TSTP Solution File: SET979+1 by Bliksem---1.12

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Bliksem---1.12
% Problem  : SET979+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : bliksem %s

% Computer : n013.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 0s
% DateTime : Mon Jul 18 22:53:44 EDT 2022

% Result   : Theorem 0.69s 1.08s
% Output   : Refutation 0.69s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.10/0.12  % Problem  : SET979+1 : TPTP v8.1.0. Released v3.2.0.
% 0.10/0.12  % Command  : bliksem %s
% 0.12/0.33  % Computer : n013.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % DateTime : Sat Jul  9 21:03:59 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.69/1.08  *** allocated 10000 integers for termspace/termends
% 0.69/1.08  *** allocated 10000 integers for clauses
% 0.69/1.08  *** allocated 10000 integers for justifications
% 0.69/1.08  Bliksem 1.12
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Automatic Strategy Selection
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Clauses:
% 0.69/1.08  
% 0.69/1.08  { unordered_pair( X, Y ) = unordered_pair( Y, X ) }.
% 0.69/1.08  { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.69/1.08  { empty( X ), ! empty( set_union2( X, Y ) ) }.
% 0.69/1.08  { empty( X ), ! empty( set_union2( Y, X ) ) }.
% 0.69/1.08  { set_union2( X, X ) = X }.
% 0.69/1.08  { empty( skol1 ) }.
% 0.69/1.08  { ! empty( skol2 ) }.
% 0.69/1.08  { cartesian_product2( set_union2( X, Y ), Z ) = set_union2( 
% 0.69/1.08    cartesian_product2( X, Z ), cartesian_product2( Y, Z ) ) }.
% 0.69/1.08  { cartesian_product2( Z, set_union2( X, Y ) ) = set_union2( 
% 0.69/1.08    cartesian_product2( Z, X ), cartesian_product2( Z, Y ) ) }.
% 0.69/1.08  { ! cartesian_product2( unordered_pair( skol3, skol4 ), skol5 ) = 
% 0.69/1.08    set_union2( cartesian_product2( singleton( skol3 ), skol5 ), 
% 0.69/1.08    cartesian_product2( singleton( skol4 ), skol5 ) ), ! cartesian_product2( 
% 0.69/1.08    skol5, unordered_pair( skol3, skol4 ) ) = set_union2( cartesian_product2
% 0.69/1.08    ( skol5, singleton( skol3 ) ), cartesian_product2( skol5, singleton( 
% 0.69/1.08    skol4 ) ) ) }.
% 0.69/1.08  { unordered_pair( X, Y ) = set_union2( singleton( X ), singleton( Y ) ) }.
% 0.69/1.08  
% 0.69/1.08  percentage equality = 0.571429, percentage horn = 1.000000
% 0.69/1.08  This is a problem with some equality
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Options Used:
% 0.69/1.08  
% 0.69/1.08  useres =            1
% 0.69/1.08  useparamod =        1
% 0.69/1.08  useeqrefl =         1
% 0.69/1.08  useeqfact =         1
% 0.69/1.08  usefactor =         1
% 0.69/1.08  usesimpsplitting =  0
% 0.69/1.08  usesimpdemod =      5
% 0.69/1.08  usesimpres =        3
% 0.69/1.08  
% 0.69/1.08  resimpinuse      =  1000
% 0.69/1.08  resimpclauses =     20000
% 0.69/1.08  substype =          eqrewr
% 0.69/1.08  backwardsubs =      1
% 0.69/1.08  selectoldest =      5
% 0.69/1.08  
% 0.69/1.08  litorderings [0] =  split
% 0.69/1.08  litorderings [1] =  extend the termordering, first sorting on arguments
% 0.69/1.08  
% 0.69/1.08  termordering =      kbo
% 0.69/1.08  
% 0.69/1.08  litapriori =        0
% 0.69/1.08  termapriori =       1
% 0.69/1.08  litaposteriori =    0
% 0.69/1.08  termaposteriori =   0
% 0.69/1.08  demodaposteriori =  0
% 0.69/1.08  ordereqreflfact =   0
% 0.69/1.08  
% 0.69/1.08  litselect =         negord
% 0.69/1.08  
% 0.69/1.08  maxweight =         15
% 0.69/1.08  maxdepth =          30000
% 0.69/1.08  maxlength =         115
% 0.69/1.08  maxnrvars =         195
% 0.69/1.08  excuselevel =       1
% 0.69/1.08  increasemaxweight = 1
% 0.69/1.08  
% 0.69/1.08  maxselected =       10000000
% 0.69/1.08  maxnrclauses =      10000000
% 0.69/1.08  
% 0.69/1.08  showgenerated =    0
% 0.69/1.08  showkept =         0
% 0.69/1.08  showselected =     0
% 0.69/1.08  showdeleted =      0
% 0.69/1.08  showresimp =       1
% 0.69/1.08  showstatus =       2000
% 0.69/1.08  
% 0.69/1.08  prologoutput =     0
% 0.69/1.08  nrgoals =          5000000
% 0.69/1.08  totalproof =       1
% 0.69/1.08  
% 0.69/1.08  Symbols occurring in the translation:
% 0.69/1.08  
% 0.69/1.08  {}  [0, 0]      (w:1, o:2, a:1, s:1, b:0), 
% 0.69/1.08  .  [1, 2]      (w:1, o:21, a:1, s:1, b:0), 
% 0.69/1.08  !  [4, 1]      (w:0, o:14, a:1, s:1, b:0), 
% 0.69/1.08  =  [13, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.69/1.08  ==>  [14, 2]      (w:1, o:0, a:0, s:1, b:0), 
% 0.69/1.08  unordered_pair  [37, 2]      (w:1, o:45, a:1, s:1, b:0), 
% 0.69/1.08  set_union2  [38, 2]      (w:1, o:46, a:1, s:1, b:0), 
% 0.69/1.08  empty  [39, 1]      (w:1, o:19, a:1, s:1, b:0), 
% 0.69/1.08  cartesian_product2  [41, 2]      (w:1, o:47, a:1, s:1, b:0), 
% 0.69/1.08  singleton  [42, 1]      (w:1, o:20, a:1, s:1, b:0), 
% 0.69/1.08  skol1  [43, 0]      (w:1, o:9, a:1, s:1, b:1), 
% 0.69/1.08  skol2  [44, 0]      (w:1, o:10, a:1, s:1, b:1), 
% 0.69/1.08  skol3  [45, 0]      (w:1, o:11, a:1, s:1, b:1), 
% 0.69/1.08  skol4  [46, 0]      (w:1, o:12, a:1, s:1, b:1), 
% 0.69/1.08  skol5  [47, 0]      (w:1, o:13, a:1, s:1, b:1).
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Starting Search:
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Bliksems!, er is een bewijs:
% 0.69/1.08  % SZS status Theorem
% 0.69/1.08  % SZS output start Refutation
% 0.69/1.08  
% 0.69/1.08  (7) {G0,W13,D4,L1,V3,M1} I { set_union2( cartesian_product2( X, Z ), 
% 0.69/1.08    cartesian_product2( Y, Z ) ) ==> cartesian_product2( set_union2( X, Y ), 
% 0.69/1.08    Z ) }.
% 0.69/1.08  (8) {G0,W13,D4,L1,V3,M1} I { set_union2( cartesian_product2( Z, X ), 
% 0.69/1.08    cartesian_product2( Z, Y ) ) ==> cartesian_product2( Z, set_union2( X, Y
% 0.69/1.08     ) ) }.
% 0.69/1.08  (9) {G1,W26,D5,L2,V0,M2} I;d(7);d(8) { ! cartesian_product2( set_union2( 
% 0.69/1.08    singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> cartesian_product2
% 0.69/1.08    ( unordered_pair( skol3, skol4 ), skol5 ), ! cartesian_product2( skol5, 
% 0.69/1.08    set_union2( singleton( skol3 ), singleton( skol4 ) ) ) ==> 
% 0.69/1.08    cartesian_product2( skol5, unordered_pair( skol3, skol4 ) ) }.
% 0.69/1.08  (10) {G0,W9,D4,L1,V2,M1} I { set_union2( singleton( X ), singleton( Y ) ) 
% 0.69/1.08    ==> unordered_pair( X, Y ) }.
% 0.69/1.08  (107) {G2,W0,D0,L0,V0,M0} S(9);d(10);q;d(10);q {  }.
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  % SZS output end Refutation
% 0.69/1.08  found a proof!
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Unprocessed initial clauses:
% 0.69/1.08  
% 0.69/1.08  (109) {G0,W7,D3,L1,V2,M1}  { unordered_pair( X, Y ) = unordered_pair( Y, X
% 0.69/1.08     ) }.
% 0.69/1.08  (110) {G0,W7,D3,L1,V2,M1}  { set_union2( X, Y ) = set_union2( Y, X ) }.
% 0.69/1.08  (111) {G0,W6,D3,L2,V2,M2}  { empty( X ), ! empty( set_union2( X, Y ) ) }.
% 0.69/1.08  (112) {G0,W6,D3,L2,V2,M2}  { empty( X ), ! empty( set_union2( Y, X ) ) }.
% 0.69/1.08  (113) {G0,W5,D3,L1,V1,M1}  { set_union2( X, X ) = X }.
% 0.69/1.08  (114) {G0,W2,D2,L1,V0,M1}  { empty( skol1 ) }.
% 0.69/1.08  (115) {G0,W2,D2,L1,V0,M1}  { ! empty( skol2 ) }.
% 0.69/1.08  (116) {G0,W13,D4,L1,V3,M1}  { cartesian_product2( set_union2( X, Y ), Z ) =
% 0.69/1.08     set_union2( cartesian_product2( X, Z ), cartesian_product2( Y, Z ) ) }.
% 0.69/1.08  (117) {G0,W13,D4,L1,V3,M1}  { cartesian_product2( Z, set_union2( X, Y ) ) =
% 0.69/1.08     set_union2( cartesian_product2( Z, X ), cartesian_product2( Z, Y ) ) }.
% 0.69/1.08  (118) {G0,W30,D5,L2,V0,M2}  { ! cartesian_product2( unordered_pair( skol3, 
% 0.69/1.08    skol4 ), skol5 ) = set_union2( cartesian_product2( singleton( skol3 ), 
% 0.69/1.08    skol5 ), cartesian_product2( singleton( skol4 ), skol5 ) ), ! 
% 0.69/1.08    cartesian_product2( skol5, unordered_pair( skol3, skol4 ) ) = set_union2
% 0.69/1.08    ( cartesian_product2( skol5, singleton( skol3 ) ), cartesian_product2( 
% 0.69/1.08    skol5, singleton( skol4 ) ) ) }.
% 0.69/1.08  (119) {G0,W9,D4,L1,V2,M1}  { unordered_pair( X, Y ) = set_union2( singleton
% 0.69/1.08    ( X ), singleton( Y ) ) }.
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Total Proof:
% 0.69/1.08  
% 0.69/1.08  eqswap: (121) {G0,W13,D4,L1,V3,M1}  { set_union2( cartesian_product2( X, Z
% 0.69/1.08     ), cartesian_product2( Y, Z ) ) = cartesian_product2( set_union2( X, Y )
% 0.69/1.08    , Z ) }.
% 0.69/1.08  parent0[0]: (116) {G0,W13,D4,L1,V3,M1}  { cartesian_product2( set_union2( X
% 0.69/1.08    , Y ), Z ) = set_union2( cartesian_product2( X, Z ), cartesian_product2( 
% 0.69/1.08    Y, Z ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := X
% 0.69/1.08     Y := Y
% 0.69/1.08     Z := Z
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  subsumption: (7) {G0,W13,D4,L1,V3,M1} I { set_union2( cartesian_product2( X
% 0.69/1.08    , Z ), cartesian_product2( Y, Z ) ) ==> cartesian_product2( set_union2( X
% 0.69/1.08    , Y ), Z ) }.
% 0.69/1.08  parent0: (121) {G0,W13,D4,L1,V3,M1}  { set_union2( cartesian_product2( X, Z
% 0.69/1.08     ), cartesian_product2( Y, Z ) ) = cartesian_product2( set_union2( X, Y )
% 0.69/1.08    , Z ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := X
% 0.69/1.08     Y := Y
% 0.69/1.08     Z := Z
% 0.69/1.08  end
% 0.69/1.08  permutation0:
% 0.69/1.08     0 ==> 0
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  eqswap: (124) {G0,W13,D4,L1,V3,M1}  { set_union2( cartesian_product2( X, Y
% 0.69/1.08     ), cartesian_product2( X, Z ) ) = cartesian_product2( X, set_union2( Y, 
% 0.69/1.08    Z ) ) }.
% 0.69/1.08  parent0[0]: (117) {G0,W13,D4,L1,V3,M1}  { cartesian_product2( Z, set_union2
% 0.69/1.08    ( X, Y ) ) = set_union2( cartesian_product2( Z, X ), cartesian_product2( 
% 0.69/1.08    Z, Y ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := Y
% 0.69/1.08     Y := Z
% 0.69/1.08     Z := X
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  subsumption: (8) {G0,W13,D4,L1,V3,M1} I { set_union2( cartesian_product2( Z
% 0.69/1.08    , X ), cartesian_product2( Z, Y ) ) ==> cartesian_product2( Z, set_union2
% 0.69/1.08    ( X, Y ) ) }.
% 0.69/1.08  parent0: (124) {G0,W13,D4,L1,V3,M1}  { set_union2( cartesian_product2( X, Y
% 0.69/1.08     ), cartesian_product2( X, Z ) ) = cartesian_product2( X, set_union2( Y, 
% 0.69/1.08    Z ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := Z
% 0.69/1.08     Y := X
% 0.69/1.08     Z := Y
% 0.69/1.08  end
% 0.69/1.08  permutation0:
% 0.69/1.08     0 ==> 0
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  paramod: (153) {G1,W28,D5,L2,V0,M2}  { ! cartesian_product2( unordered_pair
% 0.69/1.08    ( skol3, skol4 ), skol5 ) = cartesian_product2( set_union2( singleton( 
% 0.69/1.08    skol3 ), singleton( skol4 ) ), skol5 ), ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) = set_union2( cartesian_product2( skol5
% 0.69/1.08    , singleton( skol3 ) ), cartesian_product2( skol5, singleton( skol4 ) ) )
% 0.69/1.08     }.
% 0.69/1.08  parent0[0]: (7) {G0,W13,D4,L1,V3,M1} I { set_union2( cartesian_product2( X
% 0.69/1.08    , Z ), cartesian_product2( Y, Z ) ) ==> cartesian_product2( set_union2( X
% 0.69/1.08    , Y ), Z ) }.
% 0.69/1.08  parent1[0; 7]: (118) {G0,W30,D5,L2,V0,M2}  { ! cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ) = set_union2( cartesian_product2
% 0.69/1.08    ( singleton( skol3 ), skol5 ), cartesian_product2( singleton( skol4 ), 
% 0.69/1.08    skol5 ) ), ! cartesian_product2( skol5, unordered_pair( skol3, skol4 ) ) 
% 0.69/1.08    = set_union2( cartesian_product2( skol5, singleton( skol3 ) ), 
% 0.69/1.08    cartesian_product2( skol5, singleton( skol4 ) ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := singleton( skol3 )
% 0.69/1.08     Y := singleton( skol4 )
% 0.69/1.08     Z := skol5
% 0.69/1.08  end
% 0.69/1.08  substitution1:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  paramod: (154) {G1,W26,D5,L2,V0,M2}  { ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) = cartesian_product2( skol5, set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ) ), ! cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ) = cartesian_product2( set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ), skol5 ) }.
% 0.69/1.08  parent0[0]: (8) {G0,W13,D4,L1,V3,M1} I { set_union2( cartesian_product2( Z
% 0.69/1.08    , X ), cartesian_product2( Z, Y ) ) ==> cartesian_product2( Z, set_union2
% 0.69/1.08    ( X, Y ) ) }.
% 0.69/1.08  parent1[1; 7]: (153) {G1,W28,D5,L2,V0,M2}  { ! cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ) = cartesian_product2( set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ), skol5 ), ! cartesian_product2
% 0.69/1.08    ( skol5, unordered_pair( skol3, skol4 ) ) = set_union2( 
% 0.69/1.08    cartesian_product2( skol5, singleton( skol3 ) ), cartesian_product2( 
% 0.69/1.08    skol5, singleton( skol4 ) ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := singleton( skol3 )
% 0.69/1.08     Y := singleton( skol4 )
% 0.69/1.08     Z := skol5
% 0.69/1.08  end
% 0.69/1.08  substitution1:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  eqswap: (156) {G1,W26,D5,L2,V0,M2}  { ! cartesian_product2( set_union2( 
% 0.69/1.08    singleton( skol3 ), singleton( skol4 ) ), skol5 ) = cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ), ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) = cartesian_product2( skol5, set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ) ) }.
% 0.69/1.08  parent0[1]: (154) {G1,W26,D5,L2,V0,M2}  { ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) = cartesian_product2( skol5, set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ) ), ! cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ) = cartesian_product2( set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ), skol5 ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  eqswap: (157) {G1,W26,D5,L2,V0,M2}  { ! cartesian_product2( skol5, 
% 0.69/1.08    set_union2( singleton( skol3 ), singleton( skol4 ) ) ) = 
% 0.69/1.08    cartesian_product2( skol5, unordered_pair( skol3, skol4 ) ), ! 
% 0.69/1.08    cartesian_product2( set_union2( singleton( skol3 ), singleton( skol4 ) )
% 0.69/1.08    , skol5 ) = cartesian_product2( unordered_pair( skol3, skol4 ), skol5 )
% 0.69/1.08     }.
% 0.69/1.08  parent0[1]: (156) {G1,W26,D5,L2,V0,M2}  { ! cartesian_product2( set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ), skol5 ) = cartesian_product2
% 0.69/1.08    ( unordered_pair( skol3, skol4 ), skol5 ), ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) = cartesian_product2( skol5, set_union2
% 0.69/1.08    ( singleton( skol3 ), singleton( skol4 ) ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  subsumption: (9) {G1,W26,D5,L2,V0,M2} I;d(7);d(8) { ! cartesian_product2( 
% 0.69/1.08    set_union2( singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> 
% 0.69/1.08    cartesian_product2( unordered_pair( skol3, skol4 ), skol5 ), ! 
% 0.69/1.08    cartesian_product2( skol5, set_union2( singleton( skol3 ), singleton( 
% 0.69/1.08    skol4 ) ) ) ==> cartesian_product2( skol5, unordered_pair( skol3, skol4 )
% 0.69/1.08     ) }.
% 0.69/1.08  parent0: (157) {G1,W26,D5,L2,V0,M2}  { ! cartesian_product2( skol5, 
% 0.69/1.08    set_union2( singleton( skol3 ), singleton( skol4 ) ) ) = 
% 0.69/1.08    cartesian_product2( skol5, unordered_pair( skol3, skol4 ) ), ! 
% 0.69/1.08    cartesian_product2( set_union2( singleton( skol3 ), singleton( skol4 ) )
% 0.69/1.08    , skol5 ) = cartesian_product2( unordered_pair( skol3, skol4 ), skol5 )
% 0.69/1.08     }.
% 0.69/1.08  substitution0:
% 0.69/1.08  end
% 0.69/1.08  permutation0:
% 0.69/1.08     0 ==> 1
% 0.69/1.08     1 ==> 0
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  eqswap: (164) {G0,W9,D4,L1,V2,M1}  { set_union2( singleton( X ), singleton
% 0.69/1.08    ( Y ) ) = unordered_pair( X, Y ) }.
% 0.69/1.08  parent0[0]: (119) {G0,W9,D4,L1,V2,M1}  { unordered_pair( X, Y ) = 
% 0.69/1.08    set_union2( singleton( X ), singleton( Y ) ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := X
% 0.69/1.08     Y := Y
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  subsumption: (10) {G0,W9,D4,L1,V2,M1} I { set_union2( singleton( X ), 
% 0.69/1.08    singleton( Y ) ) ==> unordered_pair( X, Y ) }.
% 0.69/1.08  parent0: (164) {G0,W9,D4,L1,V2,M1}  { set_union2( singleton( X ), singleton
% 0.69/1.08    ( Y ) ) = unordered_pair( X, Y ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := X
% 0.69/1.08     Y := Y
% 0.69/1.08  end
% 0.69/1.08  permutation0:
% 0.69/1.08     0 ==> 0
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  paramod: (171) {G1,W24,D5,L2,V0,M2}  { ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) ==> cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ), ! cartesian_product2( set_union2( 
% 0.69/1.08    singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> cartesian_product2
% 0.69/1.08    ( unordered_pair( skol3, skol4 ), skol5 ) }.
% 0.69/1.08  parent0[0]: (10) {G0,W9,D4,L1,V2,M1} I { set_union2( singleton( X ), 
% 0.69/1.08    singleton( Y ) ) ==> unordered_pair( X, Y ) }.
% 0.69/1.08  parent1[1; 4]: (9) {G1,W26,D5,L2,V0,M2} I;d(7);d(8) { ! cartesian_product2
% 0.69/1.08    ( set_union2( singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> 
% 0.69/1.08    cartesian_product2( unordered_pair( skol3, skol4 ), skol5 ), ! 
% 0.69/1.08    cartesian_product2( skol5, set_union2( singleton( skol3 ), singleton( 
% 0.69/1.08    skol4 ) ) ) ==> cartesian_product2( skol5, unordered_pair( skol3, skol4 )
% 0.69/1.08     ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := skol3
% 0.69/1.08     Y := skol4
% 0.69/1.08  end
% 0.69/1.08  substitution1:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  eqrefl: (173) {G0,W13,D5,L1,V0,M1}  { ! cartesian_product2( set_union2( 
% 0.69/1.08    singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> cartesian_product2
% 0.69/1.08    ( unordered_pair( skol3, skol4 ), skol5 ) }.
% 0.69/1.08  parent0[0]: (171) {G1,W24,D5,L2,V0,M2}  { ! cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ) ==> cartesian_product2( skol5, 
% 0.69/1.08    unordered_pair( skol3, skol4 ) ), ! cartesian_product2( set_union2( 
% 0.69/1.08    singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> cartesian_product2
% 0.69/1.08    ( unordered_pair( skol3, skol4 ), skol5 ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  paramod: (174) {G1,W11,D4,L1,V0,M1}  { ! cartesian_product2( unordered_pair
% 0.69/1.08    ( skol3, skol4 ), skol5 ) ==> cartesian_product2( unordered_pair( skol3, 
% 0.69/1.08    skol4 ), skol5 ) }.
% 0.69/1.08  parent0[0]: (10) {G0,W9,D4,L1,V2,M1} I { set_union2( singleton( X ), 
% 0.69/1.08    singleton( Y ) ) ==> unordered_pair( X, Y ) }.
% 0.69/1.08  parent1[0; 3]: (173) {G0,W13,D5,L1,V0,M1}  { ! cartesian_product2( 
% 0.69/1.08    set_union2( singleton( skol3 ), singleton( skol4 ) ), skol5 ) ==> 
% 0.69/1.08    cartesian_product2( unordered_pair( skol3, skol4 ), skol5 ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08     X := skol3
% 0.69/1.08     Y := skol4
% 0.69/1.08  end
% 0.69/1.08  substitution1:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  eqrefl: (175) {G0,W0,D0,L0,V0,M0}  {  }.
% 0.69/1.08  parent0[0]: (174) {G1,W11,D4,L1,V0,M1}  { ! cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ) ==> cartesian_product2( 
% 0.69/1.08    unordered_pair( skol3, skol4 ), skol5 ) }.
% 0.69/1.08  substitution0:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  subsumption: (107) {G2,W0,D0,L0,V0,M0} S(9);d(10);q;d(10);q {  }.
% 0.69/1.08  parent0: (175) {G0,W0,D0,L0,V0,M0}  {  }.
% 0.69/1.08  substitution0:
% 0.69/1.08  end
% 0.69/1.08  permutation0:
% 0.69/1.08  end
% 0.69/1.08  
% 0.69/1.08  Proof check complete!
% 0.69/1.08  
% 0.69/1.08  Memory use:
% 0.69/1.08  
% 0.69/1.08  space for terms:        1482
% 0.69/1.08  space for clauses:      7403
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  clauses generated:      298
% 0.69/1.08  clauses kept:           108
% 0.69/1.08  clauses selected:       25
% 0.69/1.08  clauses deleted:        1
% 0.69/1.08  clauses inuse deleted:  0
% 0.69/1.08  
% 0.69/1.08  subsentry:          681
% 0.69/1.08  literals s-matched: 533
% 0.69/1.08  literals matched:   533
% 0.69/1.08  full subsumption:   0
% 0.69/1.08  
% 0.69/1.08  checksum:           107013418
% 0.69/1.08  
% 0.69/1.08  
% 0.69/1.08  Bliksem ended
%------------------------------------------------------------------------------