TSTP Solution File: SEU023+1 by iProver---3.9

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : iProver---3.9
% Problem  : SEU023+1 : TPTP v8.1.2. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_iprover %s %d THM

% Computer : n009.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Fri May  3 03:04:22 EDT 2024

% Result   : Theorem 3.46s 1.13s
% Output   : CNFRefutation 3.46s
% Verified : 
% SZS Type : ERROR: Analysing output (Could not find formula named definition)

% Comments : 
%------------------------------------------------------------------------------
fof(f5,axiom,
    ! [X0] :
      ( ( function(X0)
        & relation(X0) )
     => ( function(function_inverse(X0))
        & relation(function_inverse(X0)) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',dt_k2_funct_1) ).

fof(f31,axiom,
    ! [X0,X1] :
      ( ( function(X1)
        & relation(X1) )
     => ! [X2] :
          ( ( function(X2)
            & relation(X2) )
         => ( in(X0,relation_dom(X1))
           => apply(relation_composition(X1,X2),X0) = apply(X2,apply(X1,X0)) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t23_funct_1) ).

fof(f35,axiom,
    ! [X0] :
      ( ( function(X0)
        & relation(X0) )
     => ( one_to_one(X0)
       => ! [X1] :
            ( ( function(X1)
              & relation(X1) )
           => ( function_inverse(X0) = X1
            <=> ( ! [X2,X3] :
                    ( ( ( apply(X0,X3) = X2
                        & in(X3,relation_dom(X0)) )
                     => ( apply(X1,X2) = X3
                        & in(X2,relation_rng(X0)) ) )
                    & ( ( apply(X1,X2) = X3
                        & in(X2,relation_rng(X0)) )
                     => ( apply(X0,X3) = X2
                        & in(X3,relation_dom(X0)) ) ) )
                & relation_rng(X0) = relation_dom(X1) ) ) ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t54_funct_1) ).

fof(f36,conjecture,
    ! [X0,X1] :
      ( ( function(X1)
        & relation(X1) )
     => ( ( in(X0,relation_dom(X1))
          & one_to_one(X1) )
       => ( apply(relation_composition(X1,function_inverse(X1)),X0) = X0
          & apply(function_inverse(X1),apply(X1,X0)) = X0 ) ) ),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',t56_funct_1) ).

fof(f37,negated_conjecture,
    ~ ! [X0,X1] :
        ( ( function(X1)
          & relation(X1) )
       => ( ( in(X0,relation_dom(X1))
            & one_to_one(X1) )
         => ( apply(relation_composition(X1,function_inverse(X1)),X0) = X0
            & apply(function_inverse(X1),apply(X1,X0)) = X0 ) ) ),
    inference(negated_conjecture,[],[f36]) ).

fof(f51,plain,
    ! [X0] :
      ( ( function(function_inverse(X0))
        & relation(function_inverse(X0)) )
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(ennf_transformation,[],[f5]) ).

fof(f52,plain,
    ! [X0] :
      ( ( function(function_inverse(X0))
        & relation(function_inverse(X0)) )
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(flattening,[],[f51]) ).

fof(f69,plain,
    ! [X0,X1] :
      ( ! [X2] :
          ( apply(relation_composition(X1,X2),X0) = apply(X2,apply(X1,X0))
          | ~ in(X0,relation_dom(X1))
          | ~ function(X2)
          | ~ relation(X2) )
      | ~ function(X1)
      | ~ relation(X1) ),
    inference(ennf_transformation,[],[f31]) ).

fof(f70,plain,
    ! [X0,X1] :
      ( ! [X2] :
          ( apply(relation_composition(X1,X2),X0) = apply(X2,apply(X1,X0))
          | ~ in(X0,relation_dom(X1))
          | ~ function(X2)
          | ~ relation(X2) )
      | ~ function(X1)
      | ~ relation(X1) ),
    inference(flattening,[],[f69]) ).

fof(f76,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( function_inverse(X0) = X1
          <=> ( ! [X2,X3] :
                  ( ( ( apply(X1,X2) = X3
                      & in(X2,relation_rng(X0)) )
                    | apply(X0,X3) != X2
                    | ~ in(X3,relation_dom(X0)) )
                  & ( ( apply(X0,X3) = X2
                      & in(X3,relation_dom(X0)) )
                    | apply(X1,X2) != X3
                    | ~ in(X2,relation_rng(X0)) ) )
              & relation_rng(X0) = relation_dom(X1) ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(ennf_transformation,[],[f35]) ).

fof(f77,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( function_inverse(X0) = X1
          <=> ( ! [X2,X3] :
                  ( ( ( apply(X1,X2) = X3
                      & in(X2,relation_rng(X0)) )
                    | apply(X0,X3) != X2
                    | ~ in(X3,relation_dom(X0)) )
                  & ( ( apply(X0,X3) = X2
                      & in(X3,relation_dom(X0)) )
                    | apply(X1,X2) != X3
                    | ~ in(X2,relation_rng(X0)) ) )
              & relation_rng(X0) = relation_dom(X1) ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(flattening,[],[f76]) ).

fof(f78,plain,
    ? [X0,X1] :
      ( ( apply(relation_composition(X1,function_inverse(X1)),X0) != X0
        | apply(function_inverse(X1),apply(X1,X0)) != X0 )
      & in(X0,relation_dom(X1))
      & one_to_one(X1)
      & function(X1)
      & relation(X1) ),
    inference(ennf_transformation,[],[f37]) ).

fof(f79,plain,
    ? [X0,X1] :
      ( ( apply(relation_composition(X1,function_inverse(X1)),X0) != X0
        | apply(function_inverse(X1),apply(X1,X0)) != X0 )
      & in(X0,relation_dom(X1))
      & one_to_one(X1)
      & function(X1)
      & relation(X1) ),
    inference(flattening,[],[f78]) ).

fof(f84,plain,
    ! [X2,X3,X0,X1] :
      ( sP0(X2,X3,X0,X1)
    <=> ( ( apply(X0,X3) = X2
          & in(X3,relation_dom(X0)) )
        | apply(X1,X2) != X3
        | ~ in(X2,relation_rng(X0)) ) ),
    introduced(predicate_definition_introduction,[new_symbols(naming,[sP0])]) ).

fof(f85,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( function_inverse(X0) = X1
          <=> ( ! [X2,X3] :
                  ( ( ( apply(X1,X2) = X3
                      & in(X2,relation_rng(X0)) )
                    | apply(X0,X3) != X2
                    | ~ in(X3,relation_dom(X0)) )
                  & sP0(X2,X3,X0,X1) )
              & relation_rng(X0) = relation_dom(X1) ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(definition_folding,[],[f77,f84]) ).

fof(f111,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( ( function_inverse(X0) = X1
              | ? [X2,X3] :
                  ( ( ( apply(X1,X2) != X3
                      | ~ in(X2,relation_rng(X0)) )
                    & apply(X0,X3) = X2
                    & in(X3,relation_dom(X0)) )
                  | ~ sP0(X2,X3,X0,X1) )
              | relation_rng(X0) != relation_dom(X1) )
            & ( ( ! [X2,X3] :
                    ( ( ( apply(X1,X2) = X3
                        & in(X2,relation_rng(X0)) )
                      | apply(X0,X3) != X2
                      | ~ in(X3,relation_dom(X0)) )
                    & sP0(X2,X3,X0,X1) )
                & relation_rng(X0) = relation_dom(X1) )
              | function_inverse(X0) != X1 ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(nnf_transformation,[],[f85]) ).

fof(f112,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( ( function_inverse(X0) = X1
              | ? [X2,X3] :
                  ( ( ( apply(X1,X2) != X3
                      | ~ in(X2,relation_rng(X0)) )
                    & apply(X0,X3) = X2
                    & in(X3,relation_dom(X0)) )
                  | ~ sP0(X2,X3,X0,X1) )
              | relation_rng(X0) != relation_dom(X1) )
            & ( ( ! [X2,X3] :
                    ( ( ( apply(X1,X2) = X3
                        & in(X2,relation_rng(X0)) )
                      | apply(X0,X3) != X2
                      | ~ in(X3,relation_dom(X0)) )
                    & sP0(X2,X3,X0,X1) )
                & relation_rng(X0) = relation_dom(X1) )
              | function_inverse(X0) != X1 ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(flattening,[],[f111]) ).

fof(f113,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( ( function_inverse(X0) = X1
              | ? [X2,X3] :
                  ( ( ( apply(X1,X2) != X3
                      | ~ in(X2,relation_rng(X0)) )
                    & apply(X0,X3) = X2
                    & in(X3,relation_dom(X0)) )
                  | ~ sP0(X2,X3,X0,X1) )
              | relation_rng(X0) != relation_dom(X1) )
            & ( ( ! [X4,X5] :
                    ( ( ( apply(X1,X4) = X5
                        & in(X4,relation_rng(X0)) )
                      | apply(X0,X5) != X4
                      | ~ in(X5,relation_dom(X0)) )
                    & sP0(X4,X5,X0,X1) )
                & relation_rng(X0) = relation_dom(X1) )
              | function_inverse(X0) != X1 ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(rectify,[],[f112]) ).

fof(f114,plain,
    ! [X0,X1] :
      ( ? [X2,X3] :
          ( ( ( apply(X1,X2) != X3
              | ~ in(X2,relation_rng(X0)) )
            & apply(X0,X3) = X2
            & in(X3,relation_dom(X0)) )
          | ~ sP0(X2,X3,X0,X1) )
     => ( ( ( sK13(X0,X1) != apply(X1,sK12(X0,X1))
            | ~ in(sK12(X0,X1),relation_rng(X0)) )
          & sK12(X0,X1) = apply(X0,sK13(X0,X1))
          & in(sK13(X0,X1),relation_dom(X0)) )
        | ~ sP0(sK12(X0,X1),sK13(X0,X1),X0,X1) ) ),
    introduced(choice_axiom,[]) ).

fof(f115,plain,
    ! [X0] :
      ( ! [X1] :
          ( ( ( function_inverse(X0) = X1
              | ( ( sK13(X0,X1) != apply(X1,sK12(X0,X1))
                  | ~ in(sK12(X0,X1),relation_rng(X0)) )
                & sK12(X0,X1) = apply(X0,sK13(X0,X1))
                & in(sK13(X0,X1),relation_dom(X0)) )
              | ~ sP0(sK12(X0,X1),sK13(X0,X1),X0,X1)
              | relation_rng(X0) != relation_dom(X1) )
            & ( ( ! [X4,X5] :
                    ( ( ( apply(X1,X4) = X5
                        & in(X4,relation_rng(X0)) )
                      | apply(X0,X5) != X4
                      | ~ in(X5,relation_dom(X0)) )
                    & sP0(X4,X5,X0,X1) )
                & relation_rng(X0) = relation_dom(X1) )
              | function_inverse(X0) != X1 ) )
          | ~ function(X1)
          | ~ relation(X1) )
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(skolemisation,[status(esa),new_symbols(skolem,[sK12,sK13])],[f113,f114]) ).

fof(f116,plain,
    ( ? [X0,X1] :
        ( ( apply(relation_composition(X1,function_inverse(X1)),X0) != X0
          | apply(function_inverse(X1),apply(X1,X0)) != X0 )
        & in(X0,relation_dom(X1))
        & one_to_one(X1)
        & function(X1)
        & relation(X1) )
   => ( ( sK14 != apply(relation_composition(sK15,function_inverse(sK15)),sK14)
        | sK14 != apply(function_inverse(sK15),apply(sK15,sK14)) )
      & in(sK14,relation_dom(sK15))
      & one_to_one(sK15)
      & function(sK15)
      & relation(sK15) ) ),
    introduced(choice_axiom,[]) ).

fof(f117,plain,
    ( ( sK14 != apply(relation_composition(sK15,function_inverse(sK15)),sK14)
      | sK14 != apply(function_inverse(sK15),apply(sK15,sK14)) )
    & in(sK14,relation_dom(sK15))
    & one_to_one(sK15)
    & function(sK15)
    & relation(sK15) ),
    inference(skolemisation,[status(esa),new_symbols(skolem,[sK14,sK15])],[f79,f116]) ).

fof(f124,plain,
    ! [X0] :
      ( relation(function_inverse(X0))
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(cnf_transformation,[],[f52]) ).

fof(f125,plain,
    ! [X0] :
      ( function(function_inverse(X0))
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(cnf_transformation,[],[f52]) ).

fof(f167,plain,
    ! [X2,X0,X1] :
      ( apply(relation_composition(X1,X2),X0) = apply(X2,apply(X1,X0))
      | ~ in(X0,relation_dom(X1))
      | ~ function(X2)
      | ~ relation(X2)
      | ~ function(X1)
      | ~ relation(X1) ),
    inference(cnf_transformation,[],[f70]) ).

fof(f179,plain,
    ! [X0,X1,X4,X5] :
      ( apply(X1,X4) = X5
      | apply(X0,X5) != X4
      | ~ in(X5,relation_dom(X0))
      | function_inverse(X0) != X1
      | ~ function(X1)
      | ~ relation(X1)
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(cnf_transformation,[],[f115]) ).

fof(f183,plain,
    relation(sK15),
    inference(cnf_transformation,[],[f117]) ).

fof(f184,plain,
    function(sK15),
    inference(cnf_transformation,[],[f117]) ).

fof(f185,plain,
    one_to_one(sK15),
    inference(cnf_transformation,[],[f117]) ).

fof(f186,plain,
    in(sK14,relation_dom(sK15)),
    inference(cnf_transformation,[],[f117]) ).

fof(f187,plain,
    ( sK14 != apply(relation_composition(sK15,function_inverse(sK15)),sK14)
    | sK14 != apply(function_inverse(sK15),apply(sK15,sK14)) ),
    inference(cnf_transformation,[],[f117]) ).

fof(f195,plain,
    ! [X0,X1,X5] :
      ( apply(X1,apply(X0,X5)) = X5
      | ~ in(X5,relation_dom(X0))
      | function_inverse(X0) != X1
      | ~ function(X1)
      | ~ relation(X1)
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(equality_resolution,[],[f179]) ).

fof(f196,plain,
    ! [X0,X5] :
      ( apply(function_inverse(X0),apply(X0,X5)) = X5
      | ~ in(X5,relation_dom(X0))
      | ~ function(function_inverse(X0))
      | ~ relation(function_inverse(X0))
      | ~ one_to_one(X0)
      | ~ function(X0)
      | ~ relation(X0) ),
    inference(equality_resolution,[],[f195]) ).

cnf(c_53,plain,
    ( ~ function(X0)
    | ~ relation(X0)
    | function(function_inverse(X0)) ),
    inference(cnf_transformation,[],[f125]) ).

cnf(c_54,plain,
    ( ~ function(X0)
    | ~ relation(X0)
    | relation(function_inverse(X0)) ),
    inference(cnf_transformation,[],[f124]) ).

cnf(c_96,plain,
    ( ~ in(X0,relation_dom(X1))
    | ~ function(X1)
    | ~ function(X2)
    | ~ relation(X1)
    | ~ relation(X2)
    | apply(relation_composition(X1,X2),X0) = apply(X2,apply(X1,X0)) ),
    inference(cnf_transformation,[],[f167]) ).

cnf(c_108,plain,
    ( ~ in(X0,relation_dom(X1))
    | ~ function(function_inverse(X1))
    | ~ relation(function_inverse(X1))
    | ~ function(X1)
    | ~ relation(X1)
    | ~ one_to_one(X1)
    | apply(function_inverse(X1),apply(X1,X0)) = X0 ),
    inference(cnf_transformation,[],[f196]) ).

cnf(c_112,negated_conjecture,
    ( apply(relation_composition(sK15,function_inverse(sK15)),sK14) != sK14
    | apply(function_inverse(sK15),apply(sK15,sK14)) != sK14 ),
    inference(cnf_transformation,[],[f187]) ).

cnf(c_113,negated_conjecture,
    in(sK14,relation_dom(sK15)),
    inference(cnf_transformation,[],[f186]) ).

cnf(c_114,negated_conjecture,
    one_to_one(sK15),
    inference(cnf_transformation,[],[f185]) ).

cnf(c_115,negated_conjecture,
    function(sK15),
    inference(cnf_transformation,[],[f184]) ).

cnf(c_116,negated_conjecture,
    relation(sK15),
    inference(cnf_transformation,[],[f183]) ).

cnf(c_301,plain,
    ( ~ in(X0,relation_dom(X1))
    | ~ relation(function_inverse(X1))
    | ~ function(X1)
    | ~ relation(X1)
    | ~ one_to_one(X1)
    | apply(function_inverse(X1),apply(X1,X0)) = X0 ),
    inference(backward_subsumption_resolution,[status(thm)],[c_108,c_53]) ).

cnf(c_310,plain,
    ( ~ in(X0,relation_dom(X1))
    | ~ function(X1)
    | ~ relation(X1)
    | ~ one_to_one(X1)
    | apply(function_inverse(X1),apply(X1,X0)) = X0 ),
    inference(backward_subsumption_resolution,[status(thm)],[c_301,c_54]) ).

cnf(c_2867,plain,
    relation_dom(sK15) = sP0_iProver_def,
    definition ).

cnf(c_2868,plain,
    function_inverse(sK15) = sP1_iProver_def,
    definition ).

cnf(c_2869,plain,
    relation_composition(sK15,sP1_iProver_def) = sP2_iProver_def,
    definition ).

cnf(c_2870,plain,
    apply(sP2_iProver_def,sK14) = sP3_iProver_def,
    definition ).

cnf(c_2871,plain,
    apply(sK15,sK14) = sP4_iProver_def,
    definition ).

cnf(c_2872,plain,
    apply(sP1_iProver_def,sP4_iProver_def) = sP5_iProver_def,
    definition ).

cnf(c_2873,negated_conjecture,
    relation(sK15),
    inference(demodulation,[status(thm)],[c_116]) ).

cnf(c_2874,negated_conjecture,
    function(sK15),
    inference(demodulation,[status(thm)],[c_115]) ).

cnf(c_2875,negated_conjecture,
    one_to_one(sK15),
    inference(demodulation,[status(thm)],[c_114]) ).

cnf(c_2876,negated_conjecture,
    in(sK14,sP0_iProver_def),
    inference(demodulation,[status(thm)],[c_113,c_2867]) ).

cnf(c_2877,negated_conjecture,
    ( sP3_iProver_def != sK14
    | sP5_iProver_def != sK14 ),
    inference(demodulation,[status(thm)],[c_112,c_2871,c_2872,c_2868,c_2869,c_2870]) ).

cnf(c_3947,plain,
    ( ~ function(sK15)
    | ~ relation(sK15)
    | function(sP1_iProver_def) ),
    inference(superposition,[status(thm)],[c_2868,c_53]) ).

cnf(c_3948,plain,
    function(sP1_iProver_def),
    inference(forward_subsumption_resolution,[status(thm)],[c_3947,c_2873,c_2874]) ).

cnf(c_3955,plain,
    ( ~ function(sK15)
    | ~ relation(sK15)
    | relation(sP1_iProver_def) ),
    inference(superposition,[status(thm)],[c_2868,c_54]) ).

cnf(c_3956,plain,
    relation(sP1_iProver_def),
    inference(forward_subsumption_resolution,[status(thm)],[c_3955,c_2873,c_2874]) ).

cnf(c_4276,plain,
    ( ~ in(X0,sP0_iProver_def)
    | ~ function(sK15)
    | ~ relation(sK15)
    | ~ one_to_one(sK15)
    | apply(function_inverse(sK15),apply(sK15,X0)) = X0 ),
    inference(superposition,[status(thm)],[c_2867,c_310]) ).

cnf(c_4283,plain,
    ( ~ in(X0,sP0_iProver_def)
    | ~ function(sK15)
    | ~ relation(sK15)
    | ~ one_to_one(sK15)
    | apply(sP1_iProver_def,apply(sK15,X0)) = X0 ),
    inference(light_normalisation,[status(thm)],[c_4276,c_2868]) ).

cnf(c_4284,plain,
    ( ~ in(X0,sP0_iProver_def)
    | apply(sP1_iProver_def,apply(sK15,X0)) = X0 ),
    inference(forward_subsumption_resolution,[status(thm)],[c_4283,c_2875,c_2873,c_2874]) ).

cnf(c_4416,plain,
    apply(sP1_iProver_def,apply(sK15,sK14)) = sK14,
    inference(superposition,[status(thm)],[c_2876,c_4284]) ).

cnf(c_4418,plain,
    sK14 = sP5_iProver_def,
    inference(light_normalisation,[status(thm)],[c_4416,c_2871,c_2872]) ).

cnf(c_4423,plain,
    apply(sK15,sP5_iProver_def) = sP4_iProver_def,
    inference(demodulation,[status(thm)],[c_2871,c_4418]) ).

cnf(c_4424,plain,
    apply(sP2_iProver_def,sP5_iProver_def) = sP3_iProver_def,
    inference(demodulation,[status(thm)],[c_2870,c_4418]) ).

cnf(c_4425,plain,
    ( sP3_iProver_def != sP5_iProver_def
    | sP5_iProver_def != sP5_iProver_def ),
    inference(demodulation,[status(thm)],[c_2877,c_4418]) ).

cnf(c_4426,plain,
    in(sP5_iProver_def,sP0_iProver_def),
    inference(demodulation,[status(thm)],[c_2876,c_4418]) ).

cnf(c_4427,plain,
    sP3_iProver_def != sP5_iProver_def,
    inference(equality_resolution_simp,[status(thm)],[c_4425]) ).

cnf(c_4774,plain,
    ( ~ in(X0,sP0_iProver_def)
    | ~ function(X1)
    | ~ relation(X1)
    | ~ function(sK15)
    | ~ relation(sK15)
    | apply(relation_composition(sK15,X1),X0) = apply(X1,apply(sK15,X0)) ),
    inference(superposition,[status(thm)],[c_2867,c_96]) ).

cnf(c_4777,plain,
    ( ~ in(X0,sP0_iProver_def)
    | ~ function(X1)
    | ~ relation(X1)
    | apply(relation_composition(sK15,X1),X0) = apply(X1,apply(sK15,X0)) ),
    inference(forward_subsumption_resolution,[status(thm)],[c_4774,c_2873,c_2874]) ).

cnf(c_4923,plain,
    ( ~ function(X0)
    | ~ relation(X0)
    | apply(relation_composition(sK15,X0),sP5_iProver_def) = apply(X0,apply(sK15,sP5_iProver_def)) ),
    inference(superposition,[status(thm)],[c_4426,c_4777]) ).

cnf(c_4925,plain,
    ( ~ function(X0)
    | ~ relation(X0)
    | apply(relation_composition(sK15,X0),sP5_iProver_def) = apply(X0,sP4_iProver_def) ),
    inference(light_normalisation,[status(thm)],[c_4923,c_4423]) ).

cnf(c_10732,plain,
    ( ~ relation(sP1_iProver_def)
    | apply(relation_composition(sK15,sP1_iProver_def),sP5_iProver_def) = apply(sP1_iProver_def,sP4_iProver_def) ),
    inference(superposition,[status(thm)],[c_3948,c_4925]) ).

cnf(c_10739,plain,
    ( ~ relation(sP1_iProver_def)
    | sP3_iProver_def = sP5_iProver_def ),
    inference(light_normalisation,[status(thm)],[c_10732,c_2869,c_2872,c_4424]) ).

cnf(c_10740,plain,
    $false,
    inference(forward_subsumption_resolution,[status(thm)],[c_10739,c_4427,c_3956]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.11  % Problem  : SEU023+1 : TPTP v8.1.2. Released v3.2.0.
% 0.12/0.12  % Command  : run_iprover %s %d THM
% 0.12/0.33  % Computer : n009.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Thu May  2 17:26:11 EDT 2024
% 0.12/0.33  % CPUTime  : 
% 0.19/0.45  Running first-order theorem proving
% 0.19/0.45  Running: /export/starexec/sandbox2/solver/bin/run_problem --schedule fof_schedule --heuristic_context casc_unsat --no_cores 8 /export/starexec/sandbox2/benchmark/theBenchmark.p 300
% 3.46/1.13  % SZS status Started for theBenchmark.p
% 3.46/1.13  % SZS status Theorem for theBenchmark.p
% 3.46/1.13  
% 3.46/1.13  %---------------- iProver v3.9 (pre CASC 2024/SMT-COMP 2024) ----------------%
% 3.46/1.13  
% 3.46/1.13  ------  iProver source info
% 3.46/1.13  
% 3.46/1.13  git: date: 2024-05-02 19:28:25 +0000
% 3.46/1.13  git: sha1: a33b5eb135c74074ba803943bb12f2ebd971352f
% 3.46/1.13  git: non_committed_changes: false
% 3.46/1.13  
% 3.46/1.13  ------ Parsing...
% 3.46/1.13  ------ Clausification by vclausify_rel  & Parsing by iProver...
% 3.46/1.13  
% 3.46/1.13  ------ Preprocessing... sup_sim: 0  sf_s  rm: 1 0s  sf_e  pe_s  pe:1:0s pe_e  sup_sim: 0  sf_s  rm: 1 0s  sf_e  pe_s  pe_e 
% 3.46/1.13  
% 3.46/1.13  ------ Preprocessing... gs_s  sp: 0 0s  gs_e  snvd_s sp: 0 0s snvd_e 
% 3.46/1.13  
% 3.46/1.13  ------ Preprocessing... sf_s  rm: 1 0s  sf_e  sf_s  rm: 0 0s  sf_e 
% 3.46/1.13  ------ Proving...
% 3.46/1.13  ------ Problem Properties 
% 3.46/1.13  
% 3.46/1.13  
% 3.46/1.13  clauses                                 73
% 3.46/1.13  conjectures                             5
% 3.46/1.13  EPR                                     31
% 3.46/1.13  Horn                                    67
% 3.46/1.13  unary                                   32
% 3.46/1.13  binary                                  17
% 3.46/1.13  lits                                    168
% 3.46/1.13  lits eq                                 23
% 3.46/1.13  fd_pure                                 0
% 3.46/1.13  fd_pseudo                               0
% 3.46/1.13  fd_cond                                 1
% 3.46/1.13  fd_pseudo_cond                          5
% 3.46/1.13  AC symbols                              0
% 3.46/1.13  
% 3.46/1.13  ------ Schedule dynamic 5 is on 
% 3.46/1.13  
% 3.46/1.13  ------ Input Options "--resolution_flag false --inst_lit_sel_side none" Time Limit: 10.
% 3.46/1.13  
% 3.46/1.13  
% 3.46/1.13  ------ 
% 3.46/1.13  Current options:
% 3.46/1.13  ------ 
% 3.46/1.13  
% 3.46/1.13  
% 3.46/1.13  
% 3.46/1.13  
% 3.46/1.13  ------ Proving...
% 3.46/1.13  
% 3.46/1.13  
% 3.46/1.13  % SZS status Theorem for theBenchmark.p
% 3.46/1.13  
% 3.46/1.13  % SZS output start CNFRefutation for theBenchmark.p
% See solution above
% 3.46/1.13  
% 3.46/1.13  
%------------------------------------------------------------------------------