TSTP Solution File: SET103+1 by SInE---0.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SInE---0.4
% Problem  : SET103+1 : TPTP v5.3.0. Bugfixed v5.4.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : Source/sine.py -e eprover -t %d %s

% Computer : newtonia.cs.miami.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Core(TM)2 CPU          6600  @ 2.40GHz @ 2400MHz
% Memory   : 1003MB
% OS       : Linux 2.6.32.26-175.fc12.x86_64
% CPULimit : 300s
% DateTime : Fri Jun 15 08:07:00 EDT 2012

% Result   : Theorem 0.20s
% Output   : CNFRefutation 0.20s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   15
%            Number of leaves      :    8
% Syntax   : Number of formulae    :   54 (  23 unt;   0 def)
%            Number of atoms       :  149 (  17 equ)
%            Maximal formula atoms :   11 (   2 avg)
%            Number of connectives :  157 (  62   ~;  61   |;  30   &)
%                                         (   3 <=>;   1  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   10 (   4 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    5 (   3 usr;   1 prp; 0-2 aty)
%            Number of functors    :    8 (   8 usr;   4 con; 0-2 aty)
%            Number of variables   :   93 (   5 sgn  53   !;   6   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(1,axiom,
    ! [X1] : ~ member(X1,null_class),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',null_class_defn) ).

fof(7,axiom,
    ! [X1,X3] :
      ( equal(X1,X3)
    <=> ( subclass(X1,X3)
        & subclass(X3,X1) ) ),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',extensionality) ).

fof(10,axiom,
    ! [X1] : equal(singleton(X1),unordered_pair(X1,X1)),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',singleton_set_defn) ).

fof(15,axiom,
    ! [X1,X3] : equal(ordered_pair(X1,X3),unordered_pair(singleton(X1),unordered_pair(X1,singleton(X3)))),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',ordered_pair_defn) ).

fof(20,axiom,
    ! [X1,X3] :
      ( subclass(X1,X3)
    <=> ! [X4] :
          ( member(X4,X1)
         => member(X4,X3) ) ),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',subclass_defn) ).

fof(24,axiom,
    ! [X1] : subclass(X1,universal_class),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',class_elements_are_sets) ).

fof(25,axiom,
    ! [X4,X1,X3] :
      ( member(X4,unordered_pair(X1,X3))
    <=> ( member(X4,universal_class)
        & ( equal(X4,X1)
          | equal(X4,X3) ) ) ),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',unordered_pair_defn) ).

fof(27,conjecture,
    ! [X1,X3] :
      ( equal(unordered_pair(singleton(X1),unordered_pair(X1,null_class)),ordered_pair(X1,X3))
      | member(X3,universal_class) ),
    file('/tmp/tmpPme03W/sel_SET103+1.p_5',property_1_of_ordered_pair) ).

fof(28,negated_conjecture,
    ~ ! [X1,X3] :
        ( equal(unordered_pair(singleton(X1),unordered_pair(X1,null_class)),ordered_pair(X1,X3))
        | member(X3,universal_class) ),
    inference(assume_negation,[status(cth)],[27]) ).

fof(29,plain,
    ! [X1] : ~ member(X1,null_class),
    inference(fof_simplification,[status(thm)],[1,theory(equality)]) ).

fof(30,plain,
    ! [X2] : ~ member(X2,null_class),
    inference(variable_rename,[status(thm)],[29]) ).

cnf(31,plain,
    ~ member(X1,null_class),
    inference(split_conjunct,[status(thm)],[30]) ).

fof(58,plain,
    ! [X1,X3] :
      ( ( ~ equal(X1,X3)
        | ( subclass(X1,X3)
          & subclass(X3,X1) ) )
      & ( ~ subclass(X1,X3)
        | ~ subclass(X3,X1)
        | equal(X1,X3) ) ),
    inference(fof_nnf,[status(thm)],[7]) ).

fof(59,plain,
    ! [X4,X5] :
      ( ( ~ equal(X4,X5)
        | ( subclass(X4,X5)
          & subclass(X5,X4) ) )
      & ( ~ subclass(X4,X5)
        | ~ subclass(X5,X4)
        | equal(X4,X5) ) ),
    inference(variable_rename,[status(thm)],[58]) ).

fof(60,plain,
    ! [X4,X5] :
      ( ( subclass(X4,X5)
        | ~ equal(X4,X5) )
      & ( subclass(X5,X4)
        | ~ equal(X4,X5) )
      & ( ~ subclass(X4,X5)
        | ~ subclass(X5,X4)
        | equal(X4,X5) ) ),
    inference(distribute,[status(thm)],[59]) ).

cnf(61,plain,
    ( X1 = X2
    | ~ subclass(X2,X1)
    | ~ subclass(X1,X2) ),
    inference(split_conjunct,[status(thm)],[60]) ).

fof(72,plain,
    ! [X2] : equal(singleton(X2),unordered_pair(X2,X2)),
    inference(variable_rename,[status(thm)],[10]) ).

cnf(73,plain,
    singleton(X1) = unordered_pair(X1,X1),
    inference(split_conjunct,[status(thm)],[72]) ).

fof(83,plain,
    ! [X4,X5] : equal(ordered_pair(X4,X5),unordered_pair(singleton(X4),unordered_pair(X4,singleton(X5)))),
    inference(variable_rename,[status(thm)],[15]) ).

cnf(84,plain,
    ordered_pair(X1,X2) = unordered_pair(singleton(X1),unordered_pair(X1,singleton(X2))),
    inference(split_conjunct,[status(thm)],[83]) ).

fof(109,plain,
    ! [X1,X3] :
      ( ( ~ subclass(X1,X3)
        | ! [X4] :
            ( ~ member(X4,X1)
            | member(X4,X3) ) )
      & ( ? [X4] :
            ( member(X4,X1)
            & ~ member(X4,X3) )
        | subclass(X1,X3) ) ),
    inference(fof_nnf,[status(thm)],[20]) ).

fof(110,plain,
    ! [X5,X6] :
      ( ( ~ subclass(X5,X6)
        | ! [X7] :
            ( ~ member(X7,X5)
            | member(X7,X6) ) )
      & ( ? [X8] :
            ( member(X8,X5)
            & ~ member(X8,X6) )
        | subclass(X5,X6) ) ),
    inference(variable_rename,[status(thm)],[109]) ).

fof(111,plain,
    ! [X5,X6] :
      ( ( ~ subclass(X5,X6)
        | ! [X7] :
            ( ~ member(X7,X5)
            | member(X7,X6) ) )
      & ( ( member(esk4_2(X5,X6),X5)
          & ~ member(esk4_2(X5,X6),X6) )
        | subclass(X5,X6) ) ),
    inference(skolemize,[status(esa)],[110]) ).

fof(112,plain,
    ! [X5,X6,X7] :
      ( ( ~ member(X7,X5)
        | member(X7,X6)
        | ~ subclass(X5,X6) )
      & ( ( member(esk4_2(X5,X6),X5)
          & ~ member(esk4_2(X5,X6),X6) )
        | subclass(X5,X6) ) ),
    inference(shift_quantors,[status(thm)],[111]) ).

fof(113,plain,
    ! [X5,X6,X7] :
      ( ( ~ member(X7,X5)
        | member(X7,X6)
        | ~ subclass(X5,X6) )
      & ( member(esk4_2(X5,X6),X5)
        | subclass(X5,X6) )
      & ( ~ member(esk4_2(X5,X6),X6)
        | subclass(X5,X6) ) ),
    inference(distribute,[status(thm)],[112]) ).

cnf(115,plain,
    ( subclass(X1,X2)
    | member(esk4_2(X1,X2),X1) ),
    inference(split_conjunct,[status(thm)],[113]) ).

cnf(116,plain,
    ( member(X3,X2)
    | ~ subclass(X1,X2)
    | ~ member(X3,X1) ),
    inference(split_conjunct,[status(thm)],[113]) ).

fof(127,plain,
    ! [X2] : subclass(X2,universal_class),
    inference(variable_rename,[status(thm)],[24]) ).

cnf(128,plain,
    subclass(X1,universal_class),
    inference(split_conjunct,[status(thm)],[127]) ).

fof(129,plain,
    ! [X4,X1,X3] :
      ( ( ~ member(X4,unordered_pair(X1,X3))
        | ( member(X4,universal_class)
          & ( equal(X4,X1)
            | equal(X4,X3) ) ) )
      & ( ~ member(X4,universal_class)
        | ( ~ equal(X4,X1)
          & ~ equal(X4,X3) )
        | member(X4,unordered_pair(X1,X3)) ) ),
    inference(fof_nnf,[status(thm)],[25]) ).

fof(130,plain,
    ! [X5,X6,X7] :
      ( ( ~ member(X5,unordered_pair(X6,X7))
        | ( member(X5,universal_class)
          & ( equal(X5,X6)
            | equal(X5,X7) ) ) )
      & ( ~ member(X5,universal_class)
        | ( ~ equal(X5,X6)
          & ~ equal(X5,X7) )
        | member(X5,unordered_pair(X6,X7)) ) ),
    inference(variable_rename,[status(thm)],[129]) ).

fof(131,plain,
    ! [X5,X6,X7] :
      ( ( member(X5,universal_class)
        | ~ member(X5,unordered_pair(X6,X7)) )
      & ( equal(X5,X6)
        | equal(X5,X7)
        | ~ member(X5,unordered_pair(X6,X7)) )
      & ( ~ equal(X5,X6)
        | ~ member(X5,universal_class)
        | member(X5,unordered_pair(X6,X7)) )
      & ( ~ equal(X5,X7)
        | ~ member(X5,universal_class)
        | member(X5,unordered_pair(X6,X7)) ) ),
    inference(distribute,[status(thm)],[130]) ).

cnf(134,plain,
    ( X1 = X3
    | X1 = X2
    | ~ member(X1,unordered_pair(X2,X3)) ),
    inference(split_conjunct,[status(thm)],[131]) ).

fof(139,negated_conjecture,
    ? [X1,X3] :
      ( ~ equal(unordered_pair(singleton(X1),unordered_pair(X1,null_class)),ordered_pair(X1,X3))
      & ~ member(X3,universal_class) ),
    inference(fof_nnf,[status(thm)],[28]) ).

fof(140,negated_conjecture,
    ? [X4,X5] :
      ( ~ equal(unordered_pair(singleton(X4),unordered_pair(X4,null_class)),ordered_pair(X4,X5))
      & ~ member(X5,universal_class) ),
    inference(variable_rename,[status(thm)],[139]) ).

fof(141,negated_conjecture,
    ( ~ equal(unordered_pair(singleton(esk5_0),unordered_pair(esk5_0,null_class)),ordered_pair(esk5_0,esk6_0))
    & ~ member(esk6_0,universal_class) ),
    inference(skolemize,[status(esa)],[140]) ).

cnf(142,negated_conjecture,
    ~ member(esk6_0,universal_class),
    inference(split_conjunct,[status(thm)],[141]) ).

cnf(143,negated_conjecture,
    unordered_pair(singleton(esk5_0),unordered_pair(esk5_0,null_class)) != ordered_pair(esk5_0,esk6_0),
    inference(split_conjunct,[status(thm)],[141]) ).

cnf(145,plain,
    unordered_pair(unordered_pair(X1,X1),unordered_pair(X1,unordered_pair(X2,X2))) = ordered_pair(X1,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[84,73,theory(equality)]),73,theory(equality)]),
    [unfolding] ).

cnf(149,negated_conjecture,
    unordered_pair(unordered_pair(esk5_0,esk5_0),unordered_pair(esk5_0,null_class)) != ordered_pair(esk5_0,esk6_0),
    inference(rw,[status(thm)],[143,73,theory(equality)]),
    [unfolding] ).

cnf(177,negated_conjecture,
    unordered_pair(unordered_pair(esk5_0,esk5_0),unordered_pair(esk5_0,null_class)) != unordered_pair(unordered_pair(esk5_0,esk5_0),unordered_pair(esk5_0,unordered_pair(esk6_0,esk6_0))),
    inference(rw,[status(thm)],[149,145,theory(equality)]),
    [unfolding] ).

cnf(184,plain,
    ( member(X1,universal_class)
    | ~ member(X1,X2) ),
    inference(spm,[status(thm)],[116,128,theory(equality)]) ).

cnf(189,plain,
    subclass(null_class,X1),
    inference(spm,[status(thm)],[31,115,theory(equality)]) ).

cnf(194,plain,
    ( esk4_2(unordered_pair(X1,X2),X3) = X1
    | esk4_2(unordered_pair(X1,X2),X3) = X2
    | subclass(unordered_pair(X1,X2),X3) ),
    inference(spm,[status(thm)],[134,115,theory(equality)]) ).

cnf(259,plain,
    ( X1 = null_class
    | ~ subclass(X1,null_class) ),
    inference(spm,[status(thm)],[61,189,theory(equality)]) ).

cnf(273,plain,
    ( member(esk4_2(X1,X2),universal_class)
    | subclass(X1,X2) ),
    inference(spm,[status(thm)],[184,115,theory(equality)]) ).

cnf(605,plain,
    ( esk4_2(unordered_pair(X4,X5),X6) = X4
    | subclass(unordered_pair(X4,X5),X6)
    | X5 != X4 ),
    inference(ef,[status(thm)],[194,theory(equality)]) ).

cnf(614,plain,
    ( esk4_2(unordered_pair(X1,X1),X2) = X1
    | subclass(unordered_pair(X1,X1),X2) ),
    inference(er,[status(thm)],[605,theory(equality)]) ).

cnf(866,plain,
    ( subclass(unordered_pair(X1,X1),X2)
    | member(X1,universal_class) ),
    inference(spm,[status(thm)],[273,614,theory(equality)]) ).

cnf(928,plain,
    ( unordered_pair(X1,X1) = null_class
    | member(X1,universal_class) ),
    inference(spm,[status(thm)],[259,866,theory(equality)]) ).

cnf(930,negated_conjecture,
    unordered_pair(esk6_0,esk6_0) = null_class,
    inference(spm,[status(thm)],[142,928,theory(equality)]) ).

cnf(1110,negated_conjecture,
    $false,
    inference(rw,[status(thm)],[177,930,theory(equality)]) ).

cnf(1111,negated_conjecture,
    $false,
    inference(cn,[status(thm)],[1110,theory(equality)]) ).

cnf(1112,negated_conjecture,
    $false,
    1111,
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% /home/graph/tptp/Systems/SInE---0.4/Source/sine.py:10: DeprecationWarning: the sets module is deprecated
%   from sets import Set
% % SZS status Started for /home/graph/tptp/TPTP/Problems/SET/SET103+1.p
% --creating new selector for [SET005+0.ax]
% -running prover on /tmp/tmpPme03W/sel_SET103+1.p_1 with time limit 29
% -running prover with command ['/davis/home/graph/tptp/Systems/SInE---0.4/Source/./Source/PROVER/eproof.working', '-s', '-tLPO4', '-xAuto', '-tAuto', '--memory-limit=768', '--tptp3-format', '--cpu-limit=29', '/tmp/tmpPme03W/sel_SET103+1.p_1']
% -prover status CounterSatisfiable
% -running prover on /tmp/tmpPme03W/sel_SET103+1.p_2 with time limit 89
% -running prover with command ['/davis/home/graph/tptp/Systems/SInE---0.4/Source/./Source/PROVER/eproof.working', '-s', '-tLPO4', '-xAuto', '-tAuto', '--memory-limit=768', '--tptp3-format', '--cpu-limit=89', '/tmp/tmpPme03W/sel_SET103+1.p_2']
% -prover status CounterSatisfiable
% --creating new selector for [SET005+0.ax]
% -running prover on /tmp/tmpPme03W/sel_SET103+1.p_3 with time limit 119
% -running prover with command ['/davis/home/graph/tptp/Systems/SInE---0.4/Source/./Source/PROVER/eproof.working', '-s', '-tLPO4', '-xAuto', '-tAuto', '--memory-limit=768', '--tptp3-format', '--cpu-limit=119', '/tmp/tmpPme03W/sel_SET103+1.p_3']
% -prover status CounterSatisfiable
% --creating new selector for [SET005+0.ax]
% -running prover on /tmp/tmpPme03W/sel_SET103+1.p_4 with time limit 149
% -running prover with command ['/davis/home/graph/tptp/Systems/SInE---0.4/Source/./Source/PROVER/eproof.working', '-s', '-tLPO4', '-xAuto', '-tAuto', '--memory-limit=768', '--tptp3-format', '--cpu-limit=149', '/tmp/tmpPme03W/sel_SET103+1.p_4']
% -prover status CounterSatisfiable
% --creating new selector for [SET005+0.ax]
% -running prover on /tmp/tmpPme03W/sel_SET103+1.p_5 with time limit 299
% -running prover with command ['/davis/home/graph/tptp/Systems/SInE---0.4/Source/./Source/PROVER/eproof.working', '-s', '-tLPO4', '-xAuto', '-tAuto', '--memory-limit=768', '--tptp3-format', '--cpu-limit=299', '/tmp/tmpPme03W/sel_SET103+1.p_5']
% -prover status Theorem
% Problem SET103+1.p solved in phase 4.
% % SZS status Theorem for /home/graph/tptp/TPTP/Problems/SET/SET103+1.p
% % SZS status Ended for /home/graph/tptp/TPTP/Problems/SET/SET103+1.p
% Solved 1 out of 1.
% # Problem is unsatisfiable (or provable), constructing proof object
% # SZS status Theorem
% # SZS output start CNFRefutation.
% See solution above
% # SZS output end CNFRefutation
% 
%------------------------------------------------------------------------------