TSTP Solution File: SEU345+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SEU345+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s

% Computer : n032.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:24:37 EDT 2023

% Result   : Theorem 34.79s 34.88s
% Output   : CNFRefutation 34.84s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :   85
% Syntax   : Number of formulae    :  146 (  24 unt;  70 typ;   0 def)
%            Number of atoms       :  277 (  81 equ)
%            Maximal formula atoms :   32 (   3 avg)
%            Number of connectives :  325 ( 124   ~; 133   |;  42   &)
%                                         (   5 <=>;  21  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   16 (   4 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :  102 (  58   >;  44   *;   0   +;   0  <<)
%            Number of predicates  :   28 (  26 usr;   1 prp; 0-3 aty)
%            Number of functors    :   44 (  44 usr;  12 con; 0-6 aty)
%            Number of variables   :  114 (  11 sgn;  56   !;   3   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    latt_str: $i > $o ).

tff(decl_23,type,
    strict_latt_str: $i > $o ).

tff(decl_24,type,
    the_carrier: $i > $i ).

tff(decl_25,type,
    the_L_join: $i > $i ).

tff(decl_26,type,
    the_L_meet: $i > $i ).

tff(decl_27,type,
    latt_str_of: ( $i * $i * $i ) > $i ).

tff(decl_28,type,
    in: ( $i * $i ) > $o ).

tff(decl_29,type,
    empty_carrier: $i > $o ).

tff(decl_30,type,
    lattice: $i > $o ).

tff(decl_31,type,
    join_commutative: $i > $o ).

tff(decl_32,type,
    join_associative: $i > $o ).

tff(decl_33,type,
    meet_commutative: $i > $o ).

tff(decl_34,type,
    meet_associative: $i > $o ).

tff(decl_35,type,
    meet_absorbing: $i > $o ).

tff(decl_36,type,
    join_absorbing: $i > $o ).

tff(decl_37,type,
    cartesian_product2: ( $i * $i ) > $i ).

tff(decl_38,type,
    powerset: $i > $i ).

tff(decl_39,type,
    element: ( $i * $i ) > $o ).

tff(decl_40,type,
    relation: $i > $o ).

tff(decl_41,type,
    unordered_pair: ( $i * $i ) > $i ).

tff(decl_42,type,
    set_union2: ( $i * $i ) > $i ).

tff(decl_43,type,
    set_intersection2: ( $i * $i ) > $i ).

tff(decl_44,type,
    meet_semilatt_str: $i > $o ).

tff(decl_45,type,
    meet_commut: ( $i * $i * $i ) > $i ).

tff(decl_46,type,
    subset_union2: ( $i * $i * $i ) > $i ).

tff(decl_47,type,
    subset_intersection2: ( $i * $i * $i ) > $i ).

tff(decl_48,type,
    lower_bounded_semilattstr: $i > $o ).

tff(decl_49,type,
    meet: ( $i * $i * $i ) > $i ).

tff(decl_50,type,
    bottom_of_semilattstr: $i > $i ).

tff(decl_51,type,
    function: $i > $o ).

tff(decl_52,type,
    apply_binary: ( $i * $i * $i ) > $i ).

tff(decl_53,type,
    ordered_pair: ( $i * $i ) > $i ).

tff(decl_54,type,
    apply: ( $i * $i ) > $i ).

tff(decl_55,type,
    boole_lattice: $i > $i ).

tff(decl_56,type,
    join_semilatt_str: $i > $o ).

tff(decl_57,type,
    join: ( $i * $i * $i ) > $i ).

tff(decl_58,type,
    apply_binary_as_element: ( $i * $i * $i * $i * $i * $i ) > $i ).

tff(decl_59,type,
    singleton: $i > $i ).

tff(decl_60,type,
    quasi_total: ( $i * $i * $i ) > $o ).

tff(decl_61,type,
    relation_of2: ( $i * $i * $i ) > $o ).

tff(decl_62,type,
    empty: $i > $o ).

tff(decl_63,type,
    one_sorted_str: $i > $o ).

tff(decl_64,type,
    relation_of2_as_subset: ( $i * $i * $i ) > $o ).

tff(decl_65,type,
    empty_set: $i ).

tff(decl_66,type,
    v1_binop_1: ( $i * $i ) > $o ).

tff(decl_67,type,
    v1_partfun1: ( $i * $i * $i ) > $o ).

tff(decl_68,type,
    v2_binop_1: ( $i * $i ) > $o ).

tff(decl_69,type,
    subset: ( $i * $i ) > $o ).

tff(decl_70,type,
    esk1_1: $i > $i ).

tff(decl_71,type,
    esk2_2: ( $i * $i ) > $i ).

tff(decl_72,type,
    esk3_2: ( $i * $i ) > $i ).

tff(decl_73,type,
    esk4_2: ( $i * $i ) > $i ).

tff(decl_74,type,
    esk5_2: ( $i * $i ) > $i ).

tff(decl_75,type,
    esk6_0: $i ).

tff(decl_76,type,
    esk7_0: $i ).

tff(decl_77,type,
    esk8_0: $i ).

tff(decl_78,type,
    esk9_0: $i ).

tff(decl_79,type,
    esk10_2: ( $i * $i ) > $i ).

tff(decl_80,type,
    esk11_1: $i > $i ).

tff(decl_81,type,
    esk12_2: ( $i * $i ) > $i ).

tff(decl_82,type,
    esk13_1: $i > $i ).

tff(decl_83,type,
    esk14_0: $i ).

tff(decl_84,type,
    esk15_1: $i > $i ).

tff(decl_85,type,
    esk16_0: $i ).

tff(decl_86,type,
    esk17_0: $i ).

tff(decl_87,type,
    esk18_0: $i ).

tff(decl_88,type,
    esk19_1: $i > $i ).

tff(decl_89,type,
    esk20_0: $i ).

tff(decl_90,type,
    esk21_0: $i ).

tff(decl_91,type,
    esk22_0: $i ).

fof(d1_lattice3,axiom,
    ! [X1,X2] :
      ( ( strict_latt_str(X2)
        & latt_str(X2) )
     => ( X2 = boole_lattice(X1)
      <=> ( the_carrier(X2) = powerset(X1)
          & ! [X3] :
              ( element(X3,powerset(X1))
             => ! [X4] :
                  ( element(X4,powerset(X1))
                 => ( apply_binary(the_L_join(X2),X3,X4) = subset_union2(X1,X3,X4)
                    & apply_binary(the_L_meet(X2),X3,X4) = subset_intersection2(X1,X3,X4) ) ) ) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d1_lattice3) ).

fof(dt_k1_lattice3,axiom,
    ! [X1] :
      ( strict_latt_str(boole_lattice(X1))
      & latt_str(boole_lattice(X1)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',dt_k1_lattice3) ).

fof(t6_boole,axiom,
    ! [X1] :
      ( empty(X1)
     => X1 = empty_set ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t6_boole) ).

fof(rc2_subset_1,axiom,
    ! [X1] :
    ? [X2] :
      ( element(X2,powerset(X1))
      & empty(X2) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',rc2_subset_1) ).

fof(d13_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ( lower_bounded_semilattstr(X1)
      <=> ? [X2] :
            ( element(X2,the_carrier(X1))
            & ! [X3] :
                ( element(X3,the_carrier(X1))
               => ( meet(X1,X2,X3) = X2
                  & meet(X1,X3,X2) = X2 ) ) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d13_lattices) ).

fof(dt_l3_lattices,axiom,
    ! [X1] :
      ( latt_str(X1)
     => ( meet_semilatt_str(X1)
        & join_semilatt_str(X1) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',dt_l3_lattices) ).

fof(fc1_lattice3,axiom,
    ! [X1] :
      ( ~ empty_carrier(boole_lattice(X1))
      & strict_latt_str(boole_lattice(X1)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',fc1_lattice3) ).

fof(t1_lattice3,axiom,
    ! [X1,X2] :
      ( element(X2,the_carrier(boole_lattice(X1)))
     => ! [X3] :
          ( element(X3,the_carrier(boole_lattice(X1)))
         => ( join(boole_lattice(X1),X2,X3) = set_union2(X2,X3)
            & meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t1_lattice3) ).

fof(t2_boole,axiom,
    ! [X1] : set_intersection2(X1,empty_set) = empty_set,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t2_boole) ).

fof(d16_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ( lower_bounded_semilattstr(X1)
       => ! [X2] :
            ( element(X2,the_carrier(X1))
           => ( X2 = bottom_of_semilattstr(X1)
            <=> ! [X3] :
                  ( element(X3,the_carrier(X1))
                 => ( meet(X1,X2,X3) = X2
                    & meet(X1,X3,X2) = X2 ) ) ) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',d16_lattices) ).

fof(dt_k5_lattices,axiom,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => element(bottom_of_semilattstr(X1),the_carrier(X1)) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',dt_k5_lattices) ).

fof(t8_boole,axiom,
    ! [X1,X2] :
      ~ ( empty(X1)
        & X1 != X2
        & empty(X2) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t8_boole) ).

fof(commutativity_k3_xboole_0,axiom,
    ! [X1,X2] : set_intersection2(X1,X2) = set_intersection2(X2,X1),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',commutativity_k3_xboole_0) ).

fof(t3_lattice3,conjecture,
    ! [X1] :
      ( lower_bounded_semilattstr(boole_lattice(X1))
      & bottom_of_semilattstr(boole_lattice(X1)) = empty_set ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t3_lattice3) ).

fof(fc1_xboole_0,axiom,
    empty(empty_set),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',fc1_xboole_0) ).

fof(c_0_15,plain,
    ! [X42,X43,X44,X45] :
      ( ( the_carrier(X43) = powerset(X42)
        | X43 != boole_lattice(X42)
        | ~ strict_latt_str(X43)
        | ~ latt_str(X43) )
      & ( apply_binary(the_L_join(X43),X44,X45) = subset_union2(X42,X44,X45)
        | ~ element(X45,powerset(X42))
        | ~ element(X44,powerset(X42))
        | X43 != boole_lattice(X42)
        | ~ strict_latt_str(X43)
        | ~ latt_str(X43) )
      & ( apply_binary(the_L_meet(X43),X44,X45) = subset_intersection2(X42,X44,X45)
        | ~ element(X45,powerset(X42))
        | ~ element(X44,powerset(X42))
        | X43 != boole_lattice(X42)
        | ~ strict_latt_str(X43)
        | ~ latt_str(X43) )
      & ( element(esk4_2(X42,X43),powerset(X42))
        | the_carrier(X43) != powerset(X42)
        | X43 = boole_lattice(X42)
        | ~ strict_latt_str(X43)
        | ~ latt_str(X43) )
      & ( element(esk5_2(X42,X43),powerset(X42))
        | the_carrier(X43) != powerset(X42)
        | X43 = boole_lattice(X42)
        | ~ strict_latt_str(X43)
        | ~ latt_str(X43) )
      & ( apply_binary(the_L_join(X43),esk4_2(X42,X43),esk5_2(X42,X43)) != subset_union2(X42,esk4_2(X42,X43),esk5_2(X42,X43))
        | apply_binary(the_L_meet(X43),esk4_2(X42,X43),esk5_2(X42,X43)) != subset_intersection2(X42,esk4_2(X42,X43),esk5_2(X42,X43))
        | the_carrier(X43) != powerset(X42)
        | X43 = boole_lattice(X42)
        | ~ strict_latt_str(X43)
        | ~ latt_str(X43) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d1_lattice3])])])])]) ).

fof(c_0_16,plain,
    ! [X59] :
      ( strict_latt_str(boole_lattice(X59))
      & latt_str(boole_lattice(X59)) ),
    inference(variable_rename,[status(thm)],[dt_k1_lattice3]) ).

fof(c_0_17,plain,
    ! [X186] :
      ( ~ empty(X186)
      | X186 = empty_set ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t6_boole])]) ).

fof(c_0_18,plain,
    ! [X139] :
      ( element(esk15_1(X139),powerset(X139))
      & empty(esk15_1(X139)) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[rc2_subset_1])]) ).

fof(c_0_19,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ( lower_bounded_semilattstr(X1)
      <=> ? [X2] :
            ( element(X2,the_carrier(X1))
            & ! [X3] :
                ( element(X3,the_carrier(X1))
               => ( meet(X1,X2,X3) = X2
                  & meet(X1,X3,X2) = X2 ) ) ) ) ),
    inference(fof_simplification,[status(thm)],[d13_lattices]) ).

fof(c_0_20,plain,
    ! [X84] :
      ( ( meet_semilatt_str(X84)
        | ~ latt_str(X84) )
      & ( join_semilatt_str(X84)
        | ~ latt_str(X84) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[dt_l3_lattices])])]) ).

fof(c_0_21,plain,
    ! [X1] :
      ( ~ empty_carrier(boole_lattice(X1))
      & strict_latt_str(boole_lattice(X1)) ),
    inference(fof_simplification,[status(thm)],[fc1_lattice3]) ).

fof(c_0_22,plain,
    ! [X168,X169,X170] :
      ( ( join(boole_lattice(X168),X169,X170) = set_union2(X169,X170)
        | ~ element(X170,the_carrier(boole_lattice(X168)))
        | ~ element(X169,the_carrier(boole_lattice(X168))) )
      & ( meet(boole_lattice(X168),X169,X170) = set_intersection2(X169,X170)
        | ~ element(X170,the_carrier(boole_lattice(X168)))
        | ~ element(X169,the_carrier(boole_lattice(X168))) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t1_lattice3])])])]) ).

cnf(c_0_23,plain,
    ( the_carrier(X1) = powerset(X2)
    | X1 != boole_lattice(X2)
    | ~ strict_latt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_15]) ).

cnf(c_0_24,plain,
    strict_latt_str(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_25,plain,
    latt_str(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_26,plain,
    ( X1 = empty_set
    | ~ empty(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_17]) ).

cnf(c_0_27,plain,
    empty(esk15_1(X1)),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

fof(c_0_28,plain,
    ! [X30,X32,X33] :
      ( ( element(esk1_1(X30),the_carrier(X30))
        | ~ lower_bounded_semilattstr(X30)
        | empty_carrier(X30)
        | ~ meet_semilatt_str(X30) )
      & ( meet(X30,esk1_1(X30),X32) = esk1_1(X30)
        | ~ element(X32,the_carrier(X30))
        | ~ lower_bounded_semilattstr(X30)
        | empty_carrier(X30)
        | ~ meet_semilatt_str(X30) )
      & ( meet(X30,X32,esk1_1(X30)) = esk1_1(X30)
        | ~ element(X32,the_carrier(X30))
        | ~ lower_bounded_semilattstr(X30)
        | empty_carrier(X30)
        | ~ meet_semilatt_str(X30) )
      & ( element(esk2_2(X30,X33),the_carrier(X30))
        | ~ element(X33,the_carrier(X30))
        | lower_bounded_semilattstr(X30)
        | empty_carrier(X30)
        | ~ meet_semilatt_str(X30) )
      & ( meet(X30,X33,esk2_2(X30,X33)) != X33
        | meet(X30,esk2_2(X30,X33),X33) != X33
        | ~ element(X33,the_carrier(X30))
        | lower_bounded_semilattstr(X30)
        | empty_carrier(X30)
        | ~ meet_semilatt_str(X30) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_19])])])])]) ).

cnf(c_0_29,plain,
    ( meet_semilatt_str(X1)
    | ~ latt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_20]) ).

fof(c_0_30,plain,
    ! [X102] :
      ( ~ empty_carrier(boole_lattice(X102))
      & strict_latt_str(boole_lattice(X102)) ),
    inference(variable_rename,[status(thm)],[c_0_21]) ).

cnf(c_0_31,plain,
    ( meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3)
    | ~ element(X3,the_carrier(boole_lattice(X1)))
    | ~ element(X2,the_carrier(boole_lattice(X1))) ),
    inference(split_conjunct,[status(thm)],[c_0_22]) ).

cnf(c_0_32,plain,
    the_carrier(boole_lattice(X1)) = powerset(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[c_0_23]),c_0_24]),c_0_25])]) ).

cnf(c_0_33,plain,
    element(esk15_1(X1),powerset(X1)),
    inference(split_conjunct,[status(thm)],[c_0_18]) ).

cnf(c_0_34,plain,
    esk15_1(X1) = empty_set,
    inference(spm,[status(thm)],[c_0_26,c_0_27]) ).

fof(c_0_35,plain,
    ! [X173] : set_intersection2(X173,empty_set) = empty_set,
    inference(variable_rename,[status(thm)],[t2_boole]) ).

cnf(c_0_36,plain,
    ( element(esk2_2(X1,X2),the_carrier(X1))
    | lower_bounded_semilattstr(X1)
    | empty_carrier(X1)
    | ~ element(X2,the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_37,plain,
    meet_semilatt_str(boole_lattice(X1)),
    inference(spm,[status(thm)],[c_0_29,c_0_25]) ).

cnf(c_0_38,plain,
    ~ empty_carrier(boole_lattice(X1)),
    inference(split_conjunct,[status(thm)],[c_0_30]) ).

fof(c_0_39,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => ( lower_bounded_semilattstr(X1)
       => ! [X2] :
            ( element(X2,the_carrier(X1))
           => ( X2 = bottom_of_semilattstr(X1)
            <=> ! [X3] :
                  ( element(X3,the_carrier(X1))
                 => ( meet(X1,X2,X3) = X2
                    & meet(X1,X3,X2) = X2 ) ) ) ) ) ),
    inference(fof_simplification,[status(thm)],[d16_lattices]) ).

fof(c_0_40,plain,
    ! [X1] :
      ( ( ~ empty_carrier(X1)
        & meet_semilatt_str(X1) )
     => element(bottom_of_semilattstr(X1),the_carrier(X1)) ),
    inference(fof_simplification,[status(thm)],[dt_k5_lattices]) ).

fof(c_0_41,plain,
    ! [X189,X190] :
      ( ~ empty(X189)
      | X189 = X190
      | ~ empty(X190) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[t8_boole])]) ).

cnf(c_0_42,plain,
    ( meet(boole_lattice(X1),X2,X3) = set_intersection2(X2,X3)
    | ~ element(X3,powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_31,c_0_32]),c_0_32]) ).

cnf(c_0_43,plain,
    element(empty_set,powerset(X1)),
    inference(rw,[status(thm)],[c_0_33,c_0_34]) ).

cnf(c_0_44,plain,
    set_intersection2(X1,empty_set) = empty_set,
    inference(split_conjunct,[status(thm)],[c_0_35]) ).

cnf(c_0_45,plain,
    ( lower_bounded_semilattstr(boole_lattice(X1))
    | element(esk2_2(boole_lattice(X1),X2),powerset(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_36,c_0_32]),c_0_37])]),c_0_38]) ).

fof(c_0_46,plain,
    ! [X19,X20] : set_intersection2(X19,X20) = set_intersection2(X20,X19),
    inference(variable_rename,[status(thm)],[commutativity_k3_xboole_0]) ).

fof(c_0_47,plain,
    ! [X35,X36,X37] :
      ( ( meet(X35,X36,X37) = X36
        | ~ element(X37,the_carrier(X35))
        | X36 != bottom_of_semilattstr(X35)
        | ~ element(X36,the_carrier(X35))
        | ~ lower_bounded_semilattstr(X35)
        | empty_carrier(X35)
        | ~ meet_semilatt_str(X35) )
      & ( meet(X35,X37,X36) = X36
        | ~ element(X37,the_carrier(X35))
        | X36 != bottom_of_semilattstr(X35)
        | ~ element(X36,the_carrier(X35))
        | ~ lower_bounded_semilattstr(X35)
        | empty_carrier(X35)
        | ~ meet_semilatt_str(X35) )
      & ( element(esk3_2(X35,X36),the_carrier(X35))
        | X36 = bottom_of_semilattstr(X35)
        | ~ element(X36,the_carrier(X35))
        | ~ lower_bounded_semilattstr(X35)
        | empty_carrier(X35)
        | ~ meet_semilatt_str(X35) )
      & ( meet(X35,X36,esk3_2(X35,X36)) != X36
        | meet(X35,esk3_2(X35,X36),X36) != X36
        | X36 = bottom_of_semilattstr(X35)
        | ~ element(X36,the_carrier(X35))
        | ~ lower_bounded_semilattstr(X35)
        | empty_carrier(X35)
        | ~ meet_semilatt_str(X35) ) ),
    inference(distribute,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_39])])])])]) ).

fof(c_0_48,plain,
    ! [X78] :
      ( empty_carrier(X78)
      | ~ meet_semilatt_str(X78)
      | element(bottom_of_semilattstr(X78),the_carrier(X78)) ),
    inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_40])]) ).

cnf(c_0_49,plain,
    ( lower_bounded_semilattstr(X1)
    | empty_carrier(X1)
    | meet(X1,X2,esk2_2(X1,X2)) != X2
    | meet(X1,esk2_2(X1,X2),X2) != X2
    | ~ element(X2,the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_28]) ).

cnf(c_0_50,plain,
    ( X1 = X2
    | ~ empty(X1)
    | ~ empty(X2) ),
    inference(split_conjunct,[status(thm)],[c_0_41]) ).

cnf(c_0_51,plain,
    ( meet(boole_lattice(X1),X2,empty_set) = empty_set
    | ~ element(X2,powerset(X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_42,c_0_43]),c_0_44]) ).

cnf(c_0_52,plain,
    ( lower_bounded_semilattstr(boole_lattice(X1))
    | element(esk2_2(boole_lattice(X1),empty_set),powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_45,c_0_43]) ).

cnf(c_0_53,plain,
    set_intersection2(X1,X2) = set_intersection2(X2,X1),
    inference(split_conjunct,[status(thm)],[c_0_46]) ).

fof(c_0_54,negated_conjecture,
    ~ ! [X1] :
        ( lower_bounded_semilattstr(boole_lattice(X1))
        & bottom_of_semilattstr(boole_lattice(X1)) = empty_set ),
    inference(assume_negation,[status(cth)],[t3_lattice3]) ).

cnf(c_0_55,plain,
    ( meet(X1,X2,X3) = X2
    | empty_carrier(X1)
    | ~ element(X3,the_carrier(X1))
    | X2 != bottom_of_semilattstr(X1)
    | ~ element(X2,the_carrier(X1))
    | ~ lower_bounded_semilattstr(X1)
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_47]) ).

cnf(c_0_56,plain,
    ( empty_carrier(X1)
    | element(bottom_of_semilattstr(X1),the_carrier(X1))
    | ~ meet_semilatt_str(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_57,plain,
    ( lower_bounded_semilattstr(X1)
    | empty_carrier(X1)
    | meet(X1,esk2_2(X1,X2),X2) != X2
    | ~ empty(meet(X1,X2,esk2_2(X1,X2)))
    | ~ empty(X2)
    | ~ meet_semilatt_str(X1)
    | ~ element(X2,the_carrier(X1)) ),
    inference(er,[status(thm)],[inference(spm,[status(thm)],[c_0_49,c_0_50])]) ).

cnf(c_0_58,plain,
    ( meet(boole_lattice(X1),esk2_2(boole_lattice(X1),empty_set),empty_set) = empty_set
    | lower_bounded_semilattstr(boole_lattice(X1)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_52]) ).

cnf(c_0_59,plain,
    empty(empty_set),
    inference(split_conjunct,[status(thm)],[fc1_xboole_0]) ).

cnf(c_0_60,plain,
    ( meet(boole_lattice(X1),X2,esk2_2(boole_lattice(X1),empty_set)) = set_intersection2(X2,esk2_2(boole_lattice(X1),empty_set))
    | lower_bounded_semilattstr(boole_lattice(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(spm,[status(thm)],[c_0_42,c_0_52]) ).

cnf(c_0_61,plain,
    set_intersection2(empty_set,X1) = empty_set,
    inference(spm,[status(thm)],[c_0_44,c_0_53]) ).

fof(c_0_62,negated_conjecture,
    ( ~ lower_bounded_semilattstr(boole_lattice(esk22_0))
    | bottom_of_semilattstr(boole_lattice(esk22_0)) != empty_set ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_54])])]) ).

cnf(c_0_63,plain,
    ( meet(X1,bottom_of_semilattstr(X1),X2) = bottom_of_semilattstr(X1)
    | empty_carrier(X1)
    | ~ lower_bounded_semilattstr(X1)
    | ~ meet_semilatt_str(X1)
    | ~ element(X2,the_carrier(X1)) ),
    inference(csr,[status(thm)],[inference(er,[status(thm)],[c_0_55]),c_0_56]) ).

cnf(c_0_64,plain,
    ( lower_bounded_semilattstr(boole_lattice(X1))
    | ~ empty(meet(boole_lattice(X1),empty_set,esk2_2(boole_lattice(X1),empty_set))) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_57,c_0_58]),c_0_59]),c_0_37]),c_0_32]),c_0_43])]),c_0_38]) ).

cnf(c_0_65,plain,
    ( meet(boole_lattice(X1),empty_set,esk2_2(boole_lattice(X1),empty_set)) = empty_set
    | lower_bounded_semilattstr(boole_lattice(X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_60,c_0_43]),c_0_61]) ).

cnf(c_0_66,negated_conjecture,
    ( ~ lower_bounded_semilattstr(boole_lattice(esk22_0))
    | bottom_of_semilattstr(boole_lattice(esk22_0)) != empty_set ),
    inference(split_conjunct,[status(thm)],[c_0_62]) ).

cnf(c_0_67,plain,
    ( meet(boole_lattice(X1),bottom_of_semilattstr(boole_lattice(X1)),X2) = bottom_of_semilattstr(boole_lattice(X1))
    | ~ lower_bounded_semilattstr(boole_lattice(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_63,c_0_32]),c_0_37])]),c_0_38]) ).

cnf(c_0_68,plain,
    lower_bounded_semilattstr(boole_lattice(X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_64,c_0_65]),c_0_59])]) ).

cnf(c_0_69,plain,
    element(bottom_of_semilattstr(boole_lattice(X1)),powerset(X1)),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_32]),c_0_37])]),c_0_38]) ).

cnf(c_0_70,negated_conjecture,
    ( ~ empty(bottom_of_semilattstr(boole_lattice(esk22_0)))
    | ~ lower_bounded_semilattstr(boole_lattice(esk22_0)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(er,[status(thm)],[inference(spm,[status(thm)],[c_0_66,c_0_50])]),c_0_59])]) ).

cnf(c_0_71,plain,
    ( meet(boole_lattice(X1),bottom_of_semilattstr(boole_lattice(X1)),X2) = bottom_of_semilattstr(boole_lattice(X1))
    | ~ element(X2,powerset(X1)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_67,c_0_68])]) ).

cnf(c_0_72,plain,
    meet(boole_lattice(X1),bottom_of_semilattstr(boole_lattice(X1)),empty_set) = empty_set,
    inference(spm,[status(thm)],[c_0_51,c_0_69]) ).

cnf(c_0_73,negated_conjecture,
    ~ empty(bottom_of_semilattstr(boole_lattice(esk22_0))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_70,c_0_68])]) ).

cnf(c_0_74,plain,
    bottom_of_semilattstr(boole_lattice(X1)) = empty_set,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_71,c_0_43]),c_0_72]) ).

cnf(c_0_75,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_73,c_0_74]),c_0_59])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.07  % Problem    : SEU345+1 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.08  % Command    : java -jar /export/starexec/sandbox2/solver/bin/mcs_scs.jar %d %s
% 0.06/0.26  % Computer : n032.cluster.edu
% 0.06/0.26  % Model    : x86_64 x86_64
% 0.06/0.26  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.06/0.26  % Memory   : 8042.1875MB
% 0.06/0.26  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.06/0.26  % CPULimit   : 300
% 0.06/0.26  % WCLimit    : 300
% 0.06/0.26  % DateTime   : Wed Aug 23 21:47:26 EDT 2023
% 0.06/0.26  % CPUTime  : 
% 0.11/0.43  start to proof: theBenchmark
% 34.79/34.88  % Version  : CSE_E---1.5
% 34.79/34.88  % Problem  : theBenchmark.p
% 34.79/34.88  % Proof found
% 34.79/34.88  % SZS status Theorem for theBenchmark.p
% 34.79/34.88  % SZS output start Proof
% See solution above
% 34.84/34.89  % Total time : 34.449000 s
% 34.84/34.89  % SZS output end Proof
% 34.84/34.89  % Total time : 34.453000 s
%------------------------------------------------------------------------------