TSTP Solution File: SEU261+1 by CSE_E---1.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : CSE_E---1.5
% Problem  : SEU261+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 16:23:53 EDT 2023

% Result   : Theorem 0.19s 0.58s
% Output   : CNFRefutation 0.19s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   18
% Syntax   : Number of formulae    :   60 (  11 unt;  14 typ;   0 def)
%            Number of atoms       :  201 (   0 equ)
%            Maximal formula atoms :   22 (   4 avg)
%            Number of connectives :  250 (  95   ~;  83   |;  37   &)
%                                         (   2 <=>;  33  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   14 (   5 avg)
%            Maximal term depth    :    1 (   1 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   13 (  10   >;   3   *;   0   +;   0  <<)
%            Number of predicates  :   11 (  10 usr;   1 prp; 0-3 aty)
%            Number of functors    :    4 (   4 usr;   4 con; 0-0 aty)
%            Number of variables   :   42 (   0 sgn;  23   !;   0   ?;   0   :)

% Comments : 
%------------------------------------------------------------------------------
tff(decl_22,type,
    relation: $i > $o ).

tff(decl_23,type,
    well_ordering: $i > $o ).

tff(decl_24,type,
    reflexive: $i > $o ).

tff(decl_25,type,
    transitive: $i > $o ).

tff(decl_26,type,
    antisymmetric: $i > $o ).

tff(decl_27,type,
    connected: $i > $o ).

tff(decl_28,type,
    well_founded_relation: $i > $o ).

tff(decl_29,type,
    function: $i > $o ).

tff(decl_30,type,
    relation_isomorphism: ( $i * $i * $i ) > $o ).

tff(decl_31,type,
    epred1_2: ( $i * $i ) > $o ).

tff(decl_32,type,
    esk1_0: $i ).

tff(decl_33,type,
    esk2_0: $i ).

tff(decl_34,type,
    esk3_0: $i ).

tff(decl_35,type,
    esk4_0: $i ).

fof(t53_wellord1,axiom,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( relation(X2)
         => ! [X3] :
              ( ( relation(X3)
                & function(X3) )
             => ( relation_isomorphism(X1,X2,X3)
               => ( ( reflexive(X1)
                   => reflexive(X2) )
                  & ( transitive(X1)
                   => transitive(X2) )
                  & ( connected(X1)
                   => connected(X2) )
                  & ( antisymmetric(X1)
                   => antisymmetric(X2) )
                  & ( well_founded_relation(X1)
                   => well_founded_relation(X2) ) ) ) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t53_wellord1) ).

fof(t54_wellord1,conjecture,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( relation(X2)
         => ! [X3] :
              ( ( relation(X3)
                & function(X3) )
             => ( ( well_ordering(X1)
                  & relation_isomorphism(X1,X2,X3) )
               => well_ordering(X2) ) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',t54_wellord1) ).

fof(d4_wellord1,axiom,
    ! [X1] :
      ( relation(X1)
     => ( well_ordering(X1)
      <=> ( reflexive(X1)
          & transitive(X1)
          & antisymmetric(X1)
          & connected(X1)
          & well_founded_relation(X1) ) ) ),
    file('/export/starexec/sandbox/benchmark/theBenchmark.p',d4_wellord1) ).

fof(c_0_3,plain,
    ! [X1,X2] :
      ( epred1_2(X2,X1)
    <=> ( ( reflexive(X1)
         => reflexive(X2) )
        & ( transitive(X1)
         => transitive(X2) )
        & ( connected(X1)
         => connected(X2) )
        & ( antisymmetric(X1)
         => antisymmetric(X2) )
        & ( well_founded_relation(X1)
         => well_founded_relation(X2) ) ) ),
    introduced(definition) ).

fof(c_0_4,axiom,
    ! [X1] :
      ( relation(X1)
     => ! [X2] :
          ( relation(X2)
         => ! [X3] :
              ( ( relation(X3)
                & function(X3) )
             => ( relation_isomorphism(X1,X2,X3)
               => epred1_2(X2,X1) ) ) ) ),
    inference(apply_def,[status(thm)],[t53_wellord1,c_0_3]) ).

fof(c_0_5,negated_conjecture,
    ~ ! [X1] :
        ( relation(X1)
       => ! [X2] :
            ( relation(X2)
           => ! [X3] :
                ( ( relation(X3)
                  & function(X3) )
               => ( ( well_ordering(X1)
                    & relation_isomorphism(X1,X2,X3) )
                 => well_ordering(X2) ) ) ) ),
    inference(assume_negation,[status(cth)],[t54_wellord1]) ).

fof(c_0_6,plain,
    ! [X1,X2] :
      ( epred1_2(X2,X1)
     => ( ( reflexive(X1)
         => reflexive(X2) )
        & ( transitive(X1)
         => transitive(X2) )
        & ( connected(X1)
         => connected(X2) )
        & ( antisymmetric(X1)
         => antisymmetric(X2) )
        & ( well_founded_relation(X1)
         => well_founded_relation(X2) ) ) ),
    inference(split_equiv,[status(thm)],[c_0_3]) ).

fof(c_0_7,plain,
    ! [X6,X7,X8] :
      ( ~ relation(X6)
      | ~ relation(X7)
      | ~ relation(X8)
      | ~ function(X8)
      | ~ relation_isomorphism(X6,X7,X8)
      | epred1_2(X7,X6) ),
    inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_4])])]) ).

fof(c_0_8,negated_conjecture,
    ( relation(esk2_0)
    & relation(esk3_0)
    & relation(esk4_0)
    & function(esk4_0)
    & well_ordering(esk2_0)
    & relation_isomorphism(esk2_0,esk3_0,esk4_0)
    & ~ well_ordering(esk3_0) ),
    inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_5])])]) ).

fof(c_0_9,plain,
    ! [X12,X13] :
      ( ( ~ reflexive(X12)
        | reflexive(X13)
        | ~ epred1_2(X13,X12) )
      & ( ~ transitive(X12)
        | transitive(X13)
        | ~ epred1_2(X13,X12) )
      & ( ~ connected(X12)
        | connected(X13)
        | ~ epred1_2(X13,X12) )
      & ( ~ antisymmetric(X12)
        | antisymmetric(X13)
        | ~ epred1_2(X13,X12) )
      & ( ~ well_founded_relation(X12)
        | well_founded_relation(X13)
        | ~ epred1_2(X13,X12) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[c_0_6])])]) ).

cnf(c_0_10,plain,
    ( epred1_2(X2,X1)
    | ~ relation(X1)
    | ~ relation(X2)
    | ~ relation(X3)
    | ~ function(X3)
    | ~ relation_isomorphism(X1,X2,X3) ),
    inference(split_conjunct,[status(thm)],[c_0_7]) ).

cnf(c_0_11,negated_conjecture,
    relation_isomorphism(esk2_0,esk3_0,esk4_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_12,negated_conjecture,
    function(esk4_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_13,negated_conjecture,
    relation(esk4_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_14,negated_conjecture,
    relation(esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_15,negated_conjecture,
    relation(esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

fof(c_0_16,plain,
    ! [X4] :
      ( ( reflexive(X4)
        | ~ well_ordering(X4)
        | ~ relation(X4) )
      & ( transitive(X4)
        | ~ well_ordering(X4)
        | ~ relation(X4) )
      & ( antisymmetric(X4)
        | ~ well_ordering(X4)
        | ~ relation(X4) )
      & ( connected(X4)
        | ~ well_ordering(X4)
        | ~ relation(X4) )
      & ( well_founded_relation(X4)
        | ~ well_ordering(X4)
        | ~ relation(X4) )
      & ( ~ reflexive(X4)
        | ~ transitive(X4)
        | ~ antisymmetric(X4)
        | ~ connected(X4)
        | ~ well_founded_relation(X4)
        | well_ordering(X4)
        | ~ relation(X4) ) ),
    inference(distribute,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[d4_wellord1])])]) ).

cnf(c_0_17,plain,
    ( well_founded_relation(X2)
    | ~ well_founded_relation(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_18,negated_conjecture,
    epred1_2(esk3_0,esk2_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_10,c_0_11]),c_0_12]),c_0_13]),c_0_14]),c_0_15])]) ).

cnf(c_0_19,plain,
    ( well_ordering(X1)
    | ~ reflexive(X1)
    | ~ transitive(X1)
    | ~ antisymmetric(X1)
    | ~ connected(X1)
    | ~ well_founded_relation(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_20,plain,
    ( well_founded_relation(esk3_0)
    | ~ well_founded_relation(esk2_0) ),
    inference(spm,[status(thm)],[c_0_17,c_0_18]) ).

cnf(c_0_21,negated_conjecture,
    ~ well_ordering(esk3_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_22,plain,
    ( ~ well_founded_relation(esk2_0)
    | ~ connected(esk3_0)
    | ~ antisymmetric(esk3_0)
    | ~ transitive(esk3_0)
    | ~ reflexive(esk3_0) ),
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_19,c_0_20]),c_0_14])]),c_0_21]) ).

cnf(c_0_23,plain,
    ( well_founded_relation(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_24,negated_conjecture,
    well_ordering(esk2_0),
    inference(split_conjunct,[status(thm)],[c_0_8]) ).

cnf(c_0_25,plain,
    ( connected(X2)
    | ~ connected(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_26,plain,
    ( ~ connected(esk3_0)
    | ~ antisymmetric(esk3_0)
    | ~ transitive(esk3_0)
    | ~ reflexive(esk3_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_22,c_0_23]),c_0_24]),c_0_15])]) ).

cnf(c_0_27,plain,
    ( connected(esk3_0)
    | ~ connected(esk2_0) ),
    inference(spm,[status(thm)],[c_0_25,c_0_18]) ).

cnf(c_0_28,plain,
    ( ~ connected(esk2_0)
    | ~ antisymmetric(esk3_0)
    | ~ transitive(esk3_0)
    | ~ reflexive(esk3_0) ),
    inference(spm,[status(thm)],[c_0_26,c_0_27]) ).

cnf(c_0_29,plain,
    ( connected(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_30,plain,
    ( antisymmetric(X2)
    | ~ antisymmetric(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_31,plain,
    ( ~ antisymmetric(esk3_0)
    | ~ transitive(esk3_0)
    | ~ reflexive(esk3_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_28,c_0_29]),c_0_24]),c_0_15])]) ).

cnf(c_0_32,plain,
    ( antisymmetric(esk3_0)
    | ~ antisymmetric(esk2_0) ),
    inference(spm,[status(thm)],[c_0_30,c_0_18]) ).

cnf(c_0_33,plain,
    ( ~ antisymmetric(esk2_0)
    | ~ transitive(esk3_0)
    | ~ reflexive(esk3_0) ),
    inference(spm,[status(thm)],[c_0_31,c_0_32]) ).

cnf(c_0_34,plain,
    ( antisymmetric(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_35,plain,
    ( transitive(X2)
    | ~ transitive(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_36,plain,
    ( ~ transitive(esk3_0)
    | ~ reflexive(esk3_0) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_33,c_0_34]),c_0_24]),c_0_15])]) ).

cnf(c_0_37,plain,
    ( transitive(esk3_0)
    | ~ transitive(esk2_0) ),
    inference(spm,[status(thm)],[c_0_35,c_0_18]) ).

cnf(c_0_38,plain,
    ( ~ transitive(esk2_0)
    | ~ reflexive(esk3_0) ),
    inference(spm,[status(thm)],[c_0_36,c_0_37]) ).

cnf(c_0_39,plain,
    ( transitive(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_40,plain,
    ( reflexive(X2)
    | ~ reflexive(X1)
    | ~ epred1_2(X2,X1) ),
    inference(split_conjunct,[status(thm)],[c_0_9]) ).

cnf(c_0_41,plain,
    ~ reflexive(esk3_0),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_38,c_0_39]),c_0_24]),c_0_15])]) ).

cnf(c_0_42,plain,
    ( reflexive(esk3_0)
    | ~ reflexive(esk2_0) ),
    inference(spm,[status(thm)],[c_0_40,c_0_18]) ).

cnf(c_0_43,plain,
    ~ reflexive(esk2_0),
    inference(spm,[status(thm)],[c_0_41,c_0_42]) ).

cnf(c_0_44,plain,
    ( reflexive(X1)
    | ~ well_ordering(X1)
    | ~ relation(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_16]) ).

cnf(c_0_45,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_43,c_0_44]),c_0_24]),c_0_15])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem    : SEU261+1 : TPTP v8.1.2. Released v3.3.0.
% 0.00/0.13  % Command    : java -jar /export/starexec/sandbox/solver/bin/mcs_scs.jar %d %s
% 0.12/0.33  % Computer : n020.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit   : 300
% 0.12/0.33  % WCLimit    : 300
% 0.12/0.33  % DateTime   : Wed Aug 23 17:25:00 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 0.19/0.57  start to proof: theBenchmark
% 0.19/0.58  % Version  : CSE_E---1.5
% 0.19/0.58  % Problem  : theBenchmark.p
% 0.19/0.58  % Proof found
% 0.19/0.58  % SZS status Theorem for theBenchmark.p
% 0.19/0.58  % SZS output start Proof
% See solution above
% 0.19/0.59  % Total time : 0.007000 s
% 0.19/0.59  % SZS output end Proof
% 0.19/0.59  % Total time : 0.010000 s
%------------------------------------------------------------------------------