TSTP Solution File: SET103+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SET103+1 : TPTP v5.3.0. Bugfixed v5.4.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : sharpsburg.cs.miami.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Core(TM)2 CPU          6600  @ 2.40GHz @ 2400MHz
% Memory   : 1003MB
% OS       : Linux 2.6.32.26-175.fc12.x86_64
% CPULimit : 300s
% DateTime : Fri Jun 15 11:08:29 EDT 2012

% Result   : Theorem 0.34s
% Output   : Solution 0.34s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP32359/SET103+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... found
% SZS status THM for /tmp/SystemOnTPTP32359/SET103+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP32359/SET103+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.5/eproof_ram --print-statistics -xAuto -tAuto --cpu-limit=60 --memory-limit=Auto --tstp-format /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 32457
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.01 WC
% # Auto-Ordering is analysing problem.
% # Problem is type GHSMNFFMS21MD
% # Auto-mode selected ordering type KBO6
% # Auto-mode selected ordering precedence scheme <invfreq>
% # Auto-mode selected weight ordering scheme <invfreqrank>
% #
% # Auto-Heuristic is analysing problem.
% # Problem is type GHSMNFFMS21MD
% # Auto-Mode selected heuristic G_E___103_C18_F1_PI_AE_Q4_CS_SP_S0Y
% # and selection function SelectMaxLComplexAvoidPosPred.
% #
% # Initializing proof state
% # Scanning for AC axioms
% # Proof found!
% # SZS status Theorem
% # Parsed axioms                      : 44
% # Removed by relevancy pruning       : 0
% # Initial clauses                    : 91
% # Removed in clause preprocessing    : 8
% # Initial clauses in saturation      : 83
% # Processed clauses                  : 136
% # ...of these trivial                : 3
% # ...subsumed                        : 20
% # ...remaining for further processing: 113
% # Other redundant clauses eliminated : 7
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 4
% # Backward-rewritten                 : 3
% # Generated clauses                  : 511
% # ...of the previous two non-trivial : 351
% # Contextual simplify-reflections    : 2
% # Paramodulations                    : 500
% # Factorizations                     : 2
% # Equation resolutions               : 9
% # Current number of processed clauses: 102
% #    Positive orientable unit clauses: 23
% #    Positive unorientable unit clauses: 0
% #    Negative unit clauses           : 2
% #    Non-unit-clauses                : 77
% # Current number of unprocessed clauses: 262
% # ...number of literals in the above : 746
% # Clause-clause subsumption calls (NU) : 1417
% # Rec. Clause-clause subsumption calls : 1279
% # Non-unit clause-clause subsumptions: 17
% # Unit Clause-clause subsumption calls : 411
% # Rewrite failures with RHS unbound  : 0
% # BW rewrite match attempts          : 16
% # BW rewrite match successes         : 3
% # Backwards rewriting index :   771 nodes,   136 leaves,   1.72+/-1.547 terms/leaf
% # Paramod-from index      :   315 nodes,    53 leaves,   1.08+/-0.264 terms/leaf
% # Paramod-into index      :   605 nodes,   103 leaves,   1.60+/-1.457 terms/leaf
% # Paramod-neg-atom index  :   160 nodes,    29 leaves,   1.31+/-0.463 terms/leaf
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:![X3]:(member(X1,unordered_pair(X2,X3))<=>(member(X1,universal_class)&(X1=X2|X1=X3))),file('/tmp/SRASS.s.p', unordered_pair_defn)).
% fof(3, axiom,![X2]:singleton(X2)=unordered_pair(X2,X2),file('/tmp/SRASS.s.p', singleton_set_defn)).
% fof(4, axiom,![X2]:![X3]:ordered_pair(X2,X3)=unordered_pair(singleton(X2),unordered_pair(X2,singleton(X3))),file('/tmp/SRASS.s.p', ordered_pair_defn)).
% fof(6, axiom,![X2]:(~(X2=null_class)=>?[X1]:((member(X1,universal_class)&member(X1,X2))&disjoint(X1,X2))),file('/tmp/SRASS.s.p', regularity)).
% fof(44, conjecture,![X2]:![X3]:(unordered_pair(singleton(X2),unordered_pair(X2,null_class))=ordered_pair(X2,X3)|member(X3,universal_class)),file('/tmp/SRASS.s.p', property_1_of_ordered_pair)).
% fof(45, negated_conjecture,~(![X2]:![X3]:(unordered_pair(singleton(X2),unordered_pair(X2,null_class))=ordered_pair(X2,X3)|member(X3,universal_class))),inference(assume_negation,[status(cth)],[44])).
% fof(48, plain,![X1]:![X2]:![X3]:((~(member(X1,unordered_pair(X2,X3)))|(member(X1,universal_class)&(X1=X2|X1=X3)))&((~(member(X1,universal_class))|(~(X1=X2)&~(X1=X3)))|member(X1,unordered_pair(X2,X3)))),inference(fof_nnf,[status(thm)],[1])).
% fof(49, plain,(![X1]:![X2]:![X3]:(~(member(X1,unordered_pair(X2,X3)))|(member(X1,universal_class)&(X1=X2|X1=X3)))&![X1]:![X2]:![X3]:((~(member(X1,universal_class))|(~(X1=X2)&~(X1=X3)))|member(X1,unordered_pair(X2,X3)))),inference(shift_quantors,[status(thm)],[48])).
% fof(50, plain,(![X4]:![X5]:![X6]:(~(member(X4,unordered_pair(X5,X6)))|(member(X4,universal_class)&(X4=X5|X4=X6)))&![X7]:![X8]:![X9]:((~(member(X7,universal_class))|(~(X7=X8)&~(X7=X9)))|member(X7,unordered_pair(X8,X9)))),inference(variable_rename,[status(thm)],[49])).
% fof(51, plain,![X4]:![X5]:![X6]:![X7]:![X8]:![X9]:((~(member(X4,unordered_pair(X5,X6)))|(member(X4,universal_class)&(X4=X5|X4=X6)))&((~(member(X7,universal_class))|(~(X7=X8)&~(X7=X9)))|member(X7,unordered_pair(X8,X9)))),inference(shift_quantors,[status(thm)],[50])).
% fof(52, plain,![X4]:![X5]:![X6]:![X7]:![X8]:![X9]:(((member(X4,universal_class)|~(member(X4,unordered_pair(X5,X6))))&((X4=X5|X4=X6)|~(member(X4,unordered_pair(X5,X6)))))&(((~(X7=X8)|~(member(X7,universal_class)))|member(X7,unordered_pair(X8,X9)))&((~(X7=X9)|~(member(X7,universal_class)))|member(X7,unordered_pair(X8,X9))))),inference(distribute,[status(thm)],[51])).
% cnf(55,plain,(X1=X3|X1=X2|~member(X1,unordered_pair(X2,X3))),inference(split_conjunct,[status(thm)],[52])).
% fof(59, plain,![X3]:singleton(X3)=unordered_pair(X3,X3),inference(variable_rename,[status(thm)],[3])).
% cnf(60,plain,(singleton(X1)=unordered_pair(X1,X1)),inference(split_conjunct,[status(thm)],[59])).
% fof(61, plain,![X4]:![X5]:ordered_pair(X4,X5)=unordered_pair(singleton(X4),unordered_pair(X4,singleton(X5))),inference(variable_rename,[status(thm)],[4])).
% cnf(62,plain,(ordered_pair(X1,X2)=unordered_pair(singleton(X1),unordered_pair(X1,singleton(X2)))),inference(split_conjunct,[status(thm)],[61])).
% fof(65, plain,![X2]:(X2=null_class|?[X1]:((member(X1,universal_class)&member(X1,X2))&disjoint(X1,X2))),inference(fof_nnf,[status(thm)],[6])).
% fof(66, plain,![X3]:(X3=null_class|?[X4]:((member(X4,universal_class)&member(X4,X3))&disjoint(X4,X3))),inference(variable_rename,[status(thm)],[65])).
% fof(67, plain,![X3]:(X3=null_class|((member(esk1_1(X3),universal_class)&member(esk1_1(X3),X3))&disjoint(esk1_1(X3),X3))),inference(skolemize,[status(esa)],[66])).
% fof(68, plain,![X3]:(((member(esk1_1(X3),universal_class)|X3=null_class)&(member(esk1_1(X3),X3)|X3=null_class))&(disjoint(esk1_1(X3),X3)|X3=null_class)),inference(distribute,[status(thm)],[67])).
% cnf(70,plain,(X1=null_class|member(esk1_1(X1),X1)),inference(split_conjunct,[status(thm)],[68])).
% cnf(71,plain,(X1=null_class|member(esk1_1(X1),universal_class)),inference(split_conjunct,[status(thm)],[68])).
% fof(273, negated_conjecture,?[X2]:?[X3]:(~(unordered_pair(singleton(X2),unordered_pair(X2,null_class))=ordered_pair(X2,X3))&~(member(X3,universal_class))),inference(fof_nnf,[status(thm)],[45])).
% fof(274, negated_conjecture,?[X4]:?[X5]:(~(unordered_pair(singleton(X4),unordered_pair(X4,null_class))=ordered_pair(X4,X5))&~(member(X5,universal_class))),inference(variable_rename,[status(thm)],[273])).
% fof(275, negated_conjecture,(~(unordered_pair(singleton(esk8_0),unordered_pair(esk8_0,null_class))=ordered_pair(esk8_0,esk9_0))&~(member(esk9_0,universal_class))),inference(skolemize,[status(esa)],[274])).
% cnf(276,negated_conjecture,(~member(esk9_0,universal_class)),inference(split_conjunct,[status(thm)],[275])).
% cnf(277,negated_conjecture,(unordered_pair(singleton(esk8_0),unordered_pair(esk8_0,null_class))!=ordered_pair(esk8_0,esk9_0)),inference(split_conjunct,[status(thm)],[275])).
% cnf(280,plain,(unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X2,X2)))=ordered_pair(X1,X2)),inference(rw,[status(thm)],[inference(rw,[status(thm)],[62,60,theory(equality)]),60,theory(equality)]),['unfolding']).
% cnf(284,negated_conjecture,(unordered_pair(unordered_pair(esk8_0,esk8_0),unordered_pair(esk8_0,null_class))!=ordered_pair(esk8_0,esk9_0)),inference(rw,[status(thm)],[277,60,theory(equality)]),['unfolding']).
% cnf(331,negated_conjecture,(unordered_pair(unordered_pair(esk8_0,esk8_0),unordered_pair(esk8_0,null_class))!=unordered_pair(unordered_pair(esk8_0,esk8_0),unordered_pair(esk8_0,unordered_pair(esk9_0,esk9_0)))),inference(rw,[status(thm)],[284,280,theory(equality)]),['unfolding']).
% cnf(344,plain,(esk1_1(unordered_pair(X1,X2))=X1|esk1_1(unordered_pair(X1,X2))=X2|null_class=unordered_pair(X1,X2)),inference(spm,[status(thm)],[55,70,theory(equality)])).
% cnf(695,plain,(esk1_1(unordered_pair(X3,X4))=X3|unordered_pair(X3,X4)=null_class|X4!=X3),inference(ef,[status(thm)],[344,theory(equality)])).
% cnf(706,plain,(esk1_1(unordered_pair(X1,X1))=X1|unordered_pair(X1,X1)=null_class),inference(er,[status(thm)],[695,theory(equality)])).
% cnf(708,plain,(null_class=unordered_pair(X1,X1)|member(X1,universal_class)),inference(spm,[status(thm)],[71,706,theory(equality)])).
% cnf(712,negated_conjecture,(unordered_pair(esk9_0,esk9_0)=null_class),inference(spm,[status(thm)],[276,708,theory(equality)])).
% cnf(951,negated_conjecture,($false),inference(rw,[status(thm)],[331,712,theory(equality)])).
% cnf(952,negated_conjecture,($false),inference(cn,[status(thm)],[951,theory(equality)])).
% cnf(953,negated_conjecture,($false),952,['proof']).
% # SZS output end CNFRefutation
% PrfWatch: 0.04 CPU 0.07 WC
% FINAL PrfWatch: 0.04 CPU 0.07 WC
% SZS output end Solution for /tmp/SystemOnTPTP32359/SET103+1.tptp
% 
%------------------------------------------------------------------------------