TSTP Solution File: SEU162+3 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SEU162+3 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n017.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Tue Jul 19 07:11:04 EDT 2022

% Result   : Theorem 0.43s 1.07s
% Output   : Refutation 0.43s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem  : SEU162+3 : TPTP v8.1.0. Released v3.2.0.
% 0.07/0.12  % Command  : bliksem %s
% 0.13/0.34  % Computer : n017.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % DateTime : Sun Jun 19 14:27:13 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.43/1.07  *** allocated 10000 integers for termspace/termends
% 0.43/1.07  *** allocated 10000 integers for clauses
% 0.43/1.07  *** allocated 10000 integers for justifications
% 0.43/1.07  Bliksem 1.12
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Automatic Strategy Selection
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Clauses:
% 0.43/1.07  
% 0.43/1.07  { ! in( X, Y ), ! in( Y, X ) }.
% 0.43/1.07  { ! disjoint( singleton( X ), Y ), ! in( X, Y ) }.
% 0.43/1.07  { in( X, Y ), disjoint( singleton( X ), Y ) }.
% 0.43/1.07  { empty( skol1 ) }.
% 0.43/1.07  { ! empty( skol2 ) }.
% 0.43/1.07  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.43/1.07  { alpha1( skol3, skol4 ), ! in( skol4, skol3 ) }.
% 0.43/1.07  { alpha1( skol3, skol4 ), ! set_difference( skol3, singleton( skol4 ) ) = 
% 0.43/1.07    skol3 }.
% 0.43/1.07  { ! alpha1( X, Y ), set_difference( X, singleton( Y ) ) = X }.
% 0.43/1.07  { ! alpha1( X, Y ), in( Y, X ) }.
% 0.43/1.07  { ! set_difference( X, singleton( Y ) ) = X, ! in( Y, X ), alpha1( X, Y ) }
% 0.43/1.07    .
% 0.43/1.07  { ! disjoint( X, Y ), set_difference( X, Y ) = X }.
% 0.43/1.07  { ! set_difference( X, Y ) = X, disjoint( X, Y ) }.
% 0.43/1.07  
% 0.43/1.07  percentage equality = 0.200000, percentage horn = 0.923077
% 0.43/1.07  This is a problem with some equality
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Options Used:
% 0.43/1.07  
% 0.43/1.07  useres =            1
% 0.43/1.07  useparamod =        1
% 0.43/1.07  useeqrefl =         1
% 0.43/1.07  useeqfact =         1
% 0.43/1.07  usefactor =         1
% 0.43/1.07  usesimpsplitting =  0
% 0.43/1.07  usesimpdemod =      5
% 0.43/1.07  usesimpres =        3
% 0.43/1.07  
% 0.43/1.07  resimpinuse      =  1000
% 0.43/1.07  resimpclauses =     20000
% 0.43/1.07  substype =          eqrewr
% 0.43/1.07  backwardsubs =      1
% 0.43/1.07  selectoldest =      5
% 0.43/1.07  
% 0.43/1.07  litorderings [0] =  split
% 0.43/1.07  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.43/1.07  
% 0.43/1.07  termordering =      kbo
% 0.43/1.07  
% 0.43/1.07  litapriori =        0
% 0.43/1.07  termapriori =       1
% 0.43/1.07  litaposteriori =    0
% 0.43/1.07  termaposteriori =   0
% 0.43/1.07  demodaposteriori =  0
% 0.43/1.07  ordereqreflfact =   0
% 0.43/1.07  
% 0.43/1.07  litselect =         negord
% 0.43/1.07  
% 0.43/1.07  maxweight =         15
% 0.43/1.07  maxdepth =          30000
% 0.43/1.07  maxlength =         115
% 0.43/1.07  maxnrvars =         195
% 0.43/1.07  excuselevel =       1
% 0.43/1.07  increasemaxweight = 1
% 0.43/1.07  
% 0.43/1.07  maxselected =       10000000
% 0.43/1.07  maxnrclauses =      10000000
% 0.43/1.07  
% 0.43/1.07  showgenerated =    0
% 0.43/1.07  showkept =         0
% 0.43/1.07  showselected =     0
% 0.43/1.07  showdeleted =      0
% 0.43/1.07  showresimp =       1
% 0.43/1.07  showstatus =       2000
% 0.43/1.07  
% 0.43/1.07  prologoutput =     0
% 0.43/1.07  nrgoals =          5000000
% 0.43/1.07  totalproof =       1
% 0.43/1.07  
% 0.43/1.07  Symbols occurring in the translation:
% 0.43/1.07  
% 0.43/1.07  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.43/1.07  .  [1, 2]      (w:1, o:19, a:1, s:1, b:0), 
% 0.43/1.07  !  [4, 1]      (w:0, o:12, a:1, s:1, b:0), 
% 0.43/1.07  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.43/1.07  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.43/1.07  in  [37, 2]      (w:1, o:43, a:1, s:1, b:0), 
% 0.43/1.07  singleton  [38, 1]      (w:1, o:17, a:1, s:1, b:0), 
% 0.43/1.07  disjoint  [39, 2]      (w:1, o:44, a:1, s:1, b:0), 
% 0.43/1.07  empty  [40, 1]      (w:1, o:18, a:1, s:1, b:0), 
% 0.43/1.07  set_difference  [41, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.43/1.07  alpha1  [42, 2]      (w:1, o:46, a:1, s:1, b:1), 
% 0.43/1.07  skol1  [43, 0]      (w:1, o:8, a:1, s:1, b:1), 
% 0.43/1.07  skol2  [44, 0]      (w:1, o:9, a:1, s:1, b:1), 
% 0.43/1.07  skol3  [45, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.43/1.07  skol4  [46, 0]      (w:1, o:11, a:1, s:1, b:1).
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Starting Search:
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Bliksems!, er is een bewijs:
% 0.43/1.07  % SZS status Theorem
% 0.43/1.07  % SZS output start Refutation
% 0.43/1.07  
% 0.43/1.07  (1) {G0,W7,D3,L2,V2,M2} I { ! disjoint( singleton( X ), Y ), ! in( X, Y )
% 0.43/1.07     }.
% 0.43/1.07  (2) {G0,W7,D3,L2,V2,M2} I { in( X, Y ), disjoint( singleton( X ), Y ) }.
% 0.43/1.07  (5) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.43/1.07  (6) {G0,W6,D2,L2,V0,M2} I { alpha1( skol3, skol4 ), ! in( skol4, skol3 )
% 0.43/1.07     }.
% 0.43/1.07  (7) {G0,W9,D4,L2,V0,M2} I { alpha1( skol3, skol4 ), ! set_difference( skol3
% 0.43/1.07    , singleton( skol4 ) ) ==> skol3 }.
% 0.43/1.07  (8) {G0,W9,D4,L2,V2,M2} I { ! alpha1( X, Y ), set_difference( X, singleton
% 0.43/1.07    ( Y ) ) ==> X }.
% 0.43/1.07  (9) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), in( Y, X ) }.
% 0.43/1.07  (11) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), set_difference( X, Y ) ==>
% 0.43/1.07     X }.
% 0.43/1.07  (12) {G0,W8,D3,L2,V2,M2} I { ! set_difference( X, Y ) ==> X, disjoint( X, Y
% 0.43/1.07     ) }.
% 0.43/1.07  (17) {G1,W7,D3,L2,V2,M2} R(1,5) { ! in( X, Y ), ! disjoint( Y, singleton( X
% 0.43/1.07     ) ) }.
% 0.43/1.07  (19) {G2,W7,D3,L2,V2,M2} R(17,9) { ! disjoint( X, singleton( Y ) ), ! 
% 0.43/1.07    alpha1( X, Y ) }.
% 0.43/1.07  (28) {G3,W4,D3,L1,V0,M1} R(7,19);d(11);q { ! disjoint( skol3, singleton( 
% 0.43/1.07    skol4 ) ) }.
% 0.43/1.07  (35) {G4,W4,D3,L1,V0,M1} R(28,5) { ! disjoint( singleton( skol4 ), skol3 )
% 0.43/1.07     }.
% 0.43/1.07  (36) {G5,W3,D2,L1,V0,M1} R(35,2) { in( skol4, skol3 ) }.
% 0.43/1.07  (37) {G6,W6,D4,L1,V0,M1} R(8,6);r(36) { set_difference( skol3, singleton( 
% 0.43/1.07    skol4 ) ) ==> skol3 }.
% 0.43/1.07  (53) {G7,W0,D0,L0,V0,M0} R(12,37);r(28) {  }.
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  % SZS output end Refutation
% 0.43/1.07  found a proof!
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Unprocessed initial clauses:
% 0.43/1.07  
% 0.43/1.07  (55) {G0,W6,D2,L2,V2,M2}  { ! in( X, Y ), ! in( Y, X ) }.
% 0.43/1.07  (56) {G0,W7,D3,L2,V2,M2}  { ! disjoint( singleton( X ), Y ), ! in( X, Y )
% 0.43/1.07     }.
% 0.43/1.07  (57) {G0,W7,D3,L2,V2,M2}  { in( X, Y ), disjoint( singleton( X ), Y ) }.
% 0.43/1.07  (58) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.43/1.07  (59) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.43/1.07  (60) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X ) }.
% 0.43/1.07  (61) {G0,W6,D2,L2,V0,M2}  { alpha1( skol3, skol4 ), ! in( skol4, skol3 )
% 0.43/1.07     }.
% 0.43/1.07  (62) {G0,W9,D4,L2,V0,M2}  { alpha1( skol3, skol4 ), ! set_difference( skol3
% 0.43/1.07    , singleton( skol4 ) ) = skol3 }.
% 0.43/1.07  (63) {G0,W9,D4,L2,V2,M2}  { ! alpha1( X, Y ), set_difference( X, singleton
% 0.43/1.07    ( Y ) ) = X }.
% 0.43/1.07  (64) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), in( Y, X ) }.
% 0.43/1.07  (65) {G0,W12,D4,L3,V2,M3}  { ! set_difference( X, singleton( Y ) ) = X, ! 
% 0.43/1.07    in( Y, X ), alpha1( X, Y ) }.
% 0.43/1.07  (66) {G0,W8,D3,L2,V2,M2}  { ! disjoint( X, Y ), set_difference( X, Y ) = X
% 0.43/1.07     }.
% 0.43/1.07  (67) {G0,W8,D3,L2,V2,M2}  { ! set_difference( X, Y ) = X, disjoint( X, Y )
% 0.43/1.07     }.
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Total Proof:
% 0.43/1.07  
% 0.43/1.07  subsumption: (1) {G0,W7,D3,L2,V2,M2} I { ! disjoint( singleton( X ), Y ), !
% 0.43/1.07     in( X, Y ) }.
% 0.43/1.07  parent0: (56) {G0,W7,D3,L2,V2,M2}  { ! disjoint( singleton( X ), Y ), ! in
% 0.43/1.07    ( X, Y ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (2) {G0,W7,D3,L2,V2,M2} I { in( X, Y ), disjoint( singleton( X
% 0.43/1.07     ), Y ) }.
% 0.43/1.07  parent0: (57) {G0,W7,D3,L2,V2,M2}  { in( X, Y ), disjoint( singleton( X ), 
% 0.43/1.07    Y ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (5) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.43/1.07     ) }.
% 0.43/1.07  parent0: (60) {G0,W6,D2,L2,V2,M2}  { ! disjoint( X, Y ), disjoint( Y, X )
% 0.43/1.07     }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (6) {G0,W6,D2,L2,V0,M2} I { alpha1( skol3, skol4 ), ! in( 
% 0.43/1.07    skol4, skol3 ) }.
% 0.43/1.07  parent0: (61) {G0,W6,D2,L2,V0,M2}  { alpha1( skol3, skol4 ), ! in( skol4, 
% 0.43/1.07    skol3 ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (7) {G0,W9,D4,L2,V0,M2} I { alpha1( skol3, skol4 ), ! 
% 0.43/1.07    set_difference( skol3, singleton( skol4 ) ) ==> skol3 }.
% 0.43/1.07  parent0: (62) {G0,W9,D4,L2,V0,M2}  { alpha1( skol3, skol4 ), ! 
% 0.43/1.07    set_difference( skol3, singleton( skol4 ) ) = skol3 }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (8) {G0,W9,D4,L2,V2,M2} I { ! alpha1( X, Y ), set_difference( 
% 0.43/1.07    X, singleton( Y ) ) ==> X }.
% 0.43/1.07  parent0: (63) {G0,W9,D4,L2,V2,M2}  { ! alpha1( X, Y ), set_difference( X, 
% 0.43/1.07    singleton( Y ) ) = X }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (9) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), in( Y, X ) }.
% 0.43/1.07  parent0: (64) {G0,W6,D2,L2,V2,M2}  { ! alpha1( X, Y ), in( Y, X ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (11) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), 
% 0.43/1.07    set_difference( X, Y ) ==> X }.
% 0.43/1.07  parent0: (66) {G0,W8,D3,L2,V2,M2}  { ! disjoint( X, Y ), set_difference( X
% 0.43/1.07    , Y ) = X }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (12) {G0,W8,D3,L2,V2,M2} I { ! set_difference( X, Y ) ==> X, 
% 0.43/1.07    disjoint( X, Y ) }.
% 0.43/1.07  parent0: (67) {G0,W8,D3,L2,V2,M2}  { ! set_difference( X, Y ) = X, disjoint
% 0.43/1.07    ( X, Y ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (91) {G1,W7,D3,L2,V2,M2}  { ! in( X, Y ), ! disjoint( Y, 
% 0.43/1.07    singleton( X ) ) }.
% 0.43/1.07  parent0[0]: (1) {G0,W7,D3,L2,V2,M2} I { ! disjoint( singleton( X ), Y ), ! 
% 0.43/1.07    in( X, Y ) }.
% 0.43/1.07  parent1[1]: (5) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.43/1.07     ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07     X := Y
% 0.43/1.07     Y := singleton( X )
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (17) {G1,W7,D3,L2,V2,M2} R(1,5) { ! in( X, Y ), ! disjoint( Y
% 0.43/1.07    , singleton( X ) ) }.
% 0.43/1.07  parent0: (91) {G1,W7,D3,L2,V2,M2}  { ! in( X, Y ), ! disjoint( Y, singleton
% 0.43/1.07    ( X ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (92) {G1,W7,D3,L2,V2,M2}  { ! disjoint( Y, singleton( X ) ), ! 
% 0.43/1.07    alpha1( Y, X ) }.
% 0.43/1.07  parent0[0]: (17) {G1,W7,D3,L2,V2,M2} R(1,5) { ! in( X, Y ), ! disjoint( Y, 
% 0.43/1.07    singleton( X ) ) }.
% 0.43/1.07  parent1[1]: (9) {G0,W6,D2,L2,V2,M2} I { ! alpha1( X, Y ), in( Y, X ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07     X := Y
% 0.43/1.07     Y := X
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (19) {G2,W7,D3,L2,V2,M2} R(17,9) { ! disjoint( X, singleton( Y
% 0.43/1.07     ) ), ! alpha1( X, Y ) }.
% 0.43/1.07  parent0: (92) {G1,W7,D3,L2,V2,M2}  { ! disjoint( Y, singleton( X ) ), ! 
% 0.43/1.07    alpha1( Y, X ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := Y
% 0.43/1.07     Y := X
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07     1 ==> 1
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  eqswap: (93) {G0,W9,D4,L2,V0,M2}  { ! skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ), alpha1( skol3, skol4 ) }.
% 0.43/1.07  parent0[1]: (7) {G0,W9,D4,L2,V0,M2} I { alpha1( skol3, skol4 ), ! 
% 0.43/1.07    set_difference( skol3, singleton( skol4 ) ) ==> skol3 }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (95) {G1,W10,D4,L2,V0,M2}  { ! disjoint( skol3, singleton( 
% 0.43/1.07    skol4 ) ), ! skol3 ==> set_difference( skol3, singleton( skol4 ) ) }.
% 0.43/1.07  parent0[1]: (19) {G2,W7,D3,L2,V2,M2} R(17,9) { ! disjoint( X, singleton( Y
% 0.43/1.07     ) ), ! alpha1( X, Y ) }.
% 0.43/1.07  parent1[1]: (93) {G0,W9,D4,L2,V0,M2}  { ! skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ), alpha1( skol3, skol4 ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := skol3
% 0.43/1.07     Y := skol4
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  paramod: (96) {G1,W11,D3,L3,V0,M3}  { ! skol3 ==> skol3, ! disjoint( skol3
% 0.43/1.07    , singleton( skol4 ) ), ! disjoint( skol3, singleton( skol4 ) ) }.
% 0.43/1.07  parent0[1]: (11) {G0,W8,D3,L2,V2,M2} I { ! disjoint( X, Y ), set_difference
% 0.43/1.07    ( X, Y ) ==> X }.
% 0.43/1.07  parent1[1; 3]: (95) {G1,W10,D4,L2,V0,M2}  { ! disjoint( skol3, singleton( 
% 0.43/1.07    skol4 ) ), ! skol3 ==> set_difference( skol3, singleton( skol4 ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := skol3
% 0.43/1.07     Y := singleton( skol4 )
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  factor: (97) {G1,W7,D3,L2,V0,M2}  { ! skol3 ==> skol3, ! disjoint( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  parent0[1, 2]: (96) {G1,W11,D3,L3,V0,M3}  { ! skol3 ==> skol3, ! disjoint( 
% 0.43/1.07    skol3, singleton( skol4 ) ), ! disjoint( skol3, singleton( skol4 ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  eqrefl: (98) {G0,W4,D3,L1,V0,M1}  { ! disjoint( skol3, singleton( skol4 ) )
% 0.43/1.07     }.
% 0.43/1.07  parent0[0]: (97) {G1,W7,D3,L2,V0,M2}  { ! skol3 ==> skol3, ! disjoint( 
% 0.43/1.07    skol3, singleton( skol4 ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (28) {G3,W4,D3,L1,V0,M1} R(7,19);d(11);q { ! disjoint( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  parent0: (98) {G0,W4,D3,L1,V0,M1}  { ! disjoint( skol3, singleton( skol4 )
% 0.43/1.07     ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (99) {G1,W4,D3,L1,V0,M1}  { ! disjoint( singleton( skol4 ), 
% 0.43/1.07    skol3 ) }.
% 0.43/1.07  parent0[0]: (28) {G3,W4,D3,L1,V0,M1} R(7,19);d(11);q { ! disjoint( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  parent1[1]: (5) {G0,W6,D2,L2,V2,M2} I { ! disjoint( X, Y ), disjoint( Y, X
% 0.43/1.07     ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07     X := singleton( skol4 )
% 0.43/1.07     Y := skol3
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (35) {G4,W4,D3,L1,V0,M1} R(28,5) { ! disjoint( singleton( 
% 0.43/1.07    skol4 ), skol3 ) }.
% 0.43/1.07  parent0: (99) {G1,W4,D3,L1,V0,M1}  { ! disjoint( singleton( skol4 ), skol3
% 0.43/1.07     ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (100) {G1,W3,D2,L1,V0,M1}  { in( skol4, skol3 ) }.
% 0.43/1.07  parent0[0]: (35) {G4,W4,D3,L1,V0,M1} R(28,5) { ! disjoint( singleton( skol4
% 0.43/1.07     ), skol3 ) }.
% 0.43/1.07  parent1[1]: (2) {G0,W7,D3,L2,V2,M2} I { in( X, Y ), disjoint( singleton( X
% 0.43/1.07     ), Y ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07     X := skol4
% 0.43/1.07     Y := skol3
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (36) {G5,W3,D2,L1,V0,M1} R(35,2) { in( skol4, skol3 ) }.
% 0.43/1.07  parent0: (100) {G1,W3,D2,L1,V0,M1}  { in( skol4, skol3 ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  eqswap: (101) {G0,W9,D4,L2,V2,M2}  { X ==> set_difference( X, singleton( Y
% 0.43/1.07     ) ), ! alpha1( X, Y ) }.
% 0.43/1.07  parent0[1]: (8) {G0,W9,D4,L2,V2,M2} I { ! alpha1( X, Y ), set_difference( X
% 0.43/1.07    , singleton( Y ) ) ==> X }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (102) {G1,W9,D4,L2,V0,M2}  { skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ), ! in( skol4, skol3 ) }.
% 0.43/1.07  parent0[1]: (101) {G0,W9,D4,L2,V2,M2}  { X ==> set_difference( X, singleton
% 0.43/1.07    ( Y ) ), ! alpha1( X, Y ) }.
% 0.43/1.07  parent1[0]: (6) {G0,W6,D2,L2,V0,M2} I { alpha1( skol3, skol4 ), ! in( skol4
% 0.43/1.07    , skol3 ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := skol3
% 0.43/1.07     Y := skol4
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (103) {G2,W6,D4,L1,V0,M1}  { skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  parent0[1]: (102) {G1,W9,D4,L2,V0,M2}  { skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ), ! in( skol4, skol3 ) }.
% 0.43/1.07  parent1[0]: (36) {G5,W3,D2,L1,V0,M1} R(35,2) { in( skol4, skol3 ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  eqswap: (104) {G2,W6,D4,L1,V0,M1}  { set_difference( skol3, singleton( 
% 0.43/1.07    skol4 ) ) ==> skol3 }.
% 0.43/1.07  parent0[0]: (103) {G2,W6,D4,L1,V0,M1}  { skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (37) {G6,W6,D4,L1,V0,M1} R(8,6);r(36) { set_difference( skol3
% 0.43/1.07    , singleton( skol4 ) ) ==> skol3 }.
% 0.43/1.07  parent0: (104) {G2,W6,D4,L1,V0,M1}  { set_difference( skol3, singleton( 
% 0.43/1.07    skol4 ) ) ==> skol3 }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07     0 ==> 0
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  eqswap: (105) {G0,W8,D3,L2,V2,M2}  { ! X ==> set_difference( X, Y ), 
% 0.43/1.07    disjoint( X, Y ) }.
% 0.43/1.07  parent0[0]: (12) {G0,W8,D3,L2,V2,M2} I { ! set_difference( X, Y ) ==> X, 
% 0.43/1.07    disjoint( X, Y ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := X
% 0.43/1.07     Y := Y
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  eqswap: (106) {G6,W6,D4,L1,V0,M1}  { skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  parent0[0]: (37) {G6,W6,D4,L1,V0,M1} R(8,6);r(36) { set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ) ==> skol3 }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (107) {G1,W4,D3,L1,V0,M1}  { disjoint( skol3, singleton( skol4
% 0.43/1.07     ) ) }.
% 0.43/1.07  parent0[0]: (105) {G0,W8,D3,L2,V2,M2}  { ! X ==> set_difference( X, Y ), 
% 0.43/1.07    disjoint( X, Y ) }.
% 0.43/1.07  parent1[0]: (106) {G6,W6,D4,L1,V0,M1}  { skol3 ==> set_difference( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07     X := skol3
% 0.43/1.07     Y := singleton( skol4 )
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  resolution: (108) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.43/1.07  parent0[0]: (28) {G3,W4,D3,L1,V0,M1} R(7,19);d(11);q { ! disjoint( skol3, 
% 0.43/1.07    singleton( skol4 ) ) }.
% 0.43/1.07  parent1[0]: (107) {G1,W4,D3,L1,V0,M1}  { disjoint( skol3, singleton( skol4
% 0.43/1.07     ) ) }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  substitution1:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  subsumption: (53) {G7,W0,D0,L0,V0,M0} R(12,37);r(28) {  }.
% 0.43/1.07  parent0: (108) {G2,W0,D0,L0,V0,M0}  {  }.
% 0.43/1.07  substitution0:
% 0.43/1.07  end
% 0.43/1.07  permutation0:
% 0.43/1.07  end
% 0.43/1.07  
% 0.43/1.07  Proof check complete!
% 0.43/1.07  
% 0.43/1.07  Memory use:
% 0.43/1.07  
% 0.43/1.07  space for terms:        615
% 0.43/1.07  space for clauses:      3131
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  clauses generated:      167
% 0.43/1.07  clauses kept:           54
% 0.43/1.07  clauses selected:       36
% 0.43/1.07  clauses deleted:        0
% 0.43/1.07  clauses inuse deleted:  0
% 0.43/1.07  
% 0.43/1.07  subsentry:          247
% 0.43/1.07  literals s-matched: 162
% 0.43/1.07  literals matched:   162
% 0.43/1.07  full subsumption:   2
% 0.43/1.07  
% 0.43/1.07  checksum:           -125199157
% 0.43/1.07  
% 0.43/1.07  
% 0.43/1.07  Bliksem ended
%------------------------------------------------------------------------------