TSTP Solution File: SET230-6 by E-SAT---3.1.00

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E-SAT---3.1.00
% Problem  : SET230-6 : TPTP v8.2.0. Bugfixed v2.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Tue May 21 02:58:05 EDT 2024

% Result   : Unsatisfiable 0.10s 0.44s
% Output   : CNFRefutation 0.10s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :   20
% Syntax   : Number of clauses     :  104 (  29 unt;  24 nHn;  72 RR)
%            Number of literals    :  205 (  49 equ;  90 neg)
%            Maximal clause size   :    3 (   1 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    4 (   2 usr;   1 prp; 0-2 aty)
%            Number of functors    :   14 (  14 usr;   4 con; 0-3 aty)
%            Number of variables   :  195 (  32 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(subclass_members,axiom,
    ( member(X3,X2)
    | ~ subclass(X1,X2)
    | ~ member(X3,X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',subclass_members) ).

cnf(cartesian_product3,axiom,
    ( member(ordered_pair(X1,X3),cross_product(X2,X4))
    | ~ member(X1,X2)
    | ~ member(X3,X4) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',cartesian_product3) ).

cnf(ordered_pair,axiom,
    unordered_pair(singleton(X1),unordered_pair(X1,singleton(X2))) = ordered_pair(X1,X2),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',ordered_pair) ).

cnf(singleton_set,axiom,
    unordered_pair(X1,X1) = singleton(X1),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',singleton_set) ).

cnf(complement1,axiom,
    ( ~ member(X1,complement(X2))
    | ~ member(X1,X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',complement1) ).

cnf(class_elements_are_sets,axiom,
    subclass(X1,universal_class),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',class_elements_are_sets) ).

cnf(cartesian_product1,axiom,
    ( member(X1,X3)
    | ~ member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',cartesian_product1) ).

cnf(regularity1,axiom,
    ( X1 = null_class
    | member(regular(X1),X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',regularity1) ).

cnf(cartesian_product2,axiom,
    ( member(X2,X4)
    | ~ member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',cartesian_product2) ).

cnf(prove_corollary_to_cross_product_cancellation_1,negated_conjecture,
    cross_product(u,u) = cross_product(w,w),
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_corollary_to_cross_product_cancellation_1) ).

cnf(not_subclass_members1,axiom,
    ( member(not_subclass_element(X1,X2),X1)
    | subclass(X1,X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',not_subclass_members1) ).

cnf(intersection1,axiom,
    ( member(X1,X2)
    | ~ member(X1,intersection(X2,X3)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',intersection1) ).

cnf(domain1,axiom,
    ( restrict(X1,singleton(X2),universal_class) != null_class
    | ~ member(X2,domain_of(X1)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',domain1) ).

cnf(subclass_implies_equal,axiom,
    ( X1 = X2
    | ~ subclass(X1,X2)
    | ~ subclass(X2,X1) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',subclass_implies_equal) ).

cnf(not_subclass_members2,axiom,
    ( subclass(X1,X2)
    | ~ member(not_subclass_element(X1,X2),X2) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',not_subclass_members2) ).

cnf(restriction1,axiom,
    intersection(X1,cross_product(X2,X3)) = restrict(X1,X2,X3),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',restriction1) ).

cnf(intersection3,axiom,
    ( member(X1,intersection(X2,X3))
    | ~ member(X1,X2)
    | ~ member(X1,X3) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',intersection3) ).

cnf(complement2,axiom,
    ( member(X1,complement(X2))
    | member(X1,X2)
    | ~ member(X1,universal_class) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',complement2) ).

cnf(intersection2,axiom,
    ( member(X1,X3)
    | ~ member(X1,intersection(X2,X3)) ),
    file('/export/starexec/sandbox2/benchmark/Axioms/SET004-0.ax',intersection2) ).

cnf(prove_corollary_to_cross_product_cancellation_2,negated_conjecture,
    u != w,
    file('/export/starexec/sandbox2/benchmark/theBenchmark.p',prove_corollary_to_cross_product_cancellation_2) ).

cnf(c_0_20,plain,
    ( member(X3,X2)
    | ~ subclass(X1,X2)
    | ~ member(X3,X1) ),
    inference(fof_simplification,[status(thm)],[subclass_members]) ).

cnf(c_0_21,plain,
    ( member(ordered_pair(X1,X3),cross_product(X2,X4))
    | ~ member(X1,X2)
    | ~ member(X3,X4) ),
    inference(fof_simplification,[status(thm)],[cartesian_product3]) ).

cnf(c_0_22,axiom,
    unordered_pair(singleton(X1),unordered_pair(X1,singleton(X2))) = ordered_pair(X1,X2),
    ordered_pair ).

cnf(c_0_23,axiom,
    unordered_pair(X1,X1) = singleton(X1),
    singleton_set ).

cnf(c_0_24,plain,
    ( ~ member(X1,complement(X2))
    | ~ member(X1,X2) ),
    inference(fof_simplification,[status(thm)],[complement1]) ).

cnf(c_0_25,plain,
    ( member(X3,X2)
    | ~ subclass(X1,X2)
    | ~ member(X3,X1) ),
    c_0_20 ).

cnf(c_0_26,axiom,
    subclass(X1,universal_class),
    class_elements_are_sets ).

cnf(c_0_27,plain,
    ( member(X1,X3)
    | ~ member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    inference(fof_simplification,[status(thm)],[cartesian_product1]) ).

cnf(c_0_28,plain,
    ( member(ordered_pair(X1,X3),cross_product(X2,X4))
    | ~ member(X1,X2)
    | ~ member(X3,X4) ),
    c_0_21 ).

cnf(c_0_29,plain,
    unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X2,X2))) = ordered_pair(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_22,c_0_23]),c_0_23]) ).

cnf(c_0_30,plain,
    ( ~ member(X1,complement(X2))
    | ~ member(X1,X2) ),
    c_0_24 ).

cnf(c_0_31,axiom,
    ( X1 = null_class
    | member(regular(X1),X1) ),
    regularity1 ).

cnf(c_0_32,plain,
    ( member(X1,universal_class)
    | ~ member(X1,X2) ),
    inference(spm,[status(thm)],[c_0_25,c_0_26]) ).

cnf(c_0_33,plain,
    ( member(X2,X4)
    | ~ member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    inference(fof_simplification,[status(thm)],[cartesian_product2]) ).

cnf(c_0_34,plain,
    ( member(X1,X3)
    | ~ member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    c_0_27 ).

cnf(c_0_35,plain,
    ( member(unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X3,X3))),cross_product(X2,X4))
    | ~ member(X3,X4)
    | ~ member(X1,X2) ),
    inference(rw,[status(thm)],[c_0_28,c_0_29]) ).

cnf(c_0_36,negated_conjecture,
    cross_product(u,u) = cross_product(w,w),
    prove_corollary_to_cross_product_cancellation_1 ).

cnf(c_0_37,plain,
    ( complement(X1) = null_class
    | ~ member(regular(complement(X1)),X1) ),
    inference(spm,[status(thm)],[c_0_30,c_0_31]) ).

cnf(c_0_38,plain,
    ( X1 = null_class
    | member(regular(X1),universal_class) ),
    inference(spm,[status(thm)],[c_0_32,c_0_31]) ).

cnf(c_0_39,axiom,
    ( member(not_subclass_element(X1,X2),X1)
    | subclass(X1,X2) ),
    not_subclass_members1 ).

cnf(c_0_40,plain,
    ( member(X1,X2)
    | ~ member(X1,intersection(X2,X3)) ),
    inference(fof_simplification,[status(thm)],[intersection1]) ).

cnf(c_0_41,plain,
    ( member(X2,X4)
    | ~ member(ordered_pair(X1,X2),cross_product(X3,X4)) ),
    c_0_33 ).

cnf(c_0_42,plain,
    ( member(X1,X3)
    | ~ member(unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X2,X2))),cross_product(X3,X4)) ),
    inference(rw,[status(thm)],[c_0_34,c_0_29]) ).

cnf(c_0_43,negated_conjecture,
    ( member(unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X2,X2))),cross_product(w,w))
    | ~ member(X2,u)
    | ~ member(X1,u) ),
    inference(spm,[status(thm)],[c_0_35,c_0_36]) ).

cnf(c_0_44,plain,
    null_class = complement(universal_class),
    inference(spm,[status(thm)],[c_0_37,c_0_38]) ).

cnf(c_0_45,plain,
    ( restrict(X1,singleton(X2),universal_class) != null_class
    | ~ member(X2,domain_of(X1)) ),
    inference(fof_simplification,[status(thm)],[domain1]) ).

cnf(c_0_46,plain,
    ( X1 = X2
    | ~ subclass(X1,X2)
    | ~ subclass(X2,X1) ),
    inference(fof_simplification,[status(thm)],[subclass_implies_equal]) ).

cnf(c_0_47,plain,
    ( subclass(complement(X1),X2)
    | ~ member(not_subclass_element(complement(X1),X2),X1) ),
    inference(spm,[status(thm)],[c_0_30,c_0_39]) ).

cnf(c_0_48,plain,
    ( member(not_subclass_element(X1,X2),universal_class)
    | subclass(X1,X2) ),
    inference(spm,[status(thm)],[c_0_32,c_0_39]) ).

cnf(c_0_49,plain,
    ( subclass(X1,X2)
    | ~ member(not_subclass_element(X1,X2),X2) ),
    inference(fof_simplification,[status(thm)],[not_subclass_members2]) ).

cnf(c_0_50,plain,
    ( member(X1,X2)
    | ~ member(X1,intersection(X2,X3)) ),
    c_0_40 ).

cnf(c_0_51,plain,
    ( member(X2,X4)
    | ~ member(unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X2,X2))),cross_product(X3,X4)) ),
    inference(rw,[status(thm)],[c_0_41,c_0_29]) ).

cnf(c_0_52,negated_conjecture,
    ( member(X1,w)
    | ~ member(X2,u)
    | ~ member(X1,u) ),
    inference(spm,[status(thm)],[c_0_42,c_0_43]) ).

cnf(c_0_53,plain,
    ( X1 = complement(universal_class)
    | member(regular(X1),X1) ),
    inference(rw,[status(thm)],[c_0_31,c_0_44]) ).

cnf(c_0_54,plain,
    ( restrict(X1,singleton(X2),universal_class) != null_class
    | ~ member(X2,domain_of(X1)) ),
    c_0_45 ).

cnf(c_0_55,axiom,
    intersection(X1,cross_product(X2,X3)) = restrict(X1,X2,X3),
    restriction1 ).

cnf(c_0_56,plain,
    ( X1 = X2
    | ~ subclass(X1,X2)
    | ~ subclass(X2,X1) ),
    c_0_46 ).

cnf(c_0_57,plain,
    subclass(complement(universal_class),X1),
    inference(spm,[status(thm)],[c_0_47,c_0_48]) ).

cnf(c_0_58,plain,
    ( subclass(X1,X2)
    | ~ member(not_subclass_element(X1,X2),X2) ),
    c_0_49 ).

cnf(c_0_59,plain,
    ( member(not_subclass_element(intersection(X1,X2),X3),X1)
    | subclass(intersection(X1,X2),X3) ),
    inference(spm,[status(thm)],[c_0_50,c_0_39]) ).

cnf(c_0_60,negated_conjecture,
    ( member(X1,u)
    | ~ member(unordered_pair(unordered_pair(X2,X2),unordered_pair(X2,unordered_pair(X1,X1))),cross_product(w,w)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_36]) ).

cnf(c_0_61,negated_conjecture,
    ( u = complement(universal_class)
    | member(X1,w)
    | ~ member(X1,u) ),
    inference(spm,[status(thm)],[c_0_52,c_0_53]) ).

cnf(c_0_62,plain,
    ( intersection(X1,cross_product(unordered_pair(X2,X2),universal_class)) != null_class
    | ~ member(X2,domain_of(X1)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_54,c_0_23]),c_0_55]) ).

cnf(c_0_63,plain,
    ( X1 = complement(universal_class)
    | ~ subclass(X1,complement(universal_class)) ),
    inference(spm,[status(thm)],[c_0_56,c_0_57]) ).

cnf(c_0_64,plain,
    subclass(intersection(X1,X2),X1),
    inference(spm,[status(thm)],[c_0_58,c_0_59]) ).

cnf(c_0_65,negated_conjecture,
    ( member(X1,u)
    | ~ member(X1,w)
    | ~ member(X2,w) ),
    inference(spm,[status(thm)],[c_0_60,c_0_35]) ).

cnf(c_0_66,negated_conjecture,
    ( u = complement(universal_class)
    | member(regular(u),w) ),
    inference(spm,[status(thm)],[c_0_61,c_0_53]) ).

cnf(c_0_67,plain,
    ( intersection(X1,cross_product(unordered_pair(X2,X2),universal_class)) != complement(universal_class)
    | ~ member(X2,domain_of(X1)) ),
    inference(rw,[status(thm)],[c_0_62,c_0_44]) ).

cnf(c_0_68,plain,
    intersection(complement(universal_class),X1) = complement(universal_class),
    inference(spm,[status(thm)],[c_0_63,c_0_64]) ).

cnf(c_0_69,plain,
    ( member(X1,intersection(X2,X3))
    | ~ member(X1,X2)
    | ~ member(X1,X3) ),
    inference(fof_simplification,[status(thm)],[intersection3]) ).

cnf(c_0_70,negated_conjecture,
    ( u = complement(universal_class)
    | member(X1,u)
    | ~ member(X1,w) ),
    inference(spm,[status(thm)],[c_0_65,c_0_66]) ).

cnf(c_0_71,plain,
    ~ member(X1,domain_of(complement(universal_class))),
    inference(spm,[status(thm)],[c_0_67,c_0_68]) ).

cnf(c_0_72,plain,
    ( member(X1,complement(X2))
    | member(X1,X2)
    | ~ member(X1,universal_class) ),
    inference(fof_simplification,[status(thm)],[complement2]) ).

cnf(c_0_73,plain,
    ( member(X1,intersection(X2,X3))
    | ~ member(X1,X2)
    | ~ member(X1,X3) ),
    c_0_69 ).

cnf(c_0_74,plain,
    ( member(X1,X3)
    | ~ member(X1,intersection(X2,X3)) ),
    inference(fof_simplification,[status(thm)],[intersection2]) ).

cnf(c_0_75,negated_conjecture,
    ( u = complement(universal_class)
    | subclass(X1,u)
    | ~ member(not_subclass_element(X1,u),w) ),
    inference(spm,[status(thm)],[c_0_58,c_0_70]) ).

cnf(c_0_76,negated_conjecture,
    u != w,
    inference(fof_simplification,[status(thm)],[prove_corollary_to_cross_product_cancellation_2]) ).

cnf(c_0_77,plain,
    ( intersection(X1,X2) = complement(universal_class)
    | member(regular(intersection(X1,X2)),X1) ),
    inference(spm,[status(thm)],[c_0_50,c_0_53]) ).

cnf(c_0_78,plain,
    domain_of(complement(universal_class)) = complement(universal_class),
    inference(spm,[status(thm)],[c_0_71,c_0_53]) ).

cnf(c_0_79,plain,
    ( member(X1,complement(X2))
    | member(X1,X2)
    | ~ member(X1,universal_class) ),
    c_0_72 ).

cnf(c_0_80,plain,
    ( subclass(X1,intersection(X2,X3))
    | ~ member(not_subclass_element(X1,intersection(X2,X3)),X3)
    | ~ member(not_subclass_element(X1,intersection(X2,X3)),X2) ),
    inference(spm,[status(thm)],[c_0_58,c_0_73]) ).

cnf(c_0_81,plain,
    ( member(X1,X3)
    | ~ member(X1,intersection(X2,X3)) ),
    c_0_74 ).

cnf(c_0_82,negated_conjecture,
    ( u = complement(universal_class)
    | subclass(w,u) ),
    inference(spm,[status(thm)],[c_0_75,c_0_39]) ).

cnf(c_0_83,negated_conjecture,
    u != w,
    c_0_76 ).

cnf(c_0_84,plain,
    ( intersection(complement(X1),X2) = complement(universal_class)
    | ~ member(regular(intersection(complement(X1),X2)),X1) ),
    inference(spm,[status(thm)],[c_0_30,c_0_77]) ).

cnf(c_0_85,negated_conjecture,
    ( w = complement(universal_class)
    | member(X1,u)
    | ~ member(X1,w) ),
    inference(spm,[status(thm)],[c_0_65,c_0_53]) ).

cnf(c_0_86,plain,
    ~ member(X1,complement(universal_class)),
    inference(rw,[status(thm)],[c_0_71,c_0_78]) ).

cnf(c_0_87,plain,
    ( member(not_subclass_element(X1,complement(X2)),X2)
    | subclass(X1,complement(X2)) ),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_58,c_0_79]),c_0_48]) ).

cnf(c_0_88,plain,
    ( subclass(X1,intersection(X2,X1))
    | ~ member(not_subclass_element(X1,intersection(X2,X1)),X2) ),
    inference(spm,[status(thm)],[c_0_80,c_0_39]) ).

cnf(c_0_89,plain,
    ( member(not_subclass_element(intersection(X1,X2),X3),X2)
    | subclass(intersection(X1,X2),X3) ),
    inference(spm,[status(thm)],[c_0_81,c_0_39]) ).

cnf(c_0_90,negated_conjecture,
    ( u = complement(universal_class)
    | member(not_subclass_element(u,X1),w)
    | subclass(u,X1) ),
    inference(spm,[status(thm)],[c_0_61,c_0_39]) ).

cnf(c_0_91,negated_conjecture,
    ( u = complement(universal_class)
    | ~ subclass(u,w) ),
    inference(sr,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_82]),c_0_83]) ).

cnf(c_0_92,negated_conjecture,
    ( intersection(complement(u),X1) = complement(universal_class)
    | w = complement(universal_class)
    | ~ member(regular(intersection(complement(u),X1)),w) ),
    inference(spm,[status(thm)],[c_0_84,c_0_85]) ).

cnf(c_0_93,plain,
    ( intersection(X1,X2) = complement(universal_class)
    | member(regular(intersection(X1,X2)),X2) ),
    inference(spm,[status(thm)],[c_0_81,c_0_53]) ).

cnf(c_0_94,plain,
    ( universal_class = X1
    | ~ subclass(universal_class,X1) ),
    inference(spm,[status(thm)],[c_0_56,c_0_26]) ).

cnf(c_0_95,plain,
    subclass(X1,complement(complement(universal_class))),
    inference(spm,[status(thm)],[c_0_86,c_0_87]) ).

cnf(c_0_96,plain,
    subclass(X1,intersection(universal_class,X1)),
    inference(spm,[status(thm)],[c_0_88,c_0_48]) ).

cnf(c_0_97,plain,
    subclass(intersection(X1,X2),X2),
    inference(spm,[status(thm)],[c_0_58,c_0_89]) ).

cnf(c_0_98,negated_conjecture,
    u = complement(universal_class),
    inference(csr,[status(thm)],[inference(spm,[status(thm)],[c_0_58,c_0_90]),c_0_91]) ).

cnf(c_0_99,negated_conjecture,
    ( intersection(complement(u),w) = complement(universal_class)
    | w = complement(universal_class) ),
    inference(spm,[status(thm)],[c_0_92,c_0_93]) ).

cnf(c_0_100,plain,
    complement(complement(universal_class)) = universal_class,
    inference(spm,[status(thm)],[c_0_94,c_0_95]) ).

cnf(c_0_101,plain,
    intersection(universal_class,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_56,c_0_96]),c_0_97])]) ).

cnf(c_0_102,negated_conjecture,
    w != complement(universal_class),
    inference(rw,[status(thm)],[c_0_83,c_0_98]) ).

cnf(c_0_103,negated_conjecture,
    $false,
    inference(sr,[status(thm)],[inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_99,c_0_98]),c_0_100]),c_0_101])]),c_0_102]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.07  % Problem    : SET230-6 : TPTP v8.2.0. Bugfixed v2.1.0.
% 0.00/0.07  % Command    : run_E %s %d THM
% 0.06/0.26  % Computer : n018.cluster.edu
% 0.06/0.26  % Model    : x86_64 x86_64
% 0.06/0.26  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.06/0.26  % Memory   : 8042.1875MB
% 0.06/0.26  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.06/0.26  % CPULimit   : 300
% 0.06/0.26  % WCLimit    : 300
% 0.06/0.26  % DateTime   : Mon May 20 11:27:22 EDT 2024
% 0.06/0.26  % CPUTime    : 
% 0.10/0.34  Running first-order model finding
% 0.10/0.34  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --satauto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.10/0.44  # Version: 3.1.0
% 0.10/0.44  # Preprocessing class: FSLSSMSMSSSNFFN.
% 0.10/0.44  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.10/0.44  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 1500s (5) cores
% 0.10/0.44  # Starting new_bool_3 with 300s (1) cores
% 0.10/0.44  # Starting new_bool_1 with 300s (1) cores
% 0.10/0.44  # Starting sh5l with 300s (1) cores
% 0.10/0.44  # C07_19_nc_SOS_SAT001_MinMin_p005000_rr with pid 3946 completed with status 0
% 0.10/0.44  # Result found by C07_19_nc_SOS_SAT001_MinMin_p005000_rr
% 0.10/0.44  # Preprocessing class: FSLSSMSMSSSNFFN.
% 0.10/0.44  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.10/0.44  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 1500s (5) cores
% 0.10/0.44  # No SInE strategy applied
% 0.10/0.44  # Search class: FGHSM-FFLM31-DFFFFFNN
% 0.10/0.44  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 0.10/0.44  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 313s (1) cores
% 0.10/0.44  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 151s (1) cores
% 0.10/0.44  # Starting new_bool_1 with 308s (1) cores
% 0.10/0.44  # Starting sh5l with 304s (1) cores
% 0.10/0.44  # Starting G-E--_208_C18C--_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 0.10/0.44  # C07_19_nc_SOS_SAT001_MinMin_p005000_rr with pid 3955 completed with status 0
% 0.10/0.44  # Result found by C07_19_nc_SOS_SAT001_MinMin_p005000_rr
% 0.10/0.44  # Preprocessing class: FSLSSMSMSSSNFFN.
% 0.10/0.44  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 0.10/0.44  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 1500s (5) cores
% 0.10/0.44  # No SInE strategy applied
% 0.10/0.44  # Search class: FGHSM-FFLM31-DFFFFFNN
% 0.10/0.44  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 0.10/0.44  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AN with 313s (1) cores
% 0.10/0.44  # Starting C07_19_nc_SOS_SAT001_MinMin_p005000_rr with 151s (1) cores
% 0.10/0.44  # Preprocessing time       : 0.003 s
% 0.10/0.44  # Presaturation interreduction done
% 0.10/0.44  
% 0.10/0.44  # Proof found!
% 0.10/0.44  # SZS status Unsatisfiable
% 0.10/0.44  # SZS output start CNFRefutation
% See solution above
% 0.10/0.44  # Parsed axioms                        : 114
% 0.10/0.44  # Removed by relevancy pruning/SinE    : 0
% 0.10/0.44  # Initial clauses                      : 114
% 0.10/0.44  # Removed in clause preprocessing      : 17
% 0.10/0.44  # Initial clauses in saturation        : 97
% 0.10/0.44  # Processed clauses                    : 1334
% 0.10/0.44  # ...of these trivial                  : 5
% 0.10/0.44  # ...subsumed                          : 633
% 0.10/0.44  # ...remaining for further processing  : 696
% 0.10/0.44  # Other redundant clauses eliminated   : 10
% 0.10/0.44  # Clauses deleted for lack of memory   : 0
% 0.10/0.44  # Backward-subsumed                    : 16
% 0.10/0.44  # Backward-rewritten                   : 119
% 0.10/0.44  # Generated clauses                    : 4440
% 0.10/0.44  # ...of the previous two non-redundant : 4058
% 0.10/0.44  # ...aggressively subsumed             : 0
% 0.10/0.44  # Contextual simplify-reflections      : 8
% 0.10/0.44  # Paramodulations                      : 4422
% 0.10/0.44  # Factorizations                       : 6
% 0.10/0.44  # NegExts                              : 0
% 0.10/0.44  # Equation resolutions                 : 10
% 0.10/0.44  # Disequality decompositions           : 0
% 0.10/0.44  # Total rewrite steps                  : 890
% 0.10/0.44  # ...of those cached                   : 710
% 0.10/0.44  # Propositional unsat checks           : 0
% 0.10/0.44  #    Propositional check models        : 0
% 0.10/0.44  #    Propositional check unsatisfiable : 0
% 0.10/0.44  #    Propositional clauses             : 0
% 0.10/0.44  #    Propositional clauses after purity: 0
% 0.10/0.44  #    Propositional unsat core size     : 0
% 0.10/0.44  #    Propositional preprocessing time  : 0.000
% 0.10/0.44  #    Propositional encoding time       : 0.000
% 0.10/0.44  #    Propositional solver time         : 0.000
% 0.10/0.44  #    Success case prop preproc time    : 0.000
% 0.10/0.44  #    Success case prop encoding time   : 0.000
% 0.10/0.44  #    Success case prop solver time     : 0.000
% 0.10/0.44  # Current number of processed clauses  : 459
% 0.10/0.44  #    Positive orientable unit clauses  : 73
% 0.10/0.44  #    Positive unorientable unit clauses: 1
% 0.10/0.44  #    Negative unit clauses             : 7
% 0.10/0.44  #    Non-unit-clauses                  : 378
% 0.10/0.44  # Current number of unprocessed clauses: 2847
% 0.10/0.44  # ...number of literals in the above   : 9979
% 0.10/0.44  # Current number of archived formulas  : 0
% 0.10/0.44  # Current number of archived clauses   : 250
% 0.10/0.44  # Clause-clause subsumption calls (NU) : 47981
% 0.10/0.44  # Rec. Clause-clause subsumption calls : 24200
% 0.10/0.44  # Non-unit clause-clause subsumptions  : 509
% 0.10/0.44  # Unit Clause-clause subsumption calls : 1348
% 0.10/0.44  # Rewrite failures with RHS unbound    : 0
% 0.10/0.44  # BW rewrite match attempts            : 83
% 0.10/0.44  # BW rewrite match successes           : 20
% 0.10/0.44  # Condensation attempts                : 0
% 0.10/0.44  # Condensation successes               : 0
% 0.10/0.44  # Termbank termtop insertions          : 121647
% 0.10/0.44  # Search garbage collected termcells   : 185
% 0.10/0.44  
% 0.10/0.44  # -------------------------------------------------
% 0.10/0.44  # User time                : 0.088 s
% 0.10/0.44  # System time              : 0.009 s
% 0.10/0.44  # Total time               : 0.096 s
% 0.10/0.44  # Maximum resident set size: 2008 pages
% 0.10/0.44  
% 0.10/0.44  # -------------------------------------------------
% 0.10/0.44  # User time                : 0.449 s
% 0.10/0.44  # System time              : 0.028 s
% 0.10/0.44  # Total time               : 0.476 s
% 0.10/0.44  # Maximum resident set size: 1796 pages
% 0.10/0.44  % E---3.1 exiting
%------------------------------------------------------------------------------