx))))->False)))
% Got proof (fun (A:fofType) (Xphi:(fofType->Prop)) (x:(forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))) (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1)))))
% Time elapsed = 0.259477s
% node=37 cost=87.000000 depth=15
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (A:fofType) (Xphi:(fofType->Prop)) (x:(forall (Xx:fofType), (((in Xx) A)->((Xphi Xx)->False)))) (x0:((ex fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))))=> (((fun (P:Prop) (x1:(forall (x:fofType), (((and ((in x) A)) (Xphi x))->P)))=> (((((ex_ind fofType) (fun (Xx:fofType)=> ((and ((in Xx) A)) (Xphi Xx)))) P) x1) x0)) False) (fun (x1:fofType) (x2:((and ((in x1) A)) (Xphi x1)))=> (((fun (P:Type) (x3:(((in x1) A)->((Xphi x1)->P)))=> (((((and_rect ((in x1) A)) (Xphi x1)) P) x3) x2)) False) (x x1)))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------