TSTP Solution File: SET636+3 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SET636+3 : TPTP v5.0.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : art06.cs.miami.edu
% Model    : i686 i686
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 2018MB
% OS       : Linux 2.6.26.8-57.fc8
% CPULimit : 300s
% DateTime : Wed Dec 29 23:20:01 EST 2010

% Result   : Theorem 0.91s
% Output   : Solution 0.92s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP31743/SET636+3.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... found
% SZS status THM for /tmp/SystemOnTPTP31743/SET636+3.tptp
% SZS output start Solution for /tmp/SystemOnTPTP31743/SET636+3.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.2/eproof --print-statistics -xAuto -tAuto --cpu-limit=60 --proof-time-unlimited --memory-limit=Auto --tstp-in --tstp-out /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 31839
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.00 WC
% # Preprocessing time     : 0.013 s
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:intersection(X1,X2)=intersection(X2,X1),file('/tmp/SRASS.s.p', commutativity_of_intersection)).
% fof(2, axiom,![X1]:~(member(X1,empty_set)),file('/tmp/SRASS.s.p', empty_set_defn)).
% fof(3, axiom,![X1]:![X2]:![X3]:(member(X3,intersection(X1,X2))<=>(member(X3,X1)&member(X3,X2))),file('/tmp/SRASS.s.p', intersection_defn)).
% fof(4, axiom,![X1]:![X2]:(X1=X2<=>![X3]:(member(X3,X1)<=>member(X3,X2))),file('/tmp/SRASS.s.p', equal_member_defn)).
% fof(5, axiom,![X1]:![X2]:(disjoint(X1,X2)<=>~(intersect(X1,X2))),file('/tmp/SRASS.s.p', disjoint_defn)).
% fof(7, axiom,![X1]:![X2]:(intersect(X1,X2)=>intersect(X2,X1)),file('/tmp/SRASS.s.p', symmetry_of_intersect)).
% fof(9, axiom,![X1]:![X2]:(intersect(X1,X2)<=>?[X3]:(member(X3,X1)&member(X3,X2))),file('/tmp/SRASS.s.p', intersect_defn)).
% fof(12, conjecture,![X1]:![X2]:(disjoint(X1,X2)<=>intersection(X1,X2)=empty_set),file('/tmp/SRASS.s.p', prove_th118)).
% fof(13, negated_conjecture,~(![X1]:![X2]:(disjoint(X1,X2)<=>intersection(X1,X2)=empty_set)),inference(assume_negation,[status(cth)],[12])).
% fof(14, plain,![X1]:~(member(X1,empty_set)),inference(fof_simplification,[status(thm)],[2,theory(equality)])).
% fof(15, plain,![X1]:![X2]:(disjoint(X1,X2)<=>~(intersect(X1,X2))),inference(fof_simplification,[status(thm)],[5,theory(equality)])).
% fof(17, plain,![X3]:![X4]:intersection(X3,X4)=intersection(X4,X3),inference(variable_rename,[status(thm)],[1])).
% cnf(18,plain,(intersection(X1,X2)=intersection(X2,X1)),inference(split_conjunct,[status(thm)],[17])).
% fof(19, plain,![X2]:~(member(X2,empty_set)),inference(variable_rename,[status(thm)],[14])).
% cnf(20,plain,(~member(X1,empty_set)),inference(split_conjunct,[status(thm)],[19])).
% fof(21, plain,![X1]:![X2]:![X3]:((~(member(X3,intersection(X1,X2)))|(member(X3,X1)&member(X3,X2)))&((~(member(X3,X1))|~(member(X3,X2)))|member(X3,intersection(X1,X2)))),inference(fof_nnf,[status(thm)],[3])).
% fof(22, plain,![X4]:![X5]:![X6]:((~(member(X6,intersection(X4,X5)))|(member(X6,X4)&member(X6,X5)))&((~(member(X6,X4))|~(member(X6,X5)))|member(X6,intersection(X4,X5)))),inference(variable_rename,[status(thm)],[21])).
% fof(23, plain,![X4]:![X5]:![X6]:(((member(X6,X4)|~(member(X6,intersection(X4,X5))))&(member(X6,X5)|~(member(X6,intersection(X4,X5)))))&((~(member(X6,X4))|~(member(X6,X5)))|member(X6,intersection(X4,X5)))),inference(distribute,[status(thm)],[22])).
% cnf(24,plain,(member(X1,intersection(X2,X3))|~member(X1,X3)|~member(X1,X2)),inference(split_conjunct,[status(thm)],[23])).
% cnf(25,plain,(member(X1,X3)|~member(X1,intersection(X2,X3))),inference(split_conjunct,[status(thm)],[23])).
% cnf(26,plain,(member(X1,X2)|~member(X1,intersection(X2,X3))),inference(split_conjunct,[status(thm)],[23])).
% fof(27, plain,![X1]:![X2]:((~(X1=X2)|![X3]:((~(member(X3,X1))|member(X3,X2))&(~(member(X3,X2))|member(X3,X1))))&(?[X3]:((~(member(X3,X1))|~(member(X3,X2)))&(member(X3,X1)|member(X3,X2)))|X1=X2)),inference(fof_nnf,[status(thm)],[4])).
% fof(28, plain,![X4]:![X5]:((~(X4=X5)|![X6]:((~(member(X6,X4))|member(X6,X5))&(~(member(X6,X5))|member(X6,X4))))&(?[X7]:((~(member(X7,X4))|~(member(X7,X5)))&(member(X7,X4)|member(X7,X5)))|X4=X5)),inference(variable_rename,[status(thm)],[27])).
% fof(29, plain,![X4]:![X5]:((~(X4=X5)|![X6]:((~(member(X6,X4))|member(X6,X5))&(~(member(X6,X5))|member(X6,X4))))&(((~(member(esk1_2(X4,X5),X4))|~(member(esk1
% _2(X4,X5),X5)))&(member(esk1_2(X4,X5),X4)|member(esk1_2(X4,X5),X5)))|X4=X5)),inference(skolemize,[status(esa)],[28])).
% fof(30, plain,![X4]:![X5]:![X6]:((((~(member(X6,X4))|member(X6,X5))&(~(member(X6,X5))|member(X6,X4)))|~(X4=X5))&(((~(member(esk1_2(X4,X5),X4))|~(member(esk1_2(X4,X5),X5)))&(member(esk1_2(X4,X5),X4)|member(esk1_2(X4,X5),X5)))|X4=X5)),inference(shift_quantors,[status(thm)],[29])).
% fof(31, plain,![X4]:![X5]:![X6]:((((~(member(X6,X4))|member(X6,X5))|~(X4=X5))&((~(member(X6,X5))|member(X6,X4))|~(X4=X5)))&(((~(member(esk1_2(X4,X5),X4))|~(member(esk1_2(X4,X5),X5)))|X4=X5)&((member(esk1_2(X4,X5),X4)|member(esk1_2(X4,X5),X5))|X4=X5))),inference(distribute,[status(thm)],[30])).
% cnf(32,plain,(X1=X2|member(esk1_2(X1,X2),X2)|member(esk1_2(X1,X2),X1)),inference(split_conjunct,[status(thm)],[31])).
% fof(36, plain,![X1]:![X2]:((~(disjoint(X1,X2))|~(intersect(X1,X2)))&(intersect(X1,X2)|disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[15])).
% fof(37, plain,![X3]:![X4]:((~(disjoint(X3,X4))|~(intersect(X3,X4)))&(intersect(X3,X4)|disjoint(X3,X4))),inference(variable_rename,[status(thm)],[36])).
% cnf(38,plain,(disjoint(X1,X2)|intersect(X1,X2)),inference(split_conjunct,[status(thm)],[37])).
% cnf(39,plain,(~intersect(X1,X2)|~disjoint(X1,X2)),inference(split_conjunct,[status(thm)],[37])).
% fof(46, plain,![X1]:![X2]:(~(intersect(X1,X2))|intersect(X2,X1)),inference(fof_nnf,[status(thm)],[7])).
% fof(47, plain,![X3]:![X4]:(~(intersect(X3,X4))|intersect(X4,X3)),inference(variable_rename,[status(thm)],[46])).
% cnf(48,plain,(intersect(X1,X2)|~intersect(X2,X1)),inference(split_conjunct,[status(thm)],[47])).
% fof(51, plain,![X1]:![X2]:((~(intersect(X1,X2))|?[X3]:(member(X3,X1)&member(X3,X2)))&(![X3]:(~(member(X3,X1))|~(member(X3,X2)))|intersect(X1,X2))),inference(fof_nnf,[status(thm)],[9])).
% fof(52, plain,![X4]:![X5]:((~(intersect(X4,X5))|?[X6]:(member(X6,X4)&member(X6,X5)))&(![X7]:(~(member(X7,X4))|~(member(X7,X5)))|intersect(X4,X5))),inference(variable_rename,[status(thm)],[51])).
% fof(53, plain,![X4]:![X5]:((~(intersect(X4,X5))|(member(esk2_2(X4,X5),X4)&member(esk2_2(X4,X5),X5)))&(![X7]:(~(member(X7,X4))|~(member(X7,X5)))|intersect(X4,X5))),inference(skolemize,[status(esa)],[52])).
% fof(54, plain,![X4]:![X5]:![X7]:(((~(member(X7,X4))|~(member(X7,X5)))|intersect(X4,X5))&(~(intersect(X4,X5))|(member(esk2_2(X4,X5),X4)&member(esk2_2(X4,X5),X5)))),inference(shift_quantors,[status(thm)],[53])).
% fof(55, plain,![X4]:![X5]:![X7]:(((~(member(X7,X4))|~(member(X7,X5)))|intersect(X4,X5))&((member(esk2_2(X4,X5),X4)|~(intersect(X4,X5)))&(member(esk2_2(X4,X5),X5)|~(intersect(X4,X5))))),inference(distribute,[status(thm)],[54])).
% cnf(56,plain,(member(esk2_2(X1,X2),X2)|~intersect(X1,X2)),inference(split_conjunct,[status(thm)],[55])).
% cnf(57,plain,(member(esk2_2(X1,X2),X1)|~intersect(X1,X2)),inference(split_conjunct,[status(thm)],[55])).
% cnf(58,plain,(intersect(X1,X2)|~member(X3,X2)|~member(X3,X1)),inference(split_conjunct,[status(thm)],[55])).
% fof(73, negated_conjecture,?[X1]:?[X2]:((~(disjoint(X1,X2))|~(intersection(X1,X2)=empty_set))&(disjoint(X1,X2)|intersection(X1,X2)=empty_set)),inference(fof_nnf,[status(thm)],[13])).
% fof(74, negated_conjecture,?[X3]:?[X4]:((~(disjoint(X3,X4))|~(intersection(X3,X4)=empty_set))&(disjoint(X3,X4)|intersection(X3,X4)=empty_set)),inference(variable_rename,[status(thm)],[73])).
% fof(75, negated_conjecture,((~(disjoint(esk5_0,esk6_0))|~(intersection(esk5_0,esk6_0)=empty_set))&(disjoint(esk5_0,esk6_0)|intersection(esk5_0,esk6_0)=empty_set)),inference(skolemize,[status(esa)],[74])).
% cnf(76,negated_conjecture,(intersection(esk5_0,esk6_0)=empty_set|disjoint(esk5_0,esk6_0)),inference(split_conjunct,[status(thm)],[75])).
% cnf(77,negated_conjecture,(intersection(esk5_0,esk6_0)!=empty_set|~disjoint(esk5_0,esk6_0)),inference(split_conjunct,[status(thm)],[75])).
% cnf(83,negated_conjecture,(intersect(esk5_0,esk6_0)|intersection(esk5_0,esk6_0)!=empty_set),inference(spm,[status(thm)],[77,38,theory(equality)])).
% cnf(84,negated_conjecture,(intersection(esk5_0,esk6_0)=empty_set|~intersect(esk5_0,esk6_0)),inference(spm,[status(thm)],[39,76,theory(equality)])).
% cnf(100,plain,(member(esk2_2(intersection(X1,X2),X3),X2)|~intersect(intersection(X1,X2),X3)),inference(spm,[status(thm)],[25,57,theory(equality)])).
% cnf(126,plain,(intersect(X1,X2)|X2=X3|member(esk1_2(X2,X3),X3)|~member(esk1_2(X2,X3),X1)),inference(spm,[status(thm)],[58,32,theory(equality)])).
% cnf(127,plain,(X1=empty_set|member(esk1_2(X1,empty_set),X1)),inference(spm,[status(thm)],[20,32,theory(equality)])).
% cnf(137,negated_conjecture,(member(X1,empty_set)|~member(X1,esk6_0)|~member(X1,esk5_0)|~intersect(esk5_0,esk6_0)),inference(spm,[status(thm)],[24,84,theory(equality)])).
% cnf(140,negated_conjecture,(~member(X1,esk6_0)|~member(X1,esk5_0)|~intersect(esk5_0,esk6_0)),inference(sr,[status(thm)],[137,20,theory(equality)])).
% cnf(422,plain,(member(esk1_2(intersection(X1,X2),empty_set),X1)|intersection(X1,X2)=empty_set),inference(spm,[status(thm)],[26,127,theory(equality)])).
% cnf(722,negated_conjecture,(~member(X1,esk6_0)|~member(X1,esk5_0)),inference(csr,[status(thm)],[140,58])).
% cnf(733,negated_conjecture,(~member(esk2_2(X1,esk6_0),esk5_0)|~intersect(X1,esk6_0)),inference(spm,[status(thm)],[722,56,theory(equality)])).
% cnf(760,negated_conjecture,(~intersect(intersection(X1,esk5_0),esk6_0)),inference(spm,[status(thm)],[733,100,theory(equality)])).
% cnf(761,negated_conjecture,(~intersect(esk5_0,esk6_0)),inference(spm,[status(thm)],[733,57,theory(equality)])).
% cnf(1172,plain,(intersection(X1,X2)=empty_set|intersect(X1,intersection(X1,X2))|member(esk1_2(intersection(X1,X2),empty_set),empty_set)),inference(spm,[status(thm)],[126,422,theory(equality)])).
% cnf(1187,plain,(intersection(X1,X2)=empty_set|intersect(X1,intersection(X1,X2))),inference(sr,[status(thm)],[1172,20,theory(equality)])).
% cnf(1194,plain,(intersect(intersection(X1,X2),X1)|intersection(X1,X2)=empty_set),inference(spm,[status(thm)],[48,1187,theory(equality)])).
% cnf(1220,negated_conjecture,(intersection(esk6_0,esk5_0)=empty_set),inference(spm,[status(thm)],[760,1194,theory(equality)])).
% cnf(1227,negated_conjecture,(intersection(esk5_0,esk6_0)=empty_set),inference(rw,[status(thm)],[1220,18,theory(equality)])).
% cnf(1265,negated_conjecture,(intersect(esk5_0,esk6_0)|$false),inference(rw,[status(thm)],[83,1227,theory(equality)])).
% cnf(1266,negated_conjecture,(intersect(esk5_0,esk6_0)),inference(cn,[status(thm)],[1265,theory(equality)])).
% cnf(1267,negated_conjecture,($false),inference(sr,[status(thm)],[1266,761,theory(equality)])).
% cnf(1268,negated_conjecture,($false),1267,['proof']).
% # SZS output end CNFRefutation
% # Processed clauses                  : 268
% # ...of these trivial                : 3
% # ...subsumed                        : 138
% # ...remaining for further processing: 127
% # Other redundant clauses eliminated : 2
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 1
% # Backward-rewritten                 : 4
% # Generated clauses                  : 897
% # ...of the previous two non-trivial : 660
% # Contextual simplify-reflections    : 3
% # Paramodulations                    : 889
% # Factorizations                     : 6
% # Equation resolutions               : 2
% # Current number of processed clauses: 98
% #    Positive orientable unit clauses: 10
% #    Positive unorientable unit clauses: 1
% #    Negative unit clauses           : 8
% #    Non-unit-clauses                : 79
% # Current number of unprocessed clauses: 422
% # ...number of literals in the above : 1193
% # Clause-clause subsumption calls (NU) : 537
% # Rec. Clause-clause subsumption calls : 530
% # Unit Clause-clause subsumption calls : 11
% # Rewrite failures with RHS unbound  : 0
% # Indexed BW rewrite attempts        : 7
% # Indexed BW rewrite successes       : 4
% # Backwards rewriting index:    76 leaves,   1.71+/-1.412 terms/leaf
% # Paramod-from index:           32 leaves,   1.56+/-0.747 terms/leaf
% # Paramod-into index:           73 leaves,   1.58+/-1.059 terms/leaf
% # -------------------------------------------------
% # User time              : 0.036 s
% # System time            : 0.004 s
% # Total time             : 0.040 s
% # Maximum resident set size: 0 pages
% PrfWatch: 0.13 CPU 0.21 WC
% FINAL PrfWatch: 0.13 CPU 0.22 WC
% SZS output end Solution for /tmp/SystemOnTPTP31743/SET636+3.tptp
% 
%------------------------------------------------------------------------------