TSTP Solution File: SET096+1 by SRASS---0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SRASS---0.1
% Problem  : SET096+1 : TPTP v5.3.0. Bugfixed v5.4.0.
% Transfm  : none
% Format   : tptp
% Command  : SRASS -q2 -a 0 10 10 10 -i3 -n60 %s

% Computer : antietam.cs.miami.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Core(TM)2 CPU          6600  @ 2.40GHz @ 2400MHz
% Memory   : 1003MB
% OS       : Linux 2.6.32.26-175.fc12.x86_64
% CPULimit : 300s
% DateTime : Fri Jun 15 11:08:06 EDT 2012

% Result   : Theorem 0.74s
% Output   : Solution 0.74s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----ERROR: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% Reading problem from /tmp/SystemOnTPTP12277/SET096+1.tptp
% Adding relevance values
% Extracting the conjecture
% Sorting axioms by relevance
% Looking for THM       ... found
% SZS status THM for /tmp/SystemOnTPTP12277/SET096+1.tptp
% SZS output start Solution for /tmp/SystemOnTPTP12277/SET096+1.tptp
% TreeLimitedRun: ----------------------------------------------------------
% TreeLimitedRun: /home/graph/tptp/Systems/EP---1.5/eproof_ram --print-statistics -xAuto -tAuto --cpu-limit=60 --memory-limit=Auto --tstp-format /tmp/SRASS.s.p 
% TreeLimitedRun: CPU time limit is 60s
% TreeLimitedRun: WC  time limit is 120s
% TreeLimitedRun: PID is 12375
% TreeLimitedRun: ----------------------------------------------------------
% PrfWatch: 0.00 CPU 0.01 WC
% # Auto-Ordering is analysing problem.
% # Problem is type GHSMNFFMM21MD
% # Auto-mode selected ordering type KBO6
% # Auto-mode selected ordering precedence scheme <invfreqconjmax>
% # Auto-mode selected weight ordering scheme <invfreqrank>
% #
% # Auto-Heuristic is analysing problem.
% # Problem is type GHSMNFFMM21MD
% # Auto-Mode selected heuristic G_E___107_C45_F1_PI_AE_Q4_CS_SP_S0Y
% # and selection function SelectMaxLComplexAvoidPosPred.
% #
% # Initializing proof state
% # Scanning for AC axioms
% # Proof found!
% # SZS status Theorem
% # Parsed axioms                      : 44
% # Removed by relevancy pruning       : 0
% # Initial clauses                    : 92
% # Removed in clause preprocessing    : 8
% # Initial clauses in saturation      : 84
% # Processed clauses                  : 2120
% # ...of these trivial                : 7
% # ...subsumed                        : 1431
% # ...remaining for further processing: 682
% # Other redundant clauses eliminated : 15
% # Clauses deleted for lack of memory : 0
% # Backward-subsumed                  : 28
% # Backward-rewritten                 : 3
% # Generated clauses                  : 11432
% # ...of the previous two non-trivial : 9902
% # Contextual simplify-reflections    : 341
% # Paramodulations                    : 11396
% # Factorizations                     : 19
% # Equation resolutions               : 17
% # Current number of processed clauses: 647
% #    Positive orientable unit clauses: 76
% #    Positive unorientable unit clauses: 0
% #    Negative unit clauses           : 5
% #    Non-unit-clauses                : 566
% # Current number of unprocessed clauses: 7763
% # ...number of literals in the above : 27289
% # Clause-clause subsumption calls (NU) : 72521
% # Rec. Clause-clause subsumption calls : 57407
% # Non-unit clause-clause subsumptions: 1668
% # Unit Clause-clause subsumption calls : 926
% # Rewrite failures with RHS unbound  : 0
% # BW rewrite match attempts          : 39
% # BW rewrite match successes         : 3
% # Backwards rewriting index :  3396 nodes,   734 leaves,   1.61+/-2.324 terms/leaf
% # Paramod-from index      :  1326 nodes,   273 leaves,   1.18+/-0.620 terms/leaf
% # Paramod-into index      :  2413 nodes,   494 leaves,   1.59+/-2.535 terms/leaf
% # Paramod-neg-atom index  :   720 nodes,   160 leaves,   1.29+/-0.738 terms/leaf
% # SZS output start CNFRefutation.
% fof(1, axiom,![X1]:![X2]:(X1=X2<=>(subclass(X1,X2)&subclass(X2,X1))),file('/tmp/SRASS.s.p', extensionality)).
% fof(3, axiom,![X1]:![X2]:(subclass(X1,X2)<=>![X3]:(member(X3,X1)=>member(X3,X2))),file('/tmp/SRASS.s.p', subclass_defn)).
% fof(5, axiom,![X1]:singleton(X1)=unordered_pair(X1,X1),file('/tmp/SRASS.s.p', singleton_set_defn)).
% fof(9, axiom,![X1]:(~(X1=null_class)=>?[X3]:((member(X3,universal_class)&member(X3,X1))&disjoint(X3,X1))),file('/tmp/SRASS.s.p', regularity)).
% fof(15, axiom,![X3]:![X1]:![X2]:(member(X3,unordered_pair(X1,X2))<=>(member(X3,universal_class)&(X3=X1|X3=X2))),file('/tmp/SRASS.s.p', unordered_pair_defn)).
% fof(44, conjecture,![X1]:![X2]:(subclass(X1,singleton(X2))=>(X1=null_class|singleton(X2)=X1)),file('/tmp/SRASS.s.p', two_subsets_of_singleton)).
% fof(45, negated_conjecture,~(![X1]:![X2]:(subclass(X1,singleton(X2))=>(X1=null_class|singleton(X2)=X1))),inference(assume_negation,[status(cth)],[44])).
% fof(48, plain,![X1]:![X2]:((~(X1=X2)|(subclass(X1,X2)&subclass(X2,X1)))&((~(subclass(X1,X2))|~(subclass(X2,X1)))|X1=X2)),inference(fof_nnf,[status(thm)],[1])).
% fof(49, plain,(![X1]:![X2]:(~(X1=X2)|(subclass(X1,X2)&subclass(X2,X1)))&![X1]:![X2]:((~(subclass(X1,X2))|~(subclass(X2,X1)))|X1=X2)),inference(shift_quantors,[status(thm)],[48])).
% fof(50, plain,(![X3]:![X4]:(~(X3=X4)|(subclass(X3,X4)&subclass(X4,X3)))&![X5]:![X6]:((~(subclass(X5,X6))|~(subclass(X6,X5)))|X5=X6)),inference(variable_rename,[status(thm)],[49])).
% fof(51, plain,![X3]:![X4]:![X5]:![X6]:((~(X3=X4)|(subclass(X3,X4)&subclass(X4,X3)))&((~(subclass(X5,X6))|~(subclass(X6,X5)))|X5=X6)),inference(shift_quantors,[status(thm)],[50])).
% fof(52, plain,![X3]:![X4]:![X5]:![X6]:(((subclass(X3,X4)|~(X3=X4))&(subclass(X4,X3)|~(X3=X4)))&((~(subclass(X5,X6))|~(subclass(X6,X5)))|X5=X6)),inference(distribute,[status(thm)],[51])).
% cnf(53,plain,(X1=X2|~subclass(X2,X1)|~subclass(X1,X2)),inference(split_conjunct,[status(thm)],[52])).
% fof(58, plain,![X1]:![X2]:((~(subclass(X1,X2))|![X3]:(~(member(X3,X1))|member(X3,X2)))&(?[X3]:(member(X3,X1)&~(member(X3,X2)))|subclass(X1,X2))),inference(fof_nnf,[status(thm)],[3])).
% fof(59, plain,(![X1]:![X2]:(~(subclass(X1,X2))|![X3]:(~(member(X3,X1))|member(X3,X2)))&![X1]:![X2]:(?[X3]:(member(X3,X1)&~(member(X3,X2)))|subclass(X1,X2))),inference(shift_quantors,[status(thm)],[58])).
% fof(60, plain,(![X4]:![X5]:(~(subclass(X4,X5))|![X6]:(~(member(X6,X4))|member(X6,X5)))&![X7]:![X8]:(?[X9]:(member(X9,X7)&~(member(X9,X8)))|subclass(X7,X8))),inference(variable_rename,[status(thm)],[59])).
% fof(61, plain,(![X4]:![X5]:(~(subclass(X4,X5))|![X6]:(~(member(X6,X4))|member(X6,X5)))&![X7]:![X8]:((member(esk1_2(X7,X8),X7)&~(member(esk1_2(X7,X8),X8)))|subclass(X7,X8))),inference(skolemize,[status(esa)],[60])).
% fof(62, plain,![X4]:![X5]:![X6]:![X7]:![X8]:((~(subclass(X4,X5))|(~(member(X6,X4))|member(X6,X5)))&((member(esk1_2(X7,X8),X7)&~(member(esk1_2(X7,X8),X8)))|subclass(X7,X8))),inference(shift_quantors,[status(thm)],[61])).
% fof(63, plain,![X4]:![X5]:![X6]:![X7]:![X8]:((~(subclass(X4,X5))|(~(member(X6,X4))|member(X6,X5)))&((member(esk1_2(X7,X8),X7)|subclass(X7,X8))&(~(member(esk1_2(X7,X8),X8))|subclass(X7,X8)))),inference(distribute,[status(thm)],[62])).
% cnf(64,plain,(subclass(X1,X2)|~member(esk1_2(X1,X2),X2)),inference(split_conjunct,[status(thm)],[63])).
% cnf(65,plain,(subclass(X1,X2)|member(esk1_2(X1,X2),X1)),inference(split_conjunct,[status(thm)],[63])).
% cnf(66,plain,(member(X1,X2)|~member(X1,X3)|~subclass(X3,X2)),inference(split_conjunct,[status(thm)],[63])).
% fof(69, plain,![X2]:singleton(X2)=unordered_pair(X2,X2),inference(variable_rename,[status(thm)],[5])).
% cnf(70,plain,(singleton(X1)=unordered_pair(X1,X1)),inference(split_conjunct,[status(thm)],[69])).
% fof(90, plain,![X1]:(X1=null_class|?[X3]:((member(X3,universal_class)&member(X3,X1))&disjoint(X3,X1))),inference(fof_nnf,[status(thm)],[9])).
% fof(91, plain,![X4]:(X4=null_class|?[X5]:((member(X5,universal_class)&member(X5,X4))&disjoint(X5,X4))),inference(variable_rename,[status(thm)],[90])).
% fof(92, plain,![X4]:(X4=null_class|((member(esk3_1(X4),universal_class)&member(esk3_1(X4),X4))&disjoint(esk3_1(X4),X4))),inference(skolemize,[status(esa)],[91])).
% fof(93, plain,![X4]:(((member(esk3_1(X4),universal_class)|X4=null_class)&(member(esk3_1(X4),X4)|X4=null_class))&(disjoint(esk3_1(X4),X4)|X4=null_class)),inference(distribute,[status(thm)],[92])).
% cnf(95,plain,(X1=null_class|member(esk3_1(X1),X1)),inference(split_conjunct,[status(thm)],[93])).
% fof(124, plain,![X3]:![X1]:![X2]:((~(member(X3,unordered_pair(X1,X2)))|(member(X3,universal_class)&(X3=X1|X3=X2)))&((~(member(X3,universal_class))|(~(X3=X1)&~(X3=X2)))|member(X3,unordered_pair(X1,X2)))),inference(fof_nnf,[status(thm)],[15])).
% fof(125, plain,(![X3]:![X1]:![X2]:(~(member(X3,unordered_pair(X1,X2)))|(member(X3,universal_class)&(X3=X1|X3=X2)))&![X3]:![X1]:![X2]:((~(member(X3,universal_class))|(~(X3=X1)&~(X3=X2)))|member(X3,unordered_pair(X1,X2)))),inference(shift_quantors,[status(thm)],[124])).
% fof(126, plain,(![X4]:![X5]:![X6]:(~(member(X4,unordered_pair(X5,X6)))|(member(X4,universal_class)&(X4=X5|X4=X6)))&![X7]:![X8]:![X9]:((~(member(X7,universal_class))|(~(X7=X8)&~(X7=X9)))|member(X7,unordered_pair(X8,X9)))),inference(variable_rename,[status(thm)],[125])).
% fof(127, plain,![X4]:![X5]:![X6]:![X7]:![X8]:![X9]:((~(member(X4,unordered_pair(X5,X6)))|(member(X4,universal_class)&(X4=X5|X4=X6)))&((~(member(X7,universal_class))|(~(X7=X8)&~(X7=X9)))|member(X7,unordered_pair(X8,X9)))),inference(shift_quantors,[status(thm)],[126])).
% fof(128, plain,![X4]:![X5]:![X6]:![X7]:![X8]:![X9]:(((member(X4,universal_class)|~(member(X4,unordered_pair(X5,X6))))&((X4=X5|X4=X6)|~(member(X4,unordered_pair(X5,X6)))))&(((~(X7=X8)|~(member(X7,universal_class)))|member(X7,unordered_pair(X8,X9)))&((~(X7=X9)|~(member(X7,universal_class)))|member(X7,unordered_pair(X8,X9))))),inference(distribute,[status(thm)],[127])).
% cnf(131,plain,(X1=X3|X1=X2|~member(X1,unordered_pair(X2,X3))),inference(split_conjunct,[status(thm)],[128])).
% fof(273, negated_conjecture,?[X1]:?[X2]:(subclass(X1,singleton(X2))&(~(X1=null_class)&~(singleton(X2)=X1))),inference(fof_nnf,[status(thm)],[45])).
% fof(274, negated_conjecture,?[X3]:?[X4]:(subclass(X3,singleton(X4))&(~(X3=null_class)&~(singleton(X4)=X3))),inference(variable_rename,[status(thm)],[273])).
% fof(275, negated_conjecture,(subclass(esk8_0,singleton(esk9_0))&(~(esk8_0=null_class)&~(singleton(esk9_0)=esk8_0))),inference(skolemize,[status(esa)],[274])).
% cnf(276,negated_conjecture,(singleton(esk9_0)!=esk8_0),inference(split_conjunct,[status(thm)],[275])).
% cnf(277,negated_conjecture,(esk8_0!=null_class),inference(split_conjunct,[status(thm)],[275])).
% cnf(278,negated_conjecture,(subclass(esk8_0,singleton(esk9_0))),inference(split_conjunct,[status(thm)],[275])).
% cnf(280,negated_conjecture,(subclass(esk8_0,unordered_pair(esk9_0,esk9_0))),inference(rw,[status(thm)],[278,70,theory(equality)]),['unfolding']).
% cnf(286,negated_conjecture,(unordered_pair(esk9_0,esk9_0)!=esk8_0),inference(rw,[status(thm)],[276,70,theory(equality)]),['unfolding']).
% cnf(337,negated_conjecture,(unordered_pair(esk9_0,esk9_0)=esk8_0|~subclass(unordered_pair(esk9_0,esk9_0),esk8_0)),inference(spm,[status(thm)],[53,280,theory(equality)])).
% cnf(341,negated_conjecture,(~subclass(unordered_pair(esk9_0,esk9_0),esk8_0)),inference(sr,[status(thm)],[337,286,theory(equality)])).
% cnf(348,plain,(esk1_2(unordered_pair(X1,X2),X3)=X1|esk1_2(unordered_pair(X1,X2),X3)=X2|subclass(unordered_pair(X1,X2),X3)),inference(spm,[status(thm)],[131,65,theory(equality)])).
% cnf(390,negated_conjecture,(member(X1,unordered_pair(esk9_0,esk9_0))|~member(X1,esk8_0)),inference(spm,[status(thm)],[66,280,theory(equality)])).
% cnf(665,negated_conjecture,(X1=esk9_0|~member(X1,esk8_0)),inference(spm,[status(thm)],[131,390,theory(equality)])).
% cnf(667,negated_conjecture,(esk3_1(esk8_0)=esk9_0|null_class=esk8_0),inference(spm,[status(thm)],[665,95,theory(equality)])).
% cnf(672,negated_conjecture,(esk3_1(esk8_0)=esk9_0),inference(sr,[status(thm)],[667,277,theory(equality)])).
% cnf(675,negated_conjecture,(null_class=esk8_0|member(esk9_0,esk8_0)),inference(spm,[status(thm)],[95,672,theory(equality)])).
% cnf(682,negated_conjecture,(member(esk9_0,esk8_0)),inference(sr,[status(thm)],[675,277,theory(equality)])).
% cnf(797,plain,(esk1_2(unordered_pair(X4,X5),X6)=X4|subclass(unordered_pair(X4,X5),X6)|X5!=X4),inference(ef,[status(thm)],[348,theory(equality)])).
% cnf(804,plain,(esk1_2(unordered_pair(X1,X1),X2)=X1|subclass(unordered_pair(X1,X1),X2)),inference(er,[status(thm)],[797,theory(equality)])).
% cnf(14476,plain,(subclass(unordered_pair(X1,X1),X2)|~member(X1,X2)),inference(spm,[status(thm)],[64,804,theory(equality)])).
% cnf(14514,negated_conjecture,(~member(esk9_0,esk8_0)),inference(spm,[status(thm)],[341,14476,theory(equality)])).
% cnf(14519,negated_conjecture,($false),inference(rw,[status(thm)],[14514,682,theory(equality)])).
% cnf(14520,negated_conjecture,($false),inference(cn,[status(thm)],[14519,theory(equality)])).
% cnf(14521,negated_conjecture,($false),14520,['proof']).
% # SZS output end CNFRefutation
% PrfWatch: 0.44 CPU 0.34 WC
% FINAL PrfWatch: 0.44 CPU 0.34 WC
% SZS output end Solution for /tmp/SystemOnTPTP12277/SET096+1.tptp
% 
%------------------------------------------------------------------------------