TSTP Solution File: SET878+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : SET878+1 : TPTP v8.1.0. Released v3.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 03:38:04 EDT 2022

% Result   : Theorem 0.14s 0.37s
% Output   : CNFRefutation 0.14s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   11
% Syntax   : Number of formulae    :   43 (  23 unt;   0 def)
%            Number of atoms       :   93 (  72 equ)
%            Maximal formula atoms :   20 (   2 avg)
%            Number of connectives :   90 (  40   ~;  38   |;   5   &)
%                                         (   6 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   3 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    4 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    6 (   6 usr;   2 con; 0-3 aty)
%            Number of variables   :   80 (   5 sgn  36   !;   4   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(commutativity_k3_xboole_0,axiom,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A) ).

fof(d2_tarski,axiom,
    ! [A,B,C] :
      ( C = unordered_pair(A,B)
    <=> ! [D] :
          ( in(D,C)
        <=> ( D = A
            | D = B ) ) ) ).

fof(l32_zfmisc_1,axiom,
    ! [A,B] :
      ( in(A,B)
     => set_intersection2(B,singleton(A)) = singleton(A) ) ).

fof(t19_zfmisc_1,conjecture,
    ! [A,B] : set_intersection2(singleton(A),unordered_pair(A,B)) = singleton(A) ).

fof(subgoal_0,plain,
    ! [A,B] : set_intersection2(singleton(A),unordered_pair(A,B)) = singleton(A),
    inference(strip,[],[t19_zfmisc_1]) ).

fof(negate_0_0,plain,
    ~ ! [A,B] : set_intersection2(singleton(A),unordered_pair(A,B)) = singleton(A),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ? [A,B] : set_intersection2(singleton(A),unordered_pair(A,B)) != singleton(A),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_1,plain,
    set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) != singleton(skolemFOFtoCNF_A_2),
    inference(skolemize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ! [A,B,C] :
      ( C != unordered_pair(A,B)
    <=> ? [D] :
          ( ~ in(D,C)
        <=> ( D = A
            | D = B ) ) ),
    inference(canonicalize,[],[d2_tarski]) ).

fof(normalize_0_3,plain,
    ! [A,B,C] :
      ( C != unordered_pair(A,B)
    <=> ? [D] :
          ( ~ in(D,C)
        <=> ( D = A
            | D = B ) ) ),
    inference(specialize,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    ! [A,B,C,D] :
      ( ( C != unordered_pair(A,B)
        | D != A
        | in(D,C) )
      & ( C != unordered_pair(A,B)
        | D != B
        | in(D,C) )
      & ( skolemFOFtoCNF_D(A,B,C) != A
        | ~ in(skolemFOFtoCNF_D(A,B,C),C)
        | C = unordered_pair(A,B) )
      & ( skolemFOFtoCNF_D(A,B,C) != B
        | ~ in(skolemFOFtoCNF_D(A,B,C),C)
        | C = unordered_pair(A,B) )
      & ( C != unordered_pair(A,B)
        | ~ in(D,C)
        | D = A
        | D = B )
      & ( C = unordered_pair(A,B)
        | skolemFOFtoCNF_D(A,B,C) = A
        | skolemFOFtoCNF_D(A,B,C) = B
        | in(skolemFOFtoCNF_D(A,B,C),C) ) ),
    inference(clausify,[],[normalize_0_3]) ).

fof(normalize_0_5,plain,
    ! [A,B,C,D] :
      ( C != unordered_pair(A,B)
      | D != A
      | in(D,C) ),
    inference(conjunct,[],[normalize_0_4]) ).

fof(normalize_0_6,plain,
    ! [A,B] :
      ( ~ in(A,B)
      | set_intersection2(B,singleton(A)) = singleton(A) ),
    inference(canonicalize,[],[l32_zfmisc_1]) ).

fof(normalize_0_7,plain,
    ! [A,B] :
      ( ~ in(A,B)
      | set_intersection2(B,singleton(A)) = singleton(A) ),
    inference(specialize,[],[normalize_0_6]) ).

fof(normalize_0_8,plain,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A),
    inference(canonicalize,[],[commutativity_k3_xboole_0]) ).

fof(normalize_0_9,plain,
    ! [A,B] : set_intersection2(A,B) = set_intersection2(B,A),
    inference(specialize,[],[normalize_0_8]) ).

cnf(refute_0_0,plain,
    set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) != singleton(skolemFOFtoCNF_A_2),
    inference(canonicalize,[],[normalize_0_1]) ).

cnf(refute_0_1,plain,
    ( C != unordered_pair(A,B)
    | D != A
    | in(D,C) ),
    inference(canonicalize,[],[normalize_0_5]) ).

cnf(refute_0_2,plain,
    ( A != A
    | unordered_pair(A,B) != unordered_pair(A,B)
    | in(A,unordered_pair(A,B)) ),
    inference(subst,[],[refute_0_1:[bind(C,$fot(unordered_pair(A,B))),bind(D,$fot(A))]]) ).

cnf(refute_0_3,plain,
    A = A,
    introduced(tautology,[refl,[$fot(A)]]) ).

cnf(refute_0_4,plain,
    ( unordered_pair(A,B) != unordered_pair(A,B)
    | in(A,unordered_pair(A,B)) ),
    inference(resolve,[$cnf( $equal(A,A) )],[refute_0_3,refute_0_2]) ).

cnf(refute_0_5,plain,
    unordered_pair(A,B) = unordered_pair(A,B),
    introduced(tautology,[refl,[$fot(unordered_pair(A,B))]]) ).

cnf(refute_0_6,plain,
    in(A,unordered_pair(A,B)),
    inference(resolve,[$cnf( $equal(unordered_pair(A,B),unordered_pair(A,B)) )],[refute_0_5,refute_0_4]) ).

cnf(refute_0_7,plain,
    in(X_12,unordered_pair(X_12,B)),
    inference(subst,[],[refute_0_6:[bind(A,$fot(X_12))]]) ).

cnf(refute_0_8,plain,
    ( ~ in(A,B)
    | set_intersection2(B,singleton(A)) = singleton(A) ),
    inference(canonicalize,[],[normalize_0_7]) ).

cnf(refute_0_9,plain,
    ( ~ in(X_12,unordered_pair(X_12,B))
    | set_intersection2(unordered_pair(X_12,B),singleton(X_12)) = singleton(X_12) ),
    inference(subst,[],[refute_0_8:[bind(A,$fot(X_12)),bind(B,$fot(unordered_pair(X_12,B)))]]) ).

cnf(refute_0_10,plain,
    set_intersection2(unordered_pair(X_12,B),singleton(X_12)) = singleton(X_12),
    inference(resolve,[$cnf( in(X_12,unordered_pair(X_12,B)) )],[refute_0_7,refute_0_9]) ).

cnf(refute_0_11,plain,
    set_intersection2(A,B) = set_intersection2(B,A),
    inference(canonicalize,[],[normalize_0_9]) ).

cnf(refute_0_12,plain,
    X = X,
    introduced(tautology,[refl,[$fot(X)]]) ).

cnf(refute_0_13,plain,
    ( X != X
    | X != Y
    | Y = X ),
    introduced(tautology,[equality,[$cnf( $equal(X,X) ),[0],$fot(Y)]]) ).

cnf(refute_0_14,plain,
    ( X != Y
    | Y = X ),
    inference(resolve,[$cnf( $equal(X,X) )],[refute_0_12,refute_0_13]) ).

cnf(refute_0_15,plain,
    ( set_intersection2(A,B) != set_intersection2(B,A)
    | set_intersection2(B,A) = set_intersection2(A,B) ),
    inference(subst,[],[refute_0_14:[bind(X,$fot(set_intersection2(A,B))),bind(Y,$fot(set_intersection2(B,A)))]]) ).

cnf(refute_0_16,plain,
    set_intersection2(B,A) = set_intersection2(A,B),
    inference(resolve,[$cnf( $equal(set_intersection2(A,B),set_intersection2(B,A)) )],[refute_0_11,refute_0_15]) ).

cnf(refute_0_17,plain,
    set_intersection2(unordered_pair(X_12,B),singleton(X_12)) = set_intersection2(singleton(X_12),unordered_pair(X_12,B)),
    inference(subst,[],[refute_0_16:[bind(A,$fot(singleton(X_12))),bind(B,$fot(unordered_pair(X_12,B)))]]) ).

cnf(refute_0_18,plain,
    ( set_intersection2(unordered_pair(X_12,B),singleton(X_12)) != set_intersection2(singleton(X_12),unordered_pair(X_12,B))
    | set_intersection2(unordered_pair(X_12,B),singleton(X_12)) != singleton(X_12)
    | set_intersection2(singleton(X_12),unordered_pair(X_12,B)) = singleton(X_12) ),
    introduced(tautology,[equality,[$cnf( $equal(set_intersection2(unordered_pair(X_12,B),singleton(X_12)),singleton(X_12)) ),[0],$fot(set_intersection2(singleton(X_12),unordered_pair(X_12,B)))]]) ).

cnf(refute_0_19,plain,
    ( set_intersection2(unordered_pair(X_12,B),singleton(X_12)) != singleton(X_12)
    | set_intersection2(singleton(X_12),unordered_pair(X_12,B)) = singleton(X_12) ),
    inference(resolve,[$cnf( $equal(set_intersection2(unordered_pair(X_12,B),singleton(X_12)),set_intersection2(singleton(X_12),unordered_pair(X_12,B))) )],[refute_0_17,refute_0_18]) ).

cnf(refute_0_20,plain,
    set_intersection2(singleton(X_12),unordered_pair(X_12,B)) = singleton(X_12),
    inference(resolve,[$cnf( $equal(set_intersection2(unordered_pair(X_12,B),singleton(X_12)),singleton(X_12)) )],[refute_0_10,refute_0_19]) ).

cnf(refute_0_21,plain,
    set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2),
    inference(subst,[],[refute_0_20:[bind(B,$fot(skolemFOFtoCNF_B)),bind(X_12,$fot(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_22,plain,
    ( set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) != singleton(skolemFOFtoCNF_A_2)
    | singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2) ),
    introduced(tautology,[equality,[$cnf( ~ $equal(set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)),singleton(skolemFOFtoCNF_A_2)) ),[0],$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_23,plain,
    ( singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2)
    | set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)) = singleton(skolemFOFtoCNF_A_2) ),
    inference(resolve,[$cnf( $equal(set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_21,refute_0_22]) ).

cnf(refute_0_24,plain,
    singleton(skolemFOFtoCNF_A_2) != singleton(skolemFOFtoCNF_A_2),
    inference(resolve,[$cnf( $equal(set_intersection2(singleton(skolemFOFtoCNF_A_2),unordered_pair(skolemFOFtoCNF_A_2,skolemFOFtoCNF_B)),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_23,refute_0_0]) ).

cnf(refute_0_25,plain,
    singleton(skolemFOFtoCNF_A_2) = singleton(skolemFOFtoCNF_A_2),
    introduced(tautology,[refl,[$fot(singleton(skolemFOFtoCNF_A_2))]]) ).

cnf(refute_0_26,plain,
    $false,
    inference(resolve,[$cnf( $equal(singleton(skolemFOFtoCNF_A_2),singleton(skolemFOFtoCNF_A_2)) )],[refute_0_25,refute_0_24]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.08/0.13  % Problem  : SET878+1 : TPTP v8.1.0. Released v3.2.0.
% 0.08/0.14  % Command  : metis --show proof --show saturation %s
% 0.14/0.35  % Computer : n006.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.35  % CPULimit : 300
% 0.14/0.35  % WCLimit  : 600
% 0.14/0.35  % DateTime : Sat Jul  9 23:35:36 EDT 2022
% 0.14/0.35  % CPUTime  : 
% 0.14/0.36  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.14/0.37  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.14/0.37  
% 0.14/0.37  % SZS output start CNFRefutation for /export/starexec/sandbox2/benchmark/theBenchmark.p
% See solution above
% 0.14/0.37  
%------------------------------------------------------------------------------