TSTP Solution File: SEU519^2 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : SEU519^2 : TPTP v6.1.0. Released v3.7.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n104.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:32:21 EDT 2014

% Result   : Theorem 0.38s
% Output   : Proof 0.38s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : SEU519^2 : TPTP v6.1.0. Released v3.7.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n104.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 10:29:31 CDT 2014
% % CPUTime  : 0.38 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% FOF formula (<kernel.Constant object at 0x128efc8>, <kernel.DependentProduct object at 0x128eb48>) of role type named in_type
% Using role type
% Declaring in:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x12902d8>, <kernel.Single object at 0x128ecb0>) of role type named emptyset_type
% Using role type
% Declaring emptyset:fofType
% FOF formula (<kernel.Constant object at 0x128eb48>, <kernel.DependentProduct object at 0x128ecf8>) of role type named powerset_type
% Using role type
% Declaring powerset:(fofType->fofType)
% FOF formula (<kernel.Constant object at 0x128e878>, <kernel.Sort object at 0xd7d128>) of role type named emptysetE_type
% Using role type
% Declaring emptysetE:Prop
% FOF formula (((eq Prop) emptysetE) (forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi)))) of role definition named emptysetE
% A new definition: (((eq Prop) emptysetE) (forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi))))
% Defined: emptysetE:=(forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi)))
% FOF formula (<kernel.Constant object at 0x128e758>, <kernel.Sort object at 0xd7d128>) of role type named powersetI_type
% Using role type
% Declaring powersetI:Prop
% FOF formula (((eq Prop) powersetI) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A))))) of role definition named powersetI
% A new definition: (((eq Prop) powersetI) (forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A)))))
% Defined: powersetI:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A))))
% FOF formula (emptysetE->(powersetI->(forall (A:fofType), ((in emptyset) (powerset A))))) of role conjecture named emptyinPowerset
% Conjecture to prove = (emptysetE->(powersetI->(forall (A:fofType), ((in emptyset) (powerset A))))):Prop
% We need to prove ['(emptysetE->(powersetI->(forall (A:fofType), ((in emptyset) (powerset A)))))']
% Parameter fofType:Type.
% Parameter in:(fofType->(fofType->Prop)).
% Parameter emptyset:fofType.
% Parameter powerset:(fofType->fofType).
% Definition emptysetE:=(forall (Xx:fofType), (((in Xx) emptyset)->(forall (Xphi:Prop), Xphi))):Prop.
% Definition powersetI:=(forall (A:fofType) (B:fofType), ((forall (Xx:fofType), (((in Xx) B)->((in Xx) A)))->((in B) (powerset A)))):Prop.
% Trying to prove (emptysetE->(powersetI->(forall (A:fofType), ((in emptyset) (powerset A)))))
% Found x1:((in Xx) emptyset)
% Instantiate: Xx0:=Xx:fofType
% Found x1 as proof of ((in Xx0) emptyset)
% Found (x20 x1) as proof of ((in Xx) A)
% Found (x20 x1) as proof of ((in Xx) A)
% Found ((fun (x3:((in Xx0) emptyset))=> ((x2 x3) ((in Xx) A))) x1) as proof of ((in Xx) A)
% Found ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1) as proof of ((in Xx) A)
% Found (fun (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)) as proof of ((in Xx) A)
% Found (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)) as proof of (((in Xx) emptyset)->((in Xx) A))
% Found (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)) as proof of (forall (Xx:fofType), (((in Xx) emptyset)->((in Xx) A)))
% Found (x000 (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1))) as proof of ((in emptyset) (powerset A))
% Found ((x00 emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1))) as proof of ((in emptyset) (powerset A))
% Found (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1))) as proof of ((in emptyset) (powerset A))
% Found (fun (A:fofType)=> (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)))) as proof of ((in emptyset) (powerset A))
% Found (fun (x0:powersetI) (A:fofType)=> (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)))) as proof of (forall (A:fofType), ((in emptyset) (powerset A)))
% Found (fun (x:emptysetE) (x0:powersetI) (A:fofType)=> (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)))) as proof of (powersetI->(forall (A:fofType), ((in emptyset) (powerset A))))
% Found (fun (x:emptysetE) (x0:powersetI) (A:fofType)=> (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1)))) as proof of (emptysetE->(powersetI->(forall (A:fofType), ((in emptyset) (powerset A)))))
% Got proof (fun (x:emptysetE) (x0:powersetI) (A:fofType)=> (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1))))
% Time elapsed = 0.057816s
% node=21 cost=848.000000 depth=14
% ::::::::::::::::::::::
% % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% % SZS output start Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% (fun (x:emptysetE) (x0:powersetI) (A:fofType)=> (((x0 A) emptyset) (fun (Xx:fofType) (x1:((in Xx) emptyset))=> ((fun (x3:((in Xx) emptyset))=> (((x Xx) x3) ((in Xx) A))) x1))))
% % SZS output end Proof for /export/starexec/sandbox/benchmark/theBenchmark.p
% EOF
%------------------------------------------------------------------------------