TSTP Solution File: SEU328+2 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SEU328+2 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art09.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Thu Dec 30 03:34:36 EST 2010

% Result   : Theorem 100.87s
% Output   : Solution 101.77s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP11958/SEU328+2.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% not found
% Adding ~C to TBU       ... ~t12_tops_2:
% ---- Iteration 1 (0 axioms selected)
% Looking for TBU SAT   ... 
% yes
% Looking for TBU model ...
%  not found
% Looking for CSA axiom ... dt_k3_subset_1:
%  CSA axiom dt_k3_subset_1 found
% Looking for CSA axiom ... dt_k5_setfam_1:
%  CSA axiom dt_k5_setfam_1 found
% Looking for CSA axiom ... dt_k6_setfam_1:
%  CSA axiom dt_k6_setfam_1 found
% ---- Iteration 2 (3 axioms selected)
% Looking for TBU SAT   ... 
% yes
% Looking for TBU model ... not found
% Looking for CSA axiom ... dt_k7_setfam_1:
%  CSA axiom dt_k7_setfam_1 found
% Looking for CSA axiom ... existence_m1_subset_1:
%  CSA axiom existence_m1_subset_1 found
% Looking for CSA axiom ... involutiveness_k3_subset_1:
%  CSA axiom involutiveness_k3_subset_1 found
% ---- Iteration 3 (6 axioms selected)
% Looking for TBU SAT   ... 
% yes
% Looking for TBU model ...
%  not found
% Looking for CSA axiom ... involutiveness_k7_setfam_1:
%  CSA axiom involutiveness_k7_setfam_1 found
% Looking for CSA axiom ... t10_tops_2:
%  CSA axiom t10_tops_2 found
% Looking for CSA axiom ... t11_tops_2:
%  CSA axiom t11_tops_2 found
% ---- Iteration 4 (9 axioms selected)
% Looking for TBU SAT   ... 
% no
% Looking for TBU UNS   ... yes - theorem proved
% ---- Selection completed
% Selected axioms are   ... :t11_tops_2:t10_tops_2:involutiveness_k7_setfam_1:involutiveness_k3_subset_1:existence_m1_subset_1:dt_k7_setfam_1:dt_k6_setfam_1:dt_k5_setfam_1:dt_k3_subset_1 (9)
% Unselected axioms are ... :t46_setfam_1:d8_setfam_1:t50_subset_1:t54_subset_1:d5_subset_1:redefinition_k5_setfam_1:redefinition_k6_setfam_1:t47_setfam_1:t48_setfam_1:t1_zfmisc_1:commutativity_k5_subset_1:idempotence_k5_subset_1:l3_subset_1:l71_subset_1:t4_subset:d1_xboole_0:t3_subset:t3_xboole_1:rc1_subset_1:rc2_subset_1:t6_boole:cc16_membered:cc2_finset_1:dt_k2_subset_1:dt_k5_subset_1:dt_k6_subset_1:l1_zfmisc_1:t2_boole:t3_boole:t4_boole:t1_boole:t43_subset_1:t99_zfmisc_1:t18_finset_1:redefinition_k5_subset_1:redefinition_k6_subset_1:t2_xboole_1:fc1_xboole_0:antisymmetry_r2_hidden:commutativity_k2_xboole_0:commutativity_k3_xboole_0:d10_xboole_0:d3_pre_topc:d3_tarski:d4_subset_1:existence_l1_pre_topc:existence_l1_struct_0:existence_m1_relset_1:existence_m2_relset_1:idempotence_k2_xboole_0:idempotence_k3_xboole_0:rc1_xboole_0:rc2_xboole_0:reflexivity_r1_tarski:s1_xboole_0__e6_22__wellord2:symmetry_r1_xboole_0:t12_pre_topc:t13_finset_1:t1_subset:t1_xboole_1:t23_ordinal1:t2_tarski:t3_ordinal1:t5_subset:t63_xboole_1:t7_tarski:t8_boole:cc1_relset_1:d1_zfmisc_1:fc1_subset_1:s2_ordinal1__e18_27__finset_1__1:d1_setfam_1:cc17_membered:d1_tops_1:d8_pre_topc:l32_xboole_1:rc3_finset_1:t17_pre_topc:t37_xboole_1:dt_k4_relset_1:dt_k5_relset_1:dt_m2_relset_1:t5_tops_2:t60_relat_1:d2_pre_topc:d7_xboole_0:l40_tops_1:s1_tarski__e18_27__finset_1__1:s1_xboole_0__e18_27__finset_1__1:t33_zfmisc_1:t29_tops_1:t30_tops_1:t56_relat_1:commutativity_k2_tarski:t10_zfmisc_1:d11_relat_1:d8_relat_1:t64_relat_1:t65_relat_1:d10_relat_1:d12_relat_1:d13_relat_1:d14_relat_1:d1_wellord1:d4_relat_2:d6_relat_2:d7_relat_1:l3_wellord1:l4_zfmisc_1:s1_ordinal2__e18_27__finset_1:t15_pre_topc:t22_pre_topc:t39_zfmisc_1:t44_pre_topc:dt_k1_pre_topc:dt_k1_tops_1:dt_k2_pre_topc:dt_k6_pre_topc:dt_u1_pre_topc:fc13_finset_1:fc4_relat_1:t17_finset_1:t71_relat_1:d1_relat_2:d2_subset_1:d2_xboole_0:d4_tarski:d8_relat_2:fc2_tops_1:fc3_tops_1:fc4_tops_1:fc6_tops_1:l2_wellord1:s1_tarski__e6_27__finset_1__1:s1_tarski__e8_6__wellord2__1:s1_xboole_0__e8_6__wellord2__1:t136_zfmisc_1:t2_subset:t30_relat_1:t51_tops_1:d1_funct_2:d1_tarski:d3_xboole_0:d4_xboole_0:s1_tarski__e16_22__wellord2__1:t46_pre_topc:antisymmetry_r2_xboole_0:cc1_finsub_1:cc1_ordinal1:cc2_finsub_1:cc2_ordinal1:d13_pre_topc:d4_ordinal1:existence_l1_lattices:existence_l2_lattices:existence_l3_lattices:fc1_finset_1:fc29_membered:fc30_membered:fc38_membered:irreflexivity_r2_xboole_0:rc1_ordinal1:reflexivity_r2_wellord2:s1_tarski__e4_27_3_1__finset_1__1:s1_xboole_0__e4_27_3_1__finset_1:symmetry_r2_wellord2:t12_xboole_1:t28_xboole_1:t6_zfmisc_1:cc10_membered:rc1_tops_1:rc6_pre_topc:redefinition_r1_ordinal1:t45_pre_topc:t52_pre_topc:t55_tops_1:d2_ordinal1:d6_ordinal1:l2_zfmisc_1:l50_zfmisc_1:l55_zfmisc_1:s1_funct_1__e10_24__wellord2__1:s1_funct_1__e16_22__wellord2__1:s1_ordinal1__e8_6__wellord2:s1_tarski__e10_24__wellord2__2:s1_xboole_0__e10_24__wellord2__1:t106_zfmisc_1:t21_funct_1:t31_ordinal1:t32_ordinal1:t37_zfmisc_1:t38_zfmisc_1:t39_xboole_1:t40_xboole_1:t48_xboole_1:t69_enumset1:t83_xboole_1:t8_zfmisc_1:t92_zfmisc_1:t9_zfmisc_1:d1_mcart_1:d2_mcart_1:d8_xboole_0:l4_wellord1:s1_tarski__e6_22__wellord2__1:t146_relat_1:t24_ordinal1:t37_relat_1:t9_tarski:d1_enumset1:d1_pre_topc:d2_tarski:d3_ordinal1:d4_funct_1:dt_k1_lattices:dt_k2_lattices:fc1_relat_1:fc2_relat_1:fc3_relat_1:t3_xboole_0:t68_funct_1:cc18_membered:cc1_relat_1:d5_pre_topc:rc1_relat_1:rc2_relat_1:redefinition_k4_relset_1:redefinition_k5_relset_1:s1_relat_1__e6_21__wellord2:s1_xboole_0__e6_27__finset_1:t7_boole:cc20_membered:cc2_arytm_3:involutiveness_k4_relat_1:l1_wellord1:rc1_arytm_3:rc2_tops_1:t118_zfmisc_1:t119_relat_1:t119_zfmisc_1:t143_relat_1:t160_relat_1:t166_relat_1:t22_relset_1:t23_relset_1:t25_relat_1:t33_xboole_1:t36_xboole_1:t74_relat_1:t7_xboole_1:t8_xboole_1:cc1_finset_1:commutativity_k3_lattices:commutativity_k4_lattices:d1_wellord2:d3_lattices:d5_ordinal2:fc12_relat_1:fc2_pre_topc:fc2_subset_1:fc2_xboole_0:fc3_xboole_0:fc4_subset_1:l3_zfmisc_1:rc1_finset_1:s1_tarski__e2_37_1_1__pre_topc__1:s1_tarski__e6_21__wellord2__1:s1_xboole_0__e6_21__wellord2__1:t17_xboole_1:t19_xboole_1:t26_lattices:t26_xboole_1:t8_funct_1:cc1_funct_1:cc3_membered:cc3_ordinal1:cc4_membered:d1_struct_0:d3_relat_1:d5_tarski:dt_l1_lattices:dt_l1_pre_topc:dt_l2_lattices:fc10_finset_1:fc11_finset_1:fc12_finset_1:fc1_struct_0:fc1_zfmisc_1:fc27_membered:fc28_membered:fc31_membered:fc32_membered:fc37_membered:fc39_membered:fc4_ordinal1:fc5_pre_topc:fc9_finset_1:rc3_ordinal1:rc3_struct_0:redefinition_m2_relset_1:s1_tarski__e1_40__pre_topc__1:s1_xboole_0__e1_40__pre_topc__1:s3_subset_1__e1_40__pre_topc:t12_relset_1:t15_finset_1:t16_wellord1:t46_funct_2:t46_relat_1:t47_relat_1:cc3_arytm_3:connectedness_r1_ordinal1:d1_finset_1:d6_relat_1:fc1_ordinal1:fc3_subset_1:reflexivity_r1_ordinal1:s1_xboole_0__e2_37_1_1__pre_topc__1:s3_subset_1__e2_37_1_1__pre_topc:t144_relat_1:t174_relat_1:t45_relat_1:t45_xboole_1:t65_zfmisc_1:t99_relat_1:cc11_membered:cc19_membered:cc1_arytm_3:d1_lattices:d1_ordinal1:d1_relat_1:d2_lattices:d2_relat_1:d3_wellord1:d6_pre_topc:d8_lattices:dt_k3_lattices:dt_k4_lattices:l23_zfmisc_1:l29_wellord1:rc5_struct_0:redefinition_k3_lattices:redefinition_k4_lattices:t116_relat_1:t118_relat_1:t167_relat_1:t16_relset_1:t21_ordinal1:t33_ordinal1:t41_ordinal1:t44_relat_1:t44_tops_1:t46_zfmisc_1:t48_pre_topc:t60_xboole_1:t9_funct_2:d1_relset_1:d5_funct_1:fc2_arytm_3:fc3_funct_1:rc1_funct_1:rc1_funct_2:rc4_funct_1:s2_funct_1__e10_24__wellord2:t14_relset_1:t20_relat_1:t28_wellord2:t42_ordinal1:t49_wellord1:t54_wellord1:t62_funct_1:t7_mcart_1:d1_funct_1:d2_zfmisc_1:d4_wellord1:d4_wellord2:d9_funct_1:dt_k2_wellord1:dt_k5_relat_1:dt_k7_relat_1:dt_k8_relat_1:fc10_relat_1:fc13_relat_1:fc5_relat_1:fc6_relat_1:fc7_relat_1:fc8_relat_1:fc9_relat_1:l25_zfmisc_1:l28_zfmisc_1:rc2_funct_1:s1_tarski__e10_24__wellord2__1:t10_ordinal1:t115_relat_1:t19_wellord1:t21_relat_1:t22_wellord1:t23_wellord1:t24_wellord1:t25_wellord1:t26_finset_1:t31_wellord1:t32_wellord1:t4_xboole_0:t54_funct_1:t55_funct_1:t72_funct_1:t86_relat_1:d2_wellord1:d4_relat_1:d5_relat_1:d6_wellord1:d7_wellord1:dt_k1_wellord2:dt_k4_relat_1:dt_k6_relat_1:fc11_relat_1:fc1_ordinal2:fc33_membered:fc34_membered:fc3_ordinal1:fc40_membered:l30_wellord2:rc3_relat_1:t117_relat_1:t140_relat_1:t178_relat_1:t26_wellord2:t35_funct_1:t88_relat_1:cc12_membered:d12_funct_1:d13_funct_1:d8_funct_1:fc6_membered:l82_funct_1:rc2_partfun1:s2_funct_1__e16_22__wellord2__1:s3_funct_1__e16_22__wellord2:t145_funct_1:t145_relat_1:t147_funct_1:t21_funct_2:t22_funct_1:t23_funct_1:t34_funct_1:t57_funct_1:t70_funct_1:t90_relat_1:cc2_funct_1:fc1_finsub_1:rc1_partfun1:s1_tarski__e16_22__wellord2__2:s1_xboole_0__e16_22__wellord2__1:t146_funct_1:t6_funct_2:t94_relat_1:cc15_membered:cc1_membered:cc2_membered:fc1_pre_topc:fc35_membered:fc36_membered:fc41_membered:rc1_membered:rc1_ordinal2:redefinition_r2_wellord2:t23_lattices:t2_wellord2:t3_wellord2:t5_wellord2:cc13_membered:fc1_funct_1:rc2_finset_1:t20_wellord1:t21_wellord1:t4_wellord2:t6_wellord2:t7_wellord2:d12_relat_2:d14_relat_2:d16_relat_2:d9_relat_2:dt_k2_funct_1:fc2_funct_1:fc4_funct_1:fc5_funct_1:rc2_ordinal1:rc3_funct_1:t17_wellord1:t18_wellord1:t25_wellord2:t39_wellord1:t5_wellord1:t8_wellord1:cc14_membered:dt_k2_binop_1:dt_u1_lattices:dt_u2_lattices:fc2_ordinal1:redefinition_k2_binop_1:dt_l3_lattices:t53_wellord1:d5_wellord1:dt_k10_relat_1:dt_k1_binop_1:dt_k1_enumset1:dt_k1_funct_1:dt_k1_mcart_1:dt_k1_ordinal1:dt_k1_relat_1:dt_k1_setfam_1:dt_k1_tarski:dt_k1_wellord1:dt_k1_xboole_0:dt_k1_zfmisc_1:dt_k2_mcart_1:dt_k2_relat_1:dt_k2_tarski:dt_k2_xboole_0:dt_k2_zfmisc_1:dt_k3_relat_1:dt_k3_tarski:dt_k3_xboole_0:dt_k4_tarski:dt_k4_xboole_0:dt_k5_ordinal2:dt_k9_relat_1:dt_l1_struct_0:dt_m1_relset_1:dt_m1_subset_1:dt_u1_struct_0 (531)
% SZS status THM for /tmp/SystemOnTPTP11958/SEU328+2.tptp
% Looking for THM       ... 
% found
% SZS output start Solution for /tmp/SystemOnTPTP11958/SEU328+2.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=600 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 600s
% TreeLimitedRun: WC  time limit is 1200s
% TreeLimitedRun: PID is 13702
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.00 WC
% # Preprocessing time     : 0.012 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>(~(X2=empty_set)=>meet_of_subsets(X1,complements_of_subsets(X1,X2))=subset_complement(X1,union_of_subsets(X1,X2)))),file('/tmp/SRASS.s.p', t11_tops_2)).
% fof(2, axiom,![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>(~((~(X2=empty_set)&complements_of_subsets(X1,X2)=empty_set))&~((~(complements_of_subsets(X1,X2)=empty_set)&X2=empty_set)))),file('/tmp/SRASS.s.p', t10_tops_2)).
% fof(3, axiom,![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>complements_of_subsets(X1,complements_of_subsets(X1,X2))=X2),file('/tmp/SRASS.s.p', involutiveness_k7_setfam_1)).
% fof(4, axiom,![X1]:![X2]:(element(X2,powerset(X1))=>subset_complement(X1,subset_complement(X1,X2))=X2),file('/tmp/SRASS.s.p', involutiveness_k3_subset_1)).
% fof(6, axiom,![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>element(complements_of_subsets(X1,X2),powerset(powerset(X1)))),file('/tmp/SRASS.s.p', dt_k7_setfam_1)).
% fof(8, axiom,![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>element(union_of_subsets(X1,X2),powerset(X1))),file('/tmp/SRASS.s.p', dt_k5_setfam_1)).
% fof(10, conjecture,![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>(~(X2=empty_set)=>union_of_subsets(X1,complements_of_subsets(X1,X2))=subset_complement(X1,meet_of_subsets(X1,X2)))),file('/tmp/SRASS.s.p', t12_tops_2)).
% fof(11, negated_conjecture,~(![X1]:![X2]:(element(X2,powerset(powerset(X1)))=>(~(X2=empty_set)=>union_of_subsets(X1,complements_of_subsets(X1,X2))=subset_complement(X1,meet_of_subsets(X1,X2))))),inference(assume_negation,[status(cth)],[10])).
% fof(12, plain,![X1]:![X2]:(~(element(X2,powerset(powerset(X1))))|(X2=empty_set|meet_of_subsets(X1,complements_of_subsets(X1,X2))=subset_complement(X1,union_of_subsets(X1,X2)))),inference(fof_nnf,[status(thm)],[1])).
% fof(13, plain,![X3]:![X4]:(~(element(X4,powerset(powerset(X3))))|(X4=empty_set|meet_of_subsets(X3,complements_of_subsets(X3,X4))=subset_complement(X3,union_of_subsets(X3,X4)))),inference(variable_rename,[status(thm)],[12])).
% cnf(14,plain,(meet_of_subsets(X1,complements_of_subsets(X1,X2))=subset_complement(X1,union_of_subsets(X1,X2))|X2=empty_set|~element(X2,powerset(powerset(X1)))),inference(split_conjunct,[status(thm)],[13])).
% fof(15, plain,![X1]:![X2]:(~(element(X2,powerset(powerset(X1))))|((X2=empty_set|~(complements_of_subsets(X1,X2)=empty_set))&(complements_of_subsets(X1,X2)=empty_set|~(X2=empty_set)))),inference(fof_nnf,[status(thm)],[2])).
% fof(16, plain,![X3]:![X4]:(~(element(X4,powerset(powerset(X3))))|((X4=empty_set|~(complements_of_subsets(X3,X4)=empty_set))&(complements_of_subsets(X3,X4)=empty_set|~(X4=empty_set)))),inference(variable_rename,[status(thm)],[15])).
% fof(17, plain,![X3]:![X4]:(((X4=empty_set|~(complements_of_subsets(X3,X4)=empty_set))|~(element(X4,powerset(powerset(X3)))))&((complements_of_subsets(X3,X4)=empty_set|~(X4=empty_set))|~(element(X4,powerset(powerset(X3)))))),inference(distribute,[status(thm)],[16])).
% cnf(19,plain,(X1=empty_set|~element(X1,powerset(powerset(X2)))|complements_of_subsets(X2,X1)!=empty_set),inference(split_conjunct,[status(thm)],[17])).
% fof(20, plain,![X1]:![X2]:(~(element(X2,powerset(powerset(X1))))|complements_of_subsets(X1,complements_of_subsets(X1,X2))=X2),inference(fof_nnf,[status(thm)],[3])).
% fof(21, plain,![X3]:![X4]:(~(element(X4,powerset(powerset(X3))))|complements_of_subsets(X3,complements_of_subsets(X3,X4))=X4),inference(variable_rename,[status(thm)],[20])).
% cnf(22,plain,(complements_of_subsets(X1,complements_of_subsets(X1,X2))=X2|~element(X2,powerset(powerset(X1)))),inference(split_conjunct,[status(thm)],[21])).
% fof(23, plain,![X1]:![X2]:(~(element(X2,powerset(X1)))|subset_complement(X1,subset_complement(X1,X2))=X2),inference(fof_nnf,[status(thm)],[4])).
% fof(24, plain,![X3]:![X4]:(~(element(X4,powerset(X3)))|subset_complement(X3,subset_complement(X3,X4))=X4),inference(variable_rename,[status(thm)],[23])).
% cnf(25,plain,(subset_complement(X1,subset_complement(X1,X2))=X2|~element(X2,powerset(X1))),inference(split_conjunct,[status(thm)],[24])).
% fof(29, plain,![X1]:![X2]:(~(element(X2,powerset(powerset(X1))))|element(complements_of_subsets(X1,X2),powerset(powerset(X1)))),inference(fof_nnf,[status(thm)],[6])).
% fof(30, plain,![X3]:![X4]:(~(element(X4,powerset(powerset(X3))))|element(complements_of_subsets(X3,X4),powerset(powerset(X3)))),inference(variable_rename,[status(thm)],[29])).
% cnf(31,plain,(element(complements_of_subsets(X1,X2),powerset(powerset(X1)))|~element(X2,powerset(powerset(X1)))),inference(split_conjunct,[status(thm)],[30])).
% fof(35, plain,![X1]:![X2]:(~(element(X2,powerset(powerset(X1))))|element(union_of_subsets(X1,X2),powerset(X1))),inference(fof_nnf,[status(thm)],[8])).
% fof(36, plain,![X3]:![X4]:(~(element(X4,powerset(powerset(X3))))|element(union_of_subsets(X3,X4),powerset(X3))),inference(variable_rename,[status(thm)],[35])).
% cnf(37,plain,(element(union_of_subsets(X1,X2),powerset(X1))|~element(X2,powerset(powerset(X1)))),inference(split_conjunct,[status(thm)],[36])).
% fof(41, negated_conjecture,?[X1]:?[X2]:(element(X2,powerset(powerset(X1)))&(~(X2=empty_set)&~(union_of_subsets(X1,complements_of_subsets(X1,X2))=subset_complement(X1,meet_of_subsets(X1,X2))))),inference(fof_nnf,[status(thm)],[11])).
% fof(42, negated_conjecture,?[X3]:?[X4]:(element(X4,powerset(powerset(X3)))&(~(X4=empty_set)&~(union_of_subsets(X3,complements_of_subsets(X3,X4))=subset_complement(X3,meet_of_subsets(X3,X4))))),inference(variable_rename,[status(thm)],[41])).
% fof(43, negated_conjecture,(element(esk3_0,powerset(powerset(esk2_0)))&(~(esk3_0=empty_set)&~(union_of_subsets(esk2_0,complements_of_subsets(esk2_0,esk3_0))=subset_complement(esk2_0,meet_of_subsets(esk2_0,esk3_0))))),inference(skolemize,[status(esa)],[42])).
% cnf(44,negated_conjecture,(union_of_subsets(esk2_0,complements_of_subsets(esk2_0,esk3_0))!=subset_complement(esk2_0,meet_of_subsets(esk2_0,esk3_0))),inference(split_conjunct,[status(thm)],[43])).
% cnf(45,negated_conjecture,(esk3_0!=empty_set),inference(split_conjunct,[status(thm)],[43])).
% cnf(46,negated_conjecture,(element(esk3_0,powerset(powerset(esk2_0)))),inference(split_conjunct,[status(thm)],[43])).
% cnf(51,negated_conjecture,(empty_set=esk3_0|complements_of_subsets(esk2_0,esk3_0)!=empty_set),inference(spm,[status(thm)],[19,46,theory(equality)])).
% cnf(54,negated_conjecture,(complements_of_subsets(esk2_0,esk3_0)!=empty_set),inference(sr,[status(thm)],[51,45,theory(equality)])).
% cnf(62,plain,(subset_complement(X1,meet_of_subsets(X1,complements_of_subsets(X1,X2)))=union_of_subsets(X1,X2)|empty_set=X2|~element(union_of_subsets(X1,X2),powerset(X1))|~element(X2,powerset(powerset(X1)))),inference(spm,[status(thm)],[25,14,theory(equality)])).
% cnf(99,plain,(subset_complement(X1,meet_of_subsets(X1,complements_of_subsets(X1,X2)))=union_of_subsets(X1,X2)|empty_set=X2|~element(X2,powerset(powerset(X1)))),inference(csr,[status(thm)],[62,37])).
% cnf(108,plain,(subset_complement(X1,meet_of_subsets(X1,X2))=union_of_subsets(X1,complements_of_subsets(X1,X2))|empty_set=complements_of_subsets(X1,X2)|~element(complements_of_subsets(X1,X2),powerset(powerset(X1)))|~element(X2,powerset(powerset(X1)))),inference(spm,[status(thm)],[99,22,theory(equality)])).
% cnf(329,plain,(subset_complement(X1,meet_of_subsets(X1,X2))=union_of_subsets(X1,complements_of_subsets(X1,X2))|complements_of_subsets(X1,X2)=empty_set|~element(X2,powerset(powerset(X1)))),inference(csr,[status(thm)],[108,31])).
% cnf(330,negated_conjecture,(complements_of_subsets(esk2_0,esk3_0)=empty_set|~element(esk3_0,powerset(powerset(esk2_0)))),inference(spm,[status(thm)],[44,329,theory(equality)])).
% cnf(342,negated_conjecture,(complements_of_subsets(esk2_0,esk3_0)=empty_set|$false),inference(rw,[status(thm)],[330,46,theory(equality)])).
% cnf(343,negated_conjecture,(complements_of_subsets(esk2_0,esk3_0)=empty_set),inference(cn,[status(thm)],[342,theory(equality)])).
% cnf(344,negated_conjecture,($false),inference(sr,[status(thm)],[343,54,theory(equality)])).
% cnf(345,negated_conjecture,($false),344,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 134
% # ...of these trivial                : 2
% # ...subsumed                        : 53
% # ...remaining for further processing: 79
% # Other redundant clauses eliminated : 0
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 0
% # Backward-rewritten                 : 0
% # Generated clauses                  : 224
% # ...of the previous two non-trivial : 142
% # Contextual simplify-reflections    : 42
% # Paramodulations                    : 224
% # Factorizations                     : 0
% # Equation resolutions               : 0
% # Current number of processed clauses: 66
% #    Positive orientable unit clauses: 2
% #    Positive unorientable unit clauses: 0
% #    Negative unit clauses           : 3
% #    Non-unit-clauses                : 61
% # Current number of unprocessed clauses: 34
% # ...number of literals in the above : 168
% # Clause-clause subsumption calls (NU) : 711
% # Rec. Clause-clause subsumption calls : 552
% # Unit Clause-clause subsumption calls : 0
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 0
% # Indexed BW rewrite successes       : 0
% # Backwards rewriting index:    47 leaves,   1.28+/-0.572 terms/leaf
% # Paramod-from index:           17 leaves,   1.00+/-0.000 terms/leaf
% # Paramod-into index:           39 leaves,   1.21+/-0.404 terms/leaf
% # -------------------------------------------------
% # User time              : 0.023 s
% # System time            : 0.002 s
% # Total time             : 0.025 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.10 CPU 0.19 WC
% FINAL PrfWatch: 0.10 CPU 0.19 WC
% SZS output end Solution for /tmp/SystemOnTPTP11958/SEU328+2.tptp
% 
%------------------------------------------------------------------------------