TSTP Solution File: SEU156+1 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SEU156+1 : TPTP v8.1.0. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n027.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 08:47:04 EDT 2022

% Result   : Theorem 2.59s 1.37s
% Output   : Proof 3.83s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : SEU156+1 : TPTP v8.1.0. Released v3.3.0.
% 0.03/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.34  % Computer : n027.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 600
% 0.12/0.34  % DateTime : Mon Jun 20 01:45:09 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 0.55/0.61          ____       _                          
% 0.55/0.61    ___  / __ \_____(_)___  ________  __________
% 0.55/0.61   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.55/0.61  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.55/0.61  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.55/0.61  
% 0.55/0.61  A Theorem Prover for First-Order Logic
% 0.55/0.61  (ePrincess v.1.0)
% 0.55/0.61  
% 0.55/0.61  (c) Philipp Rümmer, 2009-2015
% 0.55/0.61  (c) Peter Backeman, 2014-2015
% 0.55/0.61  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.55/0.61  Free software under GNU Lesser General Public License (LGPL).
% 0.55/0.61  Bug reports to peter@backeman.se
% 0.55/0.61  
% 0.55/0.61  For more information, visit http://user.uu.se/~petba168/breu/
% 0.55/0.61  
% 0.55/0.61  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.73/0.67  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.41/0.94  Prover 0: Preprocessing ...
% 1.78/1.13  Prover 0: Warning: ignoring some quantifiers
% 1.78/1.14  Prover 0: Constructing countermodel ...
% 2.59/1.36  Prover 0: proved (693ms)
% 2.59/1.37  
% 2.59/1.37  No countermodel exists, formula is valid
% 2.59/1.37  % SZS status Theorem for theBenchmark
% 2.59/1.37  
% 2.59/1.37  Generating proof ... Warning: ignoring some quantifiers
% 3.66/1.66  found it (size 84)
% 3.66/1.66  
% 3.66/1.66  % SZS output start Proof for theBenchmark
% 3.66/1.66  Assumed formulas after preprocessing and simplification: 
% 3.66/1.66  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] : (ordered_pair(v2, v3) = v4 & ordered_pair(v0, v1) = v4 & empty(v6) &  ~ empty(v5) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : (v10 = v7 | v9 = v7 |  ~ (unordered_pair(v9, v10) = v11) |  ~ (unordered_pair(v7, v8) = v11)) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] :  ! [v11] : ( ~ (singleton(v7) = v10) |  ~ (unordered_pair(v9, v10) = v11) |  ~ (unordered_pair(v7, v8) = v9) | ordered_pair(v7, v8) = v11) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v9 = v8 |  ~ (singleton(v7) = v10) |  ~ (unordered_pair(v8, v9) = v10)) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v8 = v7 |  ~ (singleton(v8) = v10) |  ~ (singleton(v7) = v9) |  ~ subset(v9, v10)) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v8 = v7 |  ~ (singleton(v7) = v10) |  ~ (unordered_pair(v8, v9) = v10)) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v8 = v7 |  ~ (ordered_pair(v10, v9) = v8) |  ~ (ordered_pair(v10, v9) = v7)) &  ! [v7] :  ! [v8] :  ! [v9] :  ! [v10] : (v8 = v7 |  ~ (unordered_pair(v10, v9) = v8) |  ~ (unordered_pair(v10, v9) = v7)) &  ! [v7] :  ! [v8] :  ! [v9] : (v8 = v7 |  ~ (singleton(v9) = v8) |  ~ (singleton(v9) = v7)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (ordered_pair(v7, v8) = v9) |  ~ empty(v9)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (ordered_pair(v7, v8) = v9) |  ? [v10] :  ? [v11] : (singleton(v7) = v11 & unordered_pair(v10, v11) = v9 & unordered_pair(v7, v8) = v10)) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (unordered_pair(v8, v7) = v9) | unordered_pair(v7, v8) = v9) &  ! [v7] :  ! [v8] :  ! [v9] : ( ~ (unordered_pair(v7, v8) = v9) | unordered_pair(v8, v7) = v9) &  ! [v7] :  ! [v8] : ( ~ (singleton(v7) = v8) | unordered_pair(v7, v7) = v8) &  ! [v7] :  ! [v8] : ( ~ (unordered_pair(v7, v7) = v8) | singleton(v7) = v8) &  ? [v7] : subset(v7, v7) & ( ~ (v3 = v1) |  ~ (v2 = v0)))
% 3.83/1.70  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6 yields:
% 3.83/1.70  | (1) ordered_pair(all_0_4_4, all_0_3_3) = all_0_2_2 & ordered_pair(all_0_6_6, all_0_5_5) = all_0_2_2 & empty(all_0_0_0) &  ~ empty(all_0_1_1) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = v0 | v2 = v0 |  ~ (unordered_pair(v2, v3) = v4) |  ~ (unordered_pair(v0, v1) = v4)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (singleton(v0) = v3) |  ~ (unordered_pair(v2, v3) = v4) |  ~ (unordered_pair(v0, v1) = v2) | ordered_pair(v0, v1) = v4) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v1 |  ~ (singleton(v0) = v3) |  ~ (unordered_pair(v1, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (singleton(v1) = v3) |  ~ (singleton(v0) = v2) |  ~ subset(v2, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (singleton(v0) = v3) |  ~ (unordered_pair(v1, v2) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (ordered_pair(v3, v2) = v1) |  ~ (ordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ~ empty(v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ? [v3] :  ? [v4] : (singleton(v0) = v4 & unordered_pair(v3, v4) = v2 & unordered_pair(v0, v1) = v3)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | unordered_pair(v0, v1) = v2) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2) &  ! [v0] :  ! [v1] : ( ~ (singleton(v0) = v1) | unordered_pair(v0, v0) = v1) &  ! [v0] :  ! [v1] : ( ~ (unordered_pair(v0, v0) = v1) | singleton(v0) = v1) &  ? [v0] : subset(v0, v0) & ( ~ (all_0_3_3 = all_0_5_5) |  ~ (all_0_4_4 = all_0_6_6))
% 3.83/1.71  |
% 3.83/1.71  | Applying alpha-rule on (1) yields:
% 3.83/1.71  | (2)  ~ empty(all_0_1_1)
% 3.83/1.71  | (3)  ! [v0] :  ! [v1] : ( ~ (unordered_pair(v0, v0) = v1) | singleton(v0) = v1)
% 3.83/1.71  | (4)  ! [v0] :  ! [v1] : ( ~ (singleton(v0) = v1) | unordered_pair(v0, v0) = v1)
% 3.83/1.71  | (5) empty(all_0_0_0)
% 3.83/1.71  | (6)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : ( ~ (singleton(v0) = v3) |  ~ (unordered_pair(v2, v3) = v4) |  ~ (unordered_pair(v0, v1) = v2) | ordered_pair(v0, v1) = v4)
% 3.83/1.71  | (7) ordered_pair(all_0_4_4, all_0_3_3) = all_0_2_2
% 3.83/1.71  | (8) ordered_pair(all_0_6_6, all_0_5_5) = all_0_2_2
% 3.83/1.71  | (9)  ~ (all_0_3_3 = all_0_5_5) |  ~ (all_0_4_4 = all_0_6_6)
% 3.83/1.71  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v1 |  ~ (singleton(v0) = v3) |  ~ (unordered_pair(v1, v2) = v3))
% 3.83/1.71  | (11)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | unordered_pair(v1, v0) = v2)
% 3.83/1.71  | (12)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | unordered_pair(v0, v1) = v2)
% 3.83/1.71  | (13)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 3.83/1.71  | (14)  ? [v0] : subset(v0, v0)
% 3.83/1.71  | (15)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (ordered_pair(v3, v2) = v1) |  ~ (ordered_pair(v3, v2) = v0))
% 3.83/1.71  | (16)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ~ empty(v2))
% 3.83/1.71  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] :  ! [v4] : (v3 = v0 | v2 = v0 |  ~ (unordered_pair(v2, v3) = v4) |  ~ (unordered_pair(v0, v1) = v4))
% 3.83/1.71  | (18)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (ordered_pair(v0, v1) = v2) |  ? [v3] :  ? [v4] : (singleton(v0) = v4 & unordered_pair(v3, v4) = v2 & unordered_pair(v0, v1) = v3))
% 3.83/1.71  | (19)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (singleton(v0) = v3) |  ~ (unordered_pair(v1, v2) = v3))
% 3.83/1.71  | (20)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 3.83/1.71  | (21)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (singleton(v1) = v3) |  ~ (singleton(v0) = v2) |  ~ subset(v2, v3))
% 3.83/1.71  |
% 3.83/1.71  | Instantiating formula (18) with all_0_2_2, all_0_3_3, all_0_4_4 and discharging atoms ordered_pair(all_0_4_4, all_0_3_3) = all_0_2_2, yields:
% 3.83/1.71  | (22)  ? [v0] :  ? [v1] : (singleton(all_0_4_4) = v1 & unordered_pair(v0, v1) = all_0_2_2 & unordered_pair(all_0_4_4, all_0_3_3) = v0)
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (18) with all_0_2_2, all_0_5_5, all_0_6_6 and discharging atoms ordered_pair(all_0_6_6, all_0_5_5) = all_0_2_2, yields:
% 3.83/1.72  | (23)  ? [v0] :  ? [v1] : (singleton(all_0_6_6) = v1 & unordered_pair(v0, v1) = all_0_2_2 & unordered_pair(all_0_6_6, all_0_5_5) = v0)
% 3.83/1.72  |
% 3.83/1.72  | Instantiating (23) with all_10_0_8, all_10_1_9 yields:
% 3.83/1.72  | (24) singleton(all_0_6_6) = all_10_0_8 & unordered_pair(all_10_1_9, all_10_0_8) = all_0_2_2 & unordered_pair(all_0_6_6, all_0_5_5) = all_10_1_9
% 3.83/1.72  |
% 3.83/1.72  | Applying alpha-rule on (24) yields:
% 3.83/1.72  | (25) singleton(all_0_6_6) = all_10_0_8
% 3.83/1.72  | (26) unordered_pair(all_10_1_9, all_10_0_8) = all_0_2_2
% 3.83/1.72  | (27) unordered_pair(all_0_6_6, all_0_5_5) = all_10_1_9
% 3.83/1.72  |
% 3.83/1.72  | Instantiating (22) with all_12_0_10, all_12_1_11 yields:
% 3.83/1.72  | (28) singleton(all_0_4_4) = all_12_0_10 & unordered_pair(all_12_1_11, all_12_0_10) = all_0_2_2 & unordered_pair(all_0_4_4, all_0_3_3) = all_12_1_11
% 3.83/1.72  |
% 3.83/1.72  | Applying alpha-rule on (28) yields:
% 3.83/1.72  | (29) singleton(all_0_4_4) = all_12_0_10
% 3.83/1.72  | (30) unordered_pair(all_12_1_11, all_12_0_10) = all_0_2_2
% 3.83/1.72  | (31) unordered_pair(all_0_4_4, all_0_3_3) = all_12_1_11
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (4) with all_12_0_10, all_0_4_4 and discharging atoms singleton(all_0_4_4) = all_12_0_10, yields:
% 3.83/1.72  | (32) unordered_pair(all_0_4_4, all_0_4_4) = all_12_0_10
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (12) with all_0_2_2, all_12_1_11, all_12_0_10 and discharging atoms unordered_pair(all_12_1_11, all_12_0_10) = all_0_2_2, yields:
% 3.83/1.72  | (33) unordered_pair(all_12_0_10, all_12_1_11) = all_0_2_2
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (12) with all_0_2_2, all_10_1_9, all_10_0_8 and discharging atoms unordered_pair(all_10_1_9, all_10_0_8) = all_0_2_2, yields:
% 3.83/1.72  | (34) unordered_pair(all_10_0_8, all_10_1_9) = all_0_2_2
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (12) with all_12_1_11, all_0_4_4, all_0_3_3 and discharging atoms unordered_pair(all_0_4_4, all_0_3_3) = all_12_1_11, yields:
% 3.83/1.72  | (35) unordered_pair(all_0_3_3, all_0_4_4) = all_12_1_11
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (12) with all_10_1_9, all_0_6_6, all_0_5_5 and discharging atoms unordered_pair(all_0_6_6, all_0_5_5) = all_10_1_9, yields:
% 3.83/1.72  | (36) unordered_pair(all_0_5_5, all_0_6_6) = all_10_1_9
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (17) with all_0_2_2, all_12_1_11, all_12_0_10, all_10_0_8, all_10_1_9 and discharging atoms unordered_pair(all_12_0_10, all_12_1_11) = all_0_2_2, unordered_pair(all_10_1_9, all_10_0_8) = all_0_2_2, yields:
% 3.83/1.72  | (37) all_12_0_10 = all_10_1_9 | all_12_1_11 = all_10_1_9
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (17) with all_0_2_2, all_10_1_9, all_10_0_8, all_12_0_10, all_12_1_11 and discharging atoms unordered_pair(all_12_1_11, all_12_0_10) = all_0_2_2, unordered_pair(all_10_0_8, all_10_1_9) = all_0_2_2, yields:
% 3.83/1.72  | (38) all_12_1_11 = all_10_0_8 | all_12_1_11 = all_10_1_9
% 3.83/1.72  |
% 3.83/1.72  | Instantiating formula (17) with all_0_2_2, all_12_1_11, all_12_0_10, all_10_1_9, all_10_0_8 and discharging atoms unordered_pair(all_12_0_10, all_12_1_11) = all_0_2_2, unordered_pair(all_10_0_8, all_10_1_9) = all_0_2_2, yields:
% 3.83/1.72  | (39) all_12_0_10 = all_10_0_8 | all_12_1_11 = all_10_0_8
% 3.83/1.72  |
% 3.83/1.72  +-Applying beta-rule and splitting (9), into two cases.
% 3.83/1.72  |-Branch one:
% 3.83/1.72  | (40)  ~ (all_0_3_3 = all_0_5_5)
% 3.83/1.72  |
% 3.83/1.72  	+-Applying beta-rule and splitting (38), into two cases.
% 3.83/1.72  	|-Branch one:
% 3.83/1.72  	| (41) all_12_1_11 = all_10_0_8
% 3.83/1.72  	|
% 3.83/1.72  		| From (41) and (35) follows:
% 3.83/1.72  		| (42) unordered_pair(all_0_3_3, all_0_4_4) = all_10_0_8
% 3.83/1.72  		|
% 3.83/1.72  		| From (41) and (31) follows:
% 3.83/1.72  		| (43) unordered_pair(all_0_4_4, all_0_3_3) = all_10_0_8
% 3.83/1.72  		|
% 3.83/1.72  		| Instantiating formula (19) with all_10_0_8, all_0_4_4, all_0_3_3, all_0_6_6 and discharging atoms singleton(all_0_6_6) = all_10_0_8, unordered_pair(all_0_3_3, all_0_4_4) = all_10_0_8, yields:
% 3.83/1.72  		| (44) all_0_3_3 = all_0_6_6
% 3.83/1.72  		|
% 3.83/1.72  		| Instantiating formula (10) with all_10_0_8, all_0_3_3, all_0_4_4, all_0_6_6 and discharging atoms singleton(all_0_6_6) = all_10_0_8, unordered_pair(all_0_4_4, all_0_3_3) = all_10_0_8, yields:
% 3.83/1.72  		| (45) all_0_3_3 = all_0_4_4
% 3.83/1.72  		|
% 3.83/1.72  		| Combining equations (45,44) yields a new equation:
% 3.83/1.72  		| (46) all_0_4_4 = all_0_6_6
% 3.83/1.72  		|
% 3.83/1.72  		| Simplifying 46 yields:
% 3.83/1.72  		| (47) all_0_4_4 = all_0_6_6
% 3.83/1.72  		|
% 3.83/1.73  		| Equations (44) can reduce 40 to:
% 3.83/1.73  		| (48)  ~ (all_0_5_5 = all_0_6_6)
% 3.83/1.73  		|
% 3.83/1.73  		| Simplifying 48 yields:
% 3.83/1.73  		| (49)  ~ (all_0_5_5 = all_0_6_6)
% 3.83/1.73  		|
% 3.83/1.73  		| From (47)(44) and (43) follows:
% 3.83/1.73  		| (50) unordered_pair(all_0_6_6, all_0_6_6) = all_10_0_8
% 3.83/1.73  		|
% 3.83/1.73  		| From (47)(47) and (32) follows:
% 3.83/1.73  		| (51) unordered_pair(all_0_6_6, all_0_6_6) = all_12_0_10
% 3.83/1.73  		|
% 3.83/1.73  		| Instantiating formula (20) with all_0_6_6, all_0_6_6, all_12_0_10, all_10_0_8 and discharging atoms unordered_pair(all_0_6_6, all_0_6_6) = all_12_0_10, unordered_pair(all_0_6_6, all_0_6_6) = all_10_0_8, yields:
% 3.83/1.73  		| (52) all_12_0_10 = all_10_0_8
% 3.83/1.73  		|
% 3.83/1.73  		| From (52) and (51) follows:
% 3.83/1.73  		| (50) unordered_pair(all_0_6_6, all_0_6_6) = all_10_0_8
% 3.83/1.73  		|
% 3.83/1.73  		+-Applying beta-rule and splitting (37), into two cases.
% 3.83/1.73  		|-Branch one:
% 3.83/1.73  		| (54) all_12_0_10 = all_10_1_9
% 3.83/1.73  		|
% 3.83/1.73  			| Combining equations (54,52) yields a new equation:
% 3.83/1.73  			| (55) all_10_0_8 = all_10_1_9
% 3.83/1.73  			|
% 3.83/1.73  			| From (55) and (50) follows:
% 3.83/1.73  			| (56) unordered_pair(all_0_6_6, all_0_6_6) = all_10_1_9
% 3.83/1.73  			|
% 3.83/1.73  			| Instantiating formula (17) with all_10_1_9, all_0_6_6, all_0_6_6, all_0_6_6, all_0_5_5 and discharging atoms unordered_pair(all_0_5_5, all_0_6_6) = all_10_1_9, unordered_pair(all_0_6_6, all_0_6_6) = all_10_1_9, yields:
% 3.83/1.73  			| (57) all_0_5_5 = all_0_6_6
% 3.83/1.73  			|
% 3.83/1.73  			| Equations (57) can reduce 49 to:
% 3.83/1.73  			| (58) $false
% 3.83/1.73  			|
% 3.83/1.73  			|-The branch is then unsatisfiable
% 3.83/1.73  		|-Branch two:
% 3.83/1.73  		| (59)  ~ (all_12_0_10 = all_10_1_9)
% 3.83/1.73  		| (60) all_12_1_11 = all_10_1_9
% 3.83/1.73  		|
% 3.83/1.73  			| Combining equations (41,60) yields a new equation:
% 3.83/1.73  			| (61) all_10_0_8 = all_10_1_9
% 3.83/1.73  			|
% 3.83/1.73  			| Simplifying 61 yields:
% 3.83/1.73  			| (55) all_10_0_8 = all_10_1_9
% 3.83/1.73  			|
% 3.83/1.73  			| Combining equations (55,52) yields a new equation:
% 3.83/1.73  			| (54) all_12_0_10 = all_10_1_9
% 3.83/1.73  			|
% 3.83/1.73  			| Equations (54) can reduce 59 to:
% 3.83/1.73  			| (58) $false
% 3.83/1.73  			|
% 3.83/1.73  			|-The branch is then unsatisfiable
% 3.83/1.73  	|-Branch two:
% 3.83/1.73  	| (65)  ~ (all_12_1_11 = all_10_0_8)
% 3.83/1.73  	| (60) all_12_1_11 = all_10_1_9
% 3.83/1.73  	|
% 3.83/1.73  		| Equations (60) can reduce 65 to:
% 3.83/1.73  		| (67)  ~ (all_10_0_8 = all_10_1_9)
% 3.83/1.73  		|
% 3.83/1.73  		| Simplifying 67 yields:
% 3.83/1.73  		| (68)  ~ (all_10_0_8 = all_10_1_9)
% 3.83/1.73  		|
% 3.83/1.73  		| From (60) and (35) follows:
% 3.83/1.73  		| (69) unordered_pair(all_0_3_3, all_0_4_4) = all_10_1_9
% 3.83/1.73  		|
% 3.83/1.73  		| From (60) and (31) follows:
% 3.83/1.73  		| (70) unordered_pair(all_0_4_4, all_0_3_3) = all_10_1_9
% 3.83/1.73  		|
% 3.83/1.73  		+-Applying beta-rule and splitting (39), into two cases.
% 3.83/1.73  		|-Branch one:
% 3.83/1.73  		| (52) all_12_0_10 = all_10_0_8
% 3.83/1.73  		|
% 3.83/1.73  			| From (52) and (32) follows:
% 3.83/1.73  			| (72) unordered_pair(all_0_4_4, all_0_4_4) = all_10_0_8
% 3.83/1.73  			|
% 3.83/1.73  			| Instantiating formula (17) with all_10_1_9, all_0_5_5, all_0_6_6, all_0_4_4, all_0_3_3 and discharging atoms unordered_pair(all_0_3_3, all_0_4_4) = all_10_1_9, unordered_pair(all_0_6_6, all_0_5_5) = all_10_1_9, yields:
% 3.83/1.73  			| (73) all_0_3_3 = all_0_5_5 | all_0_3_3 = all_0_6_6
% 3.83/1.73  			|
% 3.83/1.73  			| Instantiating formula (17) with all_10_1_9, all_0_3_3, all_0_4_4, all_0_6_6, all_0_5_5 and discharging atoms unordered_pair(all_0_4_4, all_0_3_3) = all_10_1_9, unordered_pair(all_0_5_5, all_0_6_6) = all_10_1_9, yields:
% 3.83/1.73  			| (74) all_0_3_3 = all_0_5_5 | all_0_4_4 = all_0_5_5
% 3.83/1.73  			|
% 3.83/1.73  			| Instantiating formula (19) with all_10_0_8, all_0_4_4, all_0_4_4, all_0_6_6 and discharging atoms singleton(all_0_6_6) = all_10_0_8, unordered_pair(all_0_4_4, all_0_4_4) = all_10_0_8, yields:
% 3.83/1.73  			| (47) all_0_4_4 = all_0_6_6
% 3.83/1.73  			|
% 3.83/1.73  			+-Applying beta-rule and splitting (73), into two cases.
% 3.83/1.73  			|-Branch one:
% 3.83/1.73  			| (76) all_0_3_3 = all_0_5_5
% 3.83/1.73  			|
% 3.83/1.73  				| Equations (76) can reduce 40 to:
% 3.83/1.73  				| (58) $false
% 3.83/1.73  				|
% 3.83/1.73  				|-The branch is then unsatisfiable
% 3.83/1.73  			|-Branch two:
% 3.83/1.73  			| (40)  ~ (all_0_3_3 = all_0_5_5)
% 3.83/1.73  			| (44) all_0_3_3 = all_0_6_6
% 3.83/1.73  			|
% 3.83/1.73  				| Equations (44) can reduce 40 to:
% 3.83/1.73  				| (48)  ~ (all_0_5_5 = all_0_6_6)
% 3.83/1.74  				|
% 3.83/1.74  				| Simplifying 48 yields:
% 3.83/1.74  				| (49)  ~ (all_0_5_5 = all_0_6_6)
% 3.83/1.74  				|
% 3.83/1.74  				+-Applying beta-rule and splitting (74), into two cases.
% 3.83/1.74  				|-Branch one:
% 3.83/1.74  				| (76) all_0_3_3 = all_0_5_5
% 3.83/1.74  				|
% 3.83/1.74  					| Combining equations (44,76) yields a new equation:
% 3.83/1.74  					| (57) all_0_5_5 = all_0_6_6
% 3.83/1.74  					|
% 3.83/1.74  					| Equations (57) can reduce 49 to:
% 3.83/1.74  					| (58) $false
% 3.83/1.74  					|
% 3.83/1.74  					|-The branch is then unsatisfiable
% 3.83/1.74  				|-Branch two:
% 3.83/1.74  				| (40)  ~ (all_0_3_3 = all_0_5_5)
% 3.83/1.74  				| (86) all_0_4_4 = all_0_5_5
% 3.83/1.74  				|
% 3.83/1.74  					| Combining equations (86,47) yields a new equation:
% 3.83/1.74  					| (87) all_0_5_5 = all_0_6_6
% 3.83/1.74  					|
% 3.83/1.74  					| Simplifying 87 yields:
% 3.83/1.74  					| (57) all_0_5_5 = all_0_6_6
% 3.83/1.74  					|
% 3.83/1.74  					| Equations (57) can reduce 49 to:
% 3.83/1.74  					| (58) $false
% 3.83/1.74  					|
% 3.83/1.74  					|-The branch is then unsatisfiable
% 3.83/1.74  		|-Branch two:
% 3.83/1.74  		| (90)  ~ (all_12_0_10 = all_10_0_8)
% 3.83/1.74  		| (41) all_12_1_11 = all_10_0_8
% 3.83/1.74  		|
% 3.83/1.74  			| Combining equations (41,60) yields a new equation:
% 3.83/1.74  			| (61) all_10_0_8 = all_10_1_9
% 3.83/1.74  			|
% 3.83/1.74  			| Simplifying 61 yields:
% 3.83/1.74  			| (55) all_10_0_8 = all_10_1_9
% 3.83/1.74  			|
% 3.83/1.74  			| Equations (55) can reduce 68 to:
% 3.83/1.74  			| (58) $false
% 3.83/1.74  			|
% 3.83/1.74  			|-The branch is then unsatisfiable
% 3.83/1.74  |-Branch two:
% 3.83/1.74  | (76) all_0_3_3 = all_0_5_5
% 3.83/1.74  | (96)  ~ (all_0_4_4 = all_0_6_6)
% 3.83/1.74  |
% 3.83/1.74  	| From (76) and (31) follows:
% 3.83/1.74  	| (97) unordered_pair(all_0_4_4, all_0_5_5) = all_12_1_11
% 3.83/1.74  	|
% 3.83/1.74  	+-Applying beta-rule and splitting (38), into two cases.
% 3.83/1.74  	|-Branch one:
% 3.83/1.74  	| (41) all_12_1_11 = all_10_0_8
% 3.83/1.74  	|
% 3.83/1.74  		| From (41) and (97) follows:
% 3.83/1.74  		| (99) unordered_pair(all_0_4_4, all_0_5_5) = all_10_0_8
% 3.83/1.74  		|
% 3.83/1.74  		| Instantiating formula (19) with all_10_0_8, all_0_5_5, all_0_4_4, all_0_6_6 and discharging atoms singleton(all_0_6_6) = all_10_0_8, unordered_pair(all_0_4_4, all_0_5_5) = all_10_0_8, yields:
% 3.83/1.74  		| (47) all_0_4_4 = all_0_6_6
% 3.83/1.74  		|
% 3.83/1.74  		| Equations (47) can reduce 96 to:
% 3.83/1.74  		| (58) $false
% 3.83/1.74  		|
% 3.83/1.74  		|-The branch is then unsatisfiable
% 3.83/1.74  	|-Branch two:
% 3.83/1.74  	| (65)  ~ (all_12_1_11 = all_10_0_8)
% 3.83/1.74  	| (60) all_12_1_11 = all_10_1_9
% 3.83/1.74  	|
% 3.83/1.74  		| Equations (60) can reduce 65 to:
% 3.83/1.74  		| (67)  ~ (all_10_0_8 = all_10_1_9)
% 3.83/1.74  		|
% 3.83/1.74  		| Simplifying 67 yields:
% 3.83/1.74  		| (68)  ~ (all_10_0_8 = all_10_1_9)
% 3.83/1.74  		|
% 3.83/1.74  		+-Applying beta-rule and splitting (39), into two cases.
% 3.83/1.74  		|-Branch one:
% 3.83/1.74  		| (52) all_12_0_10 = all_10_0_8
% 3.83/1.74  		|
% 3.83/1.74  			| From (52) and (32) follows:
% 3.83/1.74  			| (72) unordered_pair(all_0_4_4, all_0_4_4) = all_10_0_8
% 3.83/1.74  			|
% 3.83/1.74  			| Instantiating formula (19) with all_10_0_8, all_0_4_4, all_0_4_4, all_0_6_6 and discharging atoms singleton(all_0_6_6) = all_10_0_8, unordered_pair(all_0_4_4, all_0_4_4) = all_10_0_8, yields:
% 3.83/1.74  			| (47) all_0_4_4 = all_0_6_6
% 3.83/1.74  			|
% 3.83/1.74  			| Equations (47) can reduce 96 to:
% 3.83/1.74  			| (58) $false
% 3.83/1.74  			|
% 3.83/1.74  			|-The branch is then unsatisfiable
% 3.83/1.74  		|-Branch two:
% 3.83/1.74  		| (90)  ~ (all_12_0_10 = all_10_0_8)
% 3.83/1.74  		| (41) all_12_1_11 = all_10_0_8
% 3.83/1.74  		|
% 3.83/1.74  			| Combining equations (41,60) yields a new equation:
% 3.83/1.74  			| (61) all_10_0_8 = all_10_1_9
% 3.83/1.74  			|
% 3.83/1.74  			| Simplifying 61 yields:
% 3.83/1.74  			| (55) all_10_0_8 = all_10_1_9
% 3.83/1.74  			|
% 3.83/1.74  			| Equations (55) can reduce 68 to:
% 3.83/1.74  			| (58) $false
% 3.83/1.74  			|
% 3.83/1.74  			|-The branch is then unsatisfiable
% 3.83/1.74  % SZS output end Proof for theBenchmark
% 3.83/1.74  
% 3.83/1.74  1118ms
%------------------------------------------------------------------------------