TSTP Solution File: SEU528^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU528^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n190.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:23 EDT 2014

% Result   : Theorem 1.14s
% Output   : Proof 1.14s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU528^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n190.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:31:36 CDT 2014
% % CPUTime  : 1.14 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x2310a70>, <kernel.DependentProduct object at 0x2310d88>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x24ee3f8>, <kernel.Single object at 0x2310f80>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x2310d88>, <kernel.DependentProduct object at 0x2310950>) of role type named setadjoin_type
% Using role type
% Declaring setadjoin:(fofType->(fofType->fofType))
% FOF formula (<kernel.Constant object at 0x2310cf8>, <kernel.Sort object at 0x21f3f80>) of role type named uniqinunit_type
% Using role type
% Declaring uniqinunit:Prop
% FOF formula (((eq Prop) uniqinunit) (forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))) of role definition named uniqinunit
% A new definition: (((eq Prop) uniqinunit) (forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))))
% Defined: uniqinunit:=(forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy)))
% FOF formula (uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False)))) of role conjecture named notinsingleton
% Conjecture to prove = (uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False)))):Prop
% We need to prove ['(uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter setadjoin:(fofType->(fofType->fofType)).
% Definition uniqinunit:=(forall (Xx:fofType) (Xy:fofType), (((in Xx) ((setadjoin Xy) emptyset))->(((eq fofType) Xx) Xy))):Prop.
% Trying to prove (uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False))))
% Found x200:=(x20 x1):(((eq fofType) Xy) Xx)
% Found (x20 x1) as proof of (((eq fofType) Xy) Xx)
% Found ((x2 Xx) x1) as proof of (((eq fofType) Xy) Xx)
% Found (((x Xy) Xx) x1) as proof of (((eq fofType) Xy) Xx)
% Found (((x Xy) Xx) x1) as proof of (((eq fofType) Xy) Xx)
% Found (eq_sym000 (((x Xy) Xx) x1)) as proof of (((eq fofType) Xx) Xy)
% Found ((eq_sym00 Xx) (((x Xy) Xx) x1)) as proof of (((eq fofType) Xx) Xy)
% Found (((eq_sym0 Xy) Xx) (((x Xy) Xx) x1)) as proof of (((eq fofType) Xx) Xy)
% Found ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)) as proof of (((eq fofType) Xx) Xy)
% Found ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)) as proof of (((eq fofType) Xx) Xy)
% Found (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1))) as proof of False
% Found (fun (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)))) as proof of False
% Found (fun (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)))) as proof of (((in Xy) ((setadjoin Xx) emptyset))->False)
% Found (fun (Xy:fofType) (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)))) as proof of ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False))
% Found (fun (Xx:fofType) (Xy:fofType) (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)))) as proof of (forall (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False)))
% Found (fun (x:uniqinunit) (Xx:fofType) (Xy:fofType) (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)))) as proof of (forall (Xx:fofType) (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False)))
% Found (fun (x:uniqinunit) (Xx:fofType) (Xy:fofType) (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1)))) as proof of (uniqinunit->(forall (Xx:fofType) (Xy:fofType), ((not (((eq fofType) Xx) Xy))->(((in Xy) ((setadjoin Xx) emptyset))->False))))
% Got proof (fun (x:uniqinunit) (Xx:fofType) (Xy:fofType) (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1))))
% Time elapsed = 0.823458s
% node=132 cost=285.000000 depth=15
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:uniqinunit) (Xx:fofType) (Xy:fofType) (x0:(not (((eq fofType) Xx) Xy))) (x1:((in Xy) ((setadjoin Xx) emptyset)))=> (x0 ((((eq_sym fofType) Xy) Xx) (((x Xy) Xx) x1))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------