TSTP Solution File: SEU172+2 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SEU172+2 : TPTP v5.0.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art02.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Thu Dec 30 01:25:35 EST 2010

% Result   : Theorem 1.49s
% Output   : Solution 1.49s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP24373/SEU172+2.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... 
% found
% SZS status THM for /tmp/SystemOnTPTP24373/SEU172+2.tptp
% SZS output start Solution for /tmp/SystemOnTPTP24373/SEU172+2.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 24469
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.00 WC
% # Preprocessing time     : 0.025 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(2, axiom,![X1]:![X2]:(element(X2,powerset(X1))=>element(subset_complement(X1,X2),powerset(X1))),file('/tmp/SRASS.s.p', dt_k3_subset_1)).
% fof(5, axiom,![X1]:![X2]:(element(X2,powerset(X1))=>subset_complement(X1,subset_complement(X1,X2))=X2),file('/tmp/SRASS.s.p', involutiveness_k3_subset_1)).
% fof(9, axiom,![X1]:![X2]:(element(X2,powerset(X1))=>subset_complement(X1,X2)=set_difference(X1,X2)),file('/tmp/SRASS.s.p', d5_subset_1)).
% fof(21, axiom,![X1]:![X2]:(disjoint(X1,X2)=>disjoint(X2,X1)),file('/tmp/SRASS.s.p', symmetry_r1_xboole_0)).
% fof(26, axiom,![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))),file('/tmp/SRASS.s.p', t3_xboole_0)).
% fof(31, axiom,![X1]:![X2]:set_union2(X1,X2)=set_union2(X2,X1),file('/tmp/SRASS.s.p', commutativity_k2_xboole_0)).
% fof(32, axiom,![X1]:![X2]:set_intersection2(X1,X2)=set_intersection2(X2,X1),file('/tmp/SRASS.s.p', commutativity_k3_xboole_0)).
% fof(41, axiom,![X1]:set_union2(X1,empty_set)=X1,file('/tmp/SRASS.s.p', t1_boole)).
% fof(43, axiom,![X1]:![X2]:set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2),file('/tmp/SRASS.s.p', t39_xboole_1)).
% fof(44, axiom,![X1]:set_difference(X1,empty_set)=X1,file('/tmp/SRASS.s.p', t3_boole)).
% fof(45, axiom,![X1]:![X2]:set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2),file('/tmp/SRASS.s.p', t40_xboole_1)).
% fof(49, axiom,![X1]:set_intersection2(X1,empty_set)=empty_set,file('/tmp/SRASS.s.p', t2_boole)).
% fof(51, axiom,![X1]:![X2]:set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2),file('/tmp/SRASS.s.p', t48_xboole_1)).
% fof(54, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_difference(X1,X2)=X1),file('/tmp/SRASS.s.p', t83_xboole_1)).
% fof(68, axiom,![X1]:![X2]:subset(set_difference(X1,X2),X1),file('/tmp/SRASS.s.p', t36_xboole_1)).
% fof(76, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>set_intersection2(X1,X2)=empty_set),file('/tmp/SRASS.s.p', d7_xboole_0)).
% fof(81, axiom,![X1]:![X2]:(set_difference(X1,X2)=empty_set<=>subset(X1,X2)),file('/tmp/SRASS.s.p', l32_xboole_1)).
% fof(112, conjecture,![X1]:![X2]:![X3]:(element(X3,powerset(X1))=>~((in(X2,subset_complement(X1,X3))&in(X2,X3)))),file('/tmp/SRASS.s.p', t54_subset_1)).
% fof(113, negated_conjecture,~(![X1]:![X2]:![X3]:(element(X3,powerset(X1))=>~((in(X2,subset_complement(X1,X3))&in(X2,X3))))),inference(assume_negation,[status(cth)],[112])).
% fof(122, plain,![X1]:![X2]:(~((~(disjoint(X1,X2))&![X3]:~((in(X3,X1)&in(X3,X2)))))&~((?[X3]:(in(X3,X1)&in(X3,X2))&disjoint(X1,X2)))),inference(fof_simplification,[status(thm)],[26,theory(equality)])).
% fof(136, plain,![X1]:![X2]:(~(element(X2,powerset(X1)))|element(subset_complement(X1,X2),powerset(X1))),inference(fof_nnf,[status(thm)],[2])).
% fof(137, plain,![X3]:![X4]:(~(element(X4,powerset(X3)))|element(subset_complement(X3,X4),powerset(X3))),inference(variable_rename,[status(thm)],[136])).
% cnf(138,plain,(element(subset_complement(X1,X2),powerset(X1))|~element(X2,powerset(X1))),inference(split_conjunct,[status(thm)],[137])).
% fof(146, plain,![X1]:![X2]:(~(element(X2,powerset(X1)))|subset_complement(X1,subset_complement(X1,X2))=X2),inference(fof_nnf,[status(thm)],[5])).
% fof(147, plain,![X3]:![X4]:(~(element(X4,powerset(X3)))|subset_complement(X3,subset_complement(X3,X4))=X4),inference(variable_rename,[status(thm)],[146])).
% cnf(148,plain,(subset_complement(X1,subset_complement(X1,X2))=X2|~element(X2,powerset(X1))),inference(split_conjunct,[status(thm)],[147])).
% fof(163, plain,![X1]:![X2]:(~(element(X2,powerset(X1)))|subset_complement(X1,X2)=set_difference(X1,X2)),inference(fof_nnf,[status(thm)],[9])).
% fof(164, plain,![X3]:![X4]:(~(element(X4,powerset(X3)))|subset_complement(X3,X4)=set_difference(X3,X4)),inference(variable_rename,[status(thm)],[163])).
% cnf(165,plain,(subset_complement(X1,X2)=set_difference(X1,X2)|~element(X2,powerset(X1))),inference(split_conjunct,[status(thm)],[164])).
% fof(224, plain,![X1]:![X2]:(~(disjoint(X1,X2))|disjoint(X2,X1)),inference(fof_nnf,[status(thm)],[21])).
% fof(225, plain,![X3]:![X4]:(~(disjoint(X3,X4))|disjoint(X4,X3)),inference(variable_rename,[status(thm)],[224])).
% cnf(226,plain,(disjoint(X1,X2)|~disjoint(X2,X1)),inference(split_conjunct,[status(thm)],[225])).
% fof(244, plain,![X1]:![X2]:((disjoint(X1,X2)|?[X3]:(in(X3,X1)&in(X3,X2)))&(![X3]:(~(in(X3,X1))|~(in(X3,X2)))|~(disjoint(X1,X2)))),inference(fof_nnf,[status(thm)],[122])).
% fof(245, plain,![X4]:![X5]:((disjoint(X4,X5)|?[X6]:(in(X6,X4)&in(X6,X5)))&(![X7]:(~(in(X7,X4))|~(in(X7,X5)))|~(disjoint(X4,X5)))),inference(variable_rename,[status(thm)],[244])).
% fof(246, plain,![X4]:![X5]:((disjoint(X4,X5)|(in(esk11_2(X4,X5),X4)&in(esk11_2(X4,X5),X5)))&(![X7]:(~(in(X7,X4))|~(in(X7,X5)))|~(disjoint(X4,X5)))),inference(skolemize,[status(esa)],[245])).
% fof(247, plain,![X4]:![X5]:![X7]:(((~(in(X7,X4))|~(in(X7,X5)))|~(disjoint(X4,X5)))&(disjoint(X4,X5)|(in(esk11_2(X4,X5),X4)&in(esk11_2(X4,X5),X5)))),inference(shift_quantors,[status(thm)],[246])).
% fof(248, plain,![X4]:![X5]:![X7]:(((~(in(X7,X4))|~(in(X7,X5)))|~(disjoint(X4,X5)))&((in(esk11_2(X4,X5),X4)|disjoint(X4,X5))&(in(esk11_2(X4,X5),X5)|disjoint(X4,X5)))),inference(distribute,[status(thm)],[247])).
% cnf(251,plain,(~disjoint(X1,X2)|~in(X3,X2)|~in(X3,X1)),inference(split_conjunct,[status(thm)],[248])).
% fof(261, plain,![X3]:![X4]:set_union2(X3,X4)=set_union2(X4,X3),inference(variable_rename,[status(thm)],[31])).
% cnf(262,plain,(set_union2(X1,X2)=set_union2(X2,X1)),inference(split_conjunct,[status(thm)],[261])).
% fof(263, plain,![X3]:![X4]:set_intersection2(X3,X4)=set_intersection2(X4,X3),inference(variable_rename,[status(thm)],[32])).
% cnf(264,plain,(set_intersection2(X1,X2)=set_intersection2(X2,X1)),inference(split_conjunct,[status(thm)],[263])).
% fof(294, plain,![X2]:set_union2(X2,empty_set)=X2,inference(variable_rename,[status(thm)],[41])).
% cnf(295,plain,(set_union2(X1,empty_set)=X1),inference(split_conjunct,[status(thm)],[294])).
% fof(300, plain,![X3]:![X4]:set_union2(X3,set_difference(X4,X3))=set_union2(X3,X4),inference(variable_rename,[status(thm)],[43])).
% cnf(301,plain,(set_union2(X1,set_difference(X2,X1))=set_union2(X1,X2)),inference(split_conjunct,[status(thm)],[300])).
% fof(302, plain,![X2]:set_difference(X2,empty_set)=X2,inference(variable_rename,[status(thm)],[44])).
% cnf(303,plain,(set_difference(X1,empty_set)=X1),inference(split_conjunct,[status(thm)],[302])).
% fof(304, plain,![X3]:![X4]:set_difference(set_union2(X3,X4),X4)=set_difference(X3,X4),inference(variable_rename,[status(thm)],[45])).
% cnf(305,plain,(set_difference(set_union2(X1,X2),X2)=set_difference(X1,X2)),inference(split_conjunct,[status(thm)],[304])).
% fof(320, plain,![X2]:set_intersection2(X2,empty_set)=empty_set,inference(variable_rename,[status(thm)],[49])).
% cnf(321,plain,(set_intersection2(X1,empty_set)=empty_set),inference(split_conjunct,[status(thm)],[320])).
% fof(328, plain,![X3]:![X4]:set_difference(X3,set_difference(X3,X4))=set_intersection2(X3,X4),inference(variable_rename,[status(thm)],[51])).
% cnf(329,plain,(set_difference(X1,set_difference(X1,X2))=set_intersection2(X1,X2)),inference(split_conjunct,[status(thm)],[328])).
% fof(336, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_difference(X1,X2)=X1)&(~(set_difference(X1,X2)=X1)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[54])).
% fof(337, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_difference(X3,X4)=X3)&(~(set_difference(X3,X4)=X3)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[336])).
% cnf(339,plain,(set_difference(X1,X2)=X1|~disjoint(X1,X2)),inference(split_conjunct,[status(thm)],[337])).
% fof(419, plain,![X3]:![X4]:subset(set_difference(X3,X4),X3),inference(variable_rename,[status(thm)],[68])).
% cnf(420,plain,(subset(set_difference(X1,X2),X1)),inference(split_conjunct,[status(thm)],[419])).
% fof(452, plain,![X1]:![X2]:((~(disjoint(X1,X2))|set_intersection2(X1,X2)=empty_set)&(~(set_intersection2(X1,X2)=empty_set)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[76])).
% fof(453, plain,![X3]:![X4]:((~(disjoint(X3,X4))|set_intersection2(X3,X4)=empty_set)&(~(set_intersection2(X3,X4)=empty_set)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[452])).
% cnf(454,plain,(disjoint(X1,X2)|set_intersection2(X1,X2)!=empty_set),inference(split_conjunct,[status(thm)],[453])).
% fof(468, plain,![X1]:![X2]:((~(set_difference(X1,X2)=empty_set)|subset(X1,X2))&(~(subset(X1,X2))|set_difference(X1,X2)=empty_set)),inference(fof_nnf,[status(thm)],[81])).
% fof(469, plain,![X3]:![X4]:((~(set_difference(X3,X4)=empty_set)|subset(X3,X4))&(~(subset(X3,X4))|set_difference(X3,X4)=empty_set)),inference(variable_rename,[status(thm)],[468])).
% cnf(470,plain,(set_difference(X1,X2)=empty_set|~subset(X1,X2)),inference(split_conjunct,[status(thm)],[469])).
% fof(554, negated_conjecture,?[X1]:?[X2]:?[X3]:(element(X3,powerset(X1))&(in(X2,subset_complement(X1,X3))&in(X2,X3))),inference(fof_nnf,[status(thm)],[113])).
% fof(555, negated_conjecture,?[X4]:?[X5]:?[X6]:(element(X6,powerset(X4))&(in(X5,subset_complement(X4,X6))&in(X5,X6))),inference(variable_rename,[status(thm)],[554])).
% fof(556, negated_conjecture,(element(esk30_0,powerset(esk28_0))&(in(esk29_0,subset_complement(esk28_0,esk30_0))&in(esk29_0,esk30_0))),inference(skolemize,[status(esa)],[555])).
% cnf(557,negated_conjecture,(in(esk29_0,esk30_0)),inference(split_conjunct,[status(thm)],[556])).
% cnf(558,negated_conjecture,(in(esk29_0,subset_complement(esk28_0,esk30_0))),inference(split_conjunct,[status(thm)],[556])).
% cnf(559,negated_conjecture,(element(esk30_0,powerset(esk28_0))),inference(split_conjunct,[status(thm)],[556])).
% cnf(588,plain,(set_difference(X1,set_difference(X1,empty_set))=empty_set),inference(rw,[status(thm)],[321,329,theory(equality)]),['unfolding']).
% cnf(589,plain,(set_difference(X1,set_difference(X1,X2))=set_difference(X2,set_difference(X2,X1))),inference(rw,[status(thm)],[inference(rw,[status(thm)],[264,329,theory(equality)]),329,theory(equality)]),['unfolding']).
% cnf(596,plain,(disjoint(X1,X2)|set_difference(X1,set_difference(X1,X2))!=empty_set),inference(rw,[status(thm)],[454,329,theory(equality)]),['unfolding']).
% cnf(623,plain,(set_difference(X1,X1)=empty_set),inference(rw,[status(thm)],[588,303,theory(equality)])).
% cnf(665,negated_conjecture,(subset_complement(esk28_0,esk30_0)=set_difference(esk28_0,esk30_0)),inference(spm,[status(thm)],[165,559,theory(equality)])).
% cnf(763,plain,(set_difference(set_union2(X1,X2),set_difference(X2,X1))=set_difference(X1,set_difference(X2,X1))),inference(spm,[status(thm)],[305,301,theory(equality)])).
% cnf(2355,negated_conjecture,(subset_complement(esk28_0,set_difference(esk28_0,esk30_0))=esk30_0|~element(esk30_0,powerset(esk28_0))),inference(spm,[status(thm)],[148,665,theory(equality)])).
% cnf(2356,negated_conjecture,(element(set_difference(esk28_0,esk30_0),powerset(esk28_0))|~element(esk30_0,powerset(esk28_0))),inference(spm,[status(thm)],[138,665,theory(equality)])).
% cnf(2360,negated_conjecture,(in(esk29_0,set_difference(esk28_0,esk30_0))),inference(rw,[status(thm)],[558,665,theory(equality)])).
% cnf(2361,negated_conjecture,(subset_complement(esk28_0,set_difference(esk28_0,esk30_0))=esk30_0|$false),inference(rw,[status(thm)],[2355,559,theory(equality)])).
% cnf(2362,negated_conjecture,(subset_complement(esk28_0,set_difference(esk28_0,esk30_0))=esk30_0),inference(cn,[status(thm)],[2361,theory(equality)])).
% cnf(2363,negated_conjecture,(element(set_difference(esk28_0,esk30_0),powerset(esk28_0))|$false),inference(rw,[status(thm)],[2356,559,theory(equality)])).
% cnf(2364,negated_conjecture,(element(set_difference(esk28_0,esk30_0),powerset(esk28_0))),inference(cn,[status(thm)],[2363,theory(equality)])).
% cnf(2423,negated_conjecture,(subset_complement(esk28_0,set_difference(esk28_0,esk30_0))=set_difference(esk28_0,set_difference(esk28_0,esk30_0))),inference(spm,[status(thm)],[165,2364,theory(equality)])).
% cnf(2432,negated_conjecture,(esk30_0=set_difference(esk28_0,set_difference(esk28_0,esk30_0))),inference(rw,[status(thm)],[2423,2362,theory(equality)])).
% cnf(2453,negated_conjecture,(set_difference(esk30_0,set_difference(esk30_0,esk28_0))=esk30_0),inference(rw,[status(thm)],[2432,589,theory(equality)])).
% cnf(2459,negated_conjecture,(disjoint(esk30_0,set_difference(esk30_0,esk28_0))|set_difference(esk30_0,esk30_0)!=empty_set),inference(spm,[status(thm)],[596,2453,theory(equality)])).
% cnf(2485,negated_conjecture,(disjoint(esk30_0,set_difference(esk30_0,esk28_0))|$false),inference(rw,[status(thm)],[2459,623,theory(equality)])).
% cnf(2486,negated_conjecture,(disjoint(esk30_0,set_difference(esk30_0,esk28_0))),inference(cn,[status(thm)],[2485,theory(equality)])).
% cnf(2501,negated_conjecture,(disjoint(set_difference(esk30_0,esk28_0),esk30_0)),inference(spm,[status(thm)],[226,2486,theory(equality)])).
% cnf(2510,negated_conjecture,(set_difference(set_difference(esk30_0,esk28_0),esk30_0)=set_difference(esk30_0,esk28_0)),inference(spm,[status(thm)],[339,2501,theory(equality)])).
% cnf(2607,negated_conjecture,(set_difference(esk30_0,esk28_0)=empty_set|~subset(set_difference(esk30_0,esk28_0),esk30_0)),inference(spm,[status(thm)],[470,2510,theory(equality)])).
% cnf(2628,negated_conjecture,(set_difference(esk30_0,esk28_0)=empty_set|$false),inference(rw,[status(thm)],[2607,420,theory(equality)])).
% cnf(2629,negated_conjecture,(set_difference(esk30_0,esk28_0)=empty_set),inference(cn,[status(thm)],[2628,theory(equality)])).
% cnf(2662,negated_conjecture,(set_union2(esk28_0,empty_set)=set_union2(esk28_0,esk30_0)),inference(spm,[status(thm)],[301,2629,theory(equality)])).
% cnf(2684,negated_conjecture,(esk28_0=set_union2(esk28_0,esk30_0)),inference(rw,[status(thm)],[2662,295,theory(equality)])).
% cnf(2696,negated_conjecture,(set_union2(esk30_0,esk28_0)=esk28_0),inference(rw,[status(thm)],[2684,262,theory(equality)])).
% cnf(4889,negated_conjecture,(set_difference(esk28_0,set_difference(esk28_0,esk30_0))=set_difference(esk30_0,set_difference(esk28_0,esk30_0))),inference(spm,[status(thm)],[763,2696,theory(equality)])).
% cnf(4911,negated_conjecture,(esk30_0=set_difference(esk30_0,set_difference(esk28_0,esk30_0))),inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[4889,589,theory(equality)]),2629,theory(equality)]),303,theory(equality)])).
% cnf(4921,negated_conjecture,(disjoint(esk30_0,set_difference(esk28_0,esk30_0))|set_difference(esk30_0,esk30_0)!=empty_set),inference(spm,[status(thm)],[596,4911,theory(equality)])).
% cnf(4942,negated_conjecture,(disjoint(esk30_0,set_difference(esk28_0,esk30_0))|$false),inference(rw,[status(thm)],[4921,623,theory(equality)])).
% cnf(4943,negated_conjecture,(disjoint(esk30_0,set_difference(esk28_0,esk30_0))),inference(cn,[status(thm)],[4942,theory(equality)])).
% cnf(4962,negated_conjecture,(~in(X1,set_difference(esk28_0,esk30_0))|~in(X1,esk30_0)),inference(spm,[status(thm)],[251,4943,theory(equality)])).
% cnf(5036,negated_conjecture,(~in(esk29_0,esk30_0)),inference(spm,[status(thm)],[4962,2360,theory(equality)])).
% cnf(5070,negated_conjecture,($false),inference(rw,[status(thm)],[5036,557,theory(equality)])).
% cnf(5071,negated_conjecture,($false),inference(cn,[status(thm)],[5070,theory(equality)])).
% cnf(5072,negated_conjecture,($false),5071,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 941
% # ...of these trivial                : 17
% # ...subsumed                        : 359
% # ...remaining for further processing: 565
% # Other redundant clauses eliminated : 59
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 1
% # Backward-rewritten                 : 15
% # Generated clauses                  : 3617
% # ...of the previous two non-trivial : 3216
% # Contextual simplify-reflections    : 32
% # Paramodulations                    : 3517
% # Factorizations                     : 14
% # Equation resolutions               : 86
% # Current number of processed clauses: 383
% #    Positive orientable unit clauses: 62
% #    Positive unorientable unit clauses: 3
% #    Negative unit clauses           : 58
% #    Non-unit-clauses                : 260
% # Current number of unprocessed clauses: 2522
% # ...number of literals in the above : 8433
% # Clause-clause subsumption calls (NU) : 2317
% # Rec. Clause-clause subsumption calls : 2057
% # Unit Clause-clause subsumption calls : 603
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 94
% # Indexed BW rewrite successes       : 60
% # Backwards rewriting index:   306 leaves,   1.43+/-1.456 terms/leaf
% # Paramod-from index:          139 leaves,   1.15+/-0.447 terms/leaf
% # Paramod-into index:          283 leaves,   1.34+/-1.118 terms/leaf
% # -------------------------------------------------
% # User time              : 0.167 s
% # System time            : 0.006 s
% # Total time             : 0.173 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.32 CPU 0.42 WC
% FINAL PrfWatch: 0.32 CPU 0.42 WC
% SZS output end Solution for /tmp/SystemOnTPTP24373/SEU172+2.tptp
% 
%------------------------------------------------------------------------------