TSTP Solution File: SET018+4 by ePrincess---1.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : ePrincess---1.0
% Problem  : SET018+4 : TPTP v8.1.0. Released v2.2.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : ePrincess-casc -timeout=%d %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Tue Jul 19 00:16:10 EDT 2022

% Result   : Theorem 2.79s 1.31s
% Output   : Proof 4.46s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.11  % Problem  : SET018+4 : TPTP v8.1.0. Released v2.2.0.
% 0.06/0.12  % Command  : ePrincess-casc -timeout=%d %s
% 0.12/0.33  % Computer : n005.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 600
% 0.12/0.33  % DateTime : Mon Jul 11 01:09:22 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 0.51/0.58          ____       _                          
% 0.51/0.58    ___  / __ \_____(_)___  ________  __________
% 0.51/0.58   / _ \/ /_/ / ___/ / __ \/ ___/ _ \/ ___/ ___/
% 0.51/0.58  /  __/ ____/ /  / / / / / /__/  __(__  |__  ) 
% 0.51/0.58  \___/_/   /_/  /_/_/ /_/\___/\___/____/____/  
% 0.51/0.58  
% 0.51/0.58  A Theorem Prover for First-Order Logic
% 0.51/0.58  (ePrincess v.1.0)
% 0.51/0.58  
% 0.51/0.58  (c) Philipp Rümmer, 2009-2015
% 0.51/0.58  (c) Peter Backeman, 2014-2015
% 0.51/0.58  (contributions by Angelo Brillout, Peter Baumgartner)
% 0.51/0.58  Free software under GNU Lesser General Public License (LGPL).
% 0.51/0.58  Bug reports to peter@backeman.se
% 0.51/0.58  
% 0.51/0.58  For more information, visit http://user.uu.se/~petba168/breu/
% 0.51/0.58  
% 0.51/0.58  Loading /export/starexec/sandbox/benchmark/theBenchmark.p ...
% 0.74/0.63  Prover 0: Options:  -triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -resolutionMethod=nonUnifying +ignoreQuantifiers -generateTriggers=all
% 1.49/0.88  Prover 0: Preprocessing ...
% 1.96/1.07  Prover 0: Warning: ignoring some quantifiers
% 2.06/1.09  Prover 0: Constructing countermodel ...
% 2.79/1.30  Prover 0: proved (677ms)
% 2.79/1.31  
% 2.79/1.31  No countermodel exists, formula is valid
% 2.79/1.31  % SZS status Theorem for theBenchmark
% 2.79/1.31  
% 2.79/1.31  Generating proof ... Warning: ignoring some quantifiers
% 3.98/1.55  found it (size 78)
% 3.98/1.55  
% 3.98/1.55  % SZS output start Proof for theBenchmark
% 3.98/1.55  Assumed formulas after preprocessing and simplification: 
% 3.98/1.55  | (0)  ? [v0] :  ? [v1] :  ? [v2] :  ? [v3] :  ? [v4] :  ? [v5] :  ? [v6] :  ? [v7] :  ? [v8] :  ? [v9] : ( ~ (v3 = v1) & unordered_pair(v7, v8) = v9 & unordered_pair(v4, v5) = v6 & unordered_pair(v2, v3) = v8 & unordered_pair(v0, v1) = v5 & singleton(v2) = v7 & singleton(v0) = v4 & equal_set(v6, v9) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v12 = v10 | v11 = v10 |  ~ (unordered_pair(v11, v12) = v13) |  ~ member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (unordered_pair(v13, v12) = v11) |  ~ (unordered_pair(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (difference(v13, v12) = v11) |  ~ (difference(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (union(v13, v12) = v11) |  ~ (union(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : (v11 = v10 |  ~ (intersection(v13, v12) = v11) |  ~ (intersection(v13, v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (product(v11) = v12) |  ~ member(v13, v11) |  ~ member(v10, v12) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (sum(v11) = v12) |  ~ member(v13, v11) |  ~ member(v10, v13) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (difference(v12, v11) = v13) |  ~ member(v10, v13) |  ~ member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (difference(v12, v11) = v13) |  ~ member(v10, v13) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (difference(v12, v11) = v13) |  ~ member(v10, v12) | member(v10, v13) | member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (union(v11, v12) = v13) |  ~ member(v10, v13) | member(v10, v12) | member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (union(v11, v12) = v13) |  ~ member(v10, v12) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (union(v11, v12) = v13) |  ~ member(v10, v11) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (intersection(v11, v12) = v13) |  ~ member(v10, v13) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (intersection(v11, v12) = v13) |  ~ member(v10, v13) | member(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] :  ! [v13] : ( ~ (intersection(v11, v12) = v13) |  ~ member(v10, v12) |  ~ member(v10, v11) | member(v10, v13)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (product(v12) = v11) |  ~ (product(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (sum(v12) = v11) |  ~ (sum(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (singleton(v12) = v11) |  ~ (singleton(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (singleton(v11) = v12) |  ~ member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : (v11 = v10 |  ~ (power_set(v12) = v11) |  ~ (power_set(v12) = v10)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (sum(v11) = v12) |  ~ member(v10, v12) |  ? [v13] : (member(v13, v11) & member(v10, v13))) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v11, v10) = v12) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (unordered_pair(v10, v11) = v12) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (power_set(v11) = v12) |  ~ member(v10, v12) | subset(v10, v11)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ (power_set(v11) = v12) |  ~ subset(v10, v11) | member(v10, v12)) &  ! [v10] :  ! [v11] :  ! [v12] : ( ~ member(v12, v10) |  ~ subset(v10, v11) | member(v12, v11)) &  ? [v10] :  ! [v11] :  ! [v12] : ( ~ (product(v11) = v12) | member(v10, v12) |  ? [v13] : (member(v13, v11) &  ~ member(v10, v13))) &  ! [v10] :  ! [v11] : ( ~ (singleton(v10) = v11) | member(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ equal_set(v10, v11) | subset(v11, v10)) &  ! [v10] :  ! [v11] : ( ~ equal_set(v10, v11) | subset(v10, v11)) &  ! [v10] :  ! [v11] : ( ~ subset(v11, v10) |  ~ subset(v10, v11) | equal_set(v10, v11)) &  ! [v10] :  ~ member(v10, empty_set) &  ? [v10] :  ? [v11] : (subset(v10, v11) |  ? [v12] : (member(v12, v10) &  ~ member(v12, v11))))
% 4.13/1.59  | Instantiating (0) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_3_3, all_0_4_4, all_0_5_5, all_0_6_6, all_0_7_7, all_0_8_8, all_0_9_9 yields:
% 4.13/1.59  | (1)  ~ (all_0_6_6 = all_0_8_8) & unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0 & unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3 & unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1 & unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4 & singleton(all_0_7_7) = all_0_2_2 & singleton(all_0_9_9) = all_0_5_5 & equal_set(all_0_3_3, all_0_0_0) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (product(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v2) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (sum(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v3) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) |  ~ member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v2) | member(v0, v3) | member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2) | member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v2) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v1) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v2) |  ~ member(v0, v1) | member(v0, v3)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ member(v0, v2) |  ? [v3] : (member(v3, v1) & member(v0, v3))) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ member(v0, v2) | subset(v0, v1)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ subset(v0, v1) | member(v0, v2)) &  ! [v0] :  ! [v1] :  ! [v2] : ( ~ member(v2, v0) |  ~ subset(v0, v1) | member(v2, v1)) &  ? [v0] :  ! [v1] :  ! [v2] : ( ~ (product(v1) = v2) | member(v0, v2) |  ? [v3] : (member(v3, v1) &  ~ member(v0, v3))) &  ! [v0] :  ! [v1] : ( ~ (singleton(v0) = v1) | member(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v1, v0)) &  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v0, v1)) &  ! [v0] :  ! [v1] : ( ~ subset(v1, v0) |  ~ subset(v0, v1) | equal_set(v0, v1)) &  ! [v0] :  ~ member(v0, empty_set) &  ? [v0] :  ? [v1] : (subset(v0, v1) |  ? [v2] : (member(v2, v0) &  ~ member(v2, v1)))
% 4.13/1.60  |
% 4.13/1.60  | Applying alpha-rule on (1) yields:
% 4.13/1.60  | (2) equal_set(all_0_3_3, all_0_0_0)
% 4.13/1.60  | (3)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (intersection(v3, v2) = v1) |  ~ (intersection(v3, v2) = v0))
% 4.13/1.61  | (4)  ! [v0] :  ! [v1] : ( ~ (singleton(v0) = v1) | member(v0, v1))
% 4.13/1.61  | (5)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (difference(v3, v2) = v1) |  ~ (difference(v3, v2) = v0))
% 4.13/1.61  | (6)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ subset(v0, v1) | member(v0, v2))
% 4.13/1.61  | (7)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (power_set(v1) = v2) |  ~ member(v0, v2) | subset(v0, v1))
% 4.13/1.61  | (8)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (unordered_pair(v3, v2) = v1) |  ~ (unordered_pair(v3, v2) = v0))
% 4.13/1.61  | (9)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (product(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v2) | member(v0, v3))
% 4.13/1.61  | (10)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v2) |  ~ member(v0, v1) | member(v0, v3))
% 4.13/1.61  | (11)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (product(v2) = v1) |  ~ (product(v2) = v0))
% 4.13/1.61  | (12) singleton(all_0_9_9) = all_0_5_5
% 4.13/1.61  | (13)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (sum(v1) = v2) |  ~ member(v0, v2) |  ? [v3] : (member(v3, v1) & member(v0, v3)))
% 4.13/1.61  | (14)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2))
% 4.13/1.61  | (15)  ? [v0] :  ? [v1] : (subset(v0, v1) |  ? [v2] : (member(v2, v0) &  ~ member(v2, v1)))
% 4.13/1.61  | (16) singleton(all_0_7_7) = all_0_2_2
% 4.13/1.61  | (17)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (sum(v1) = v2) |  ~ member(v3, v1) |  ~ member(v0, v3) | member(v0, v2))
% 4.13/1.61  | (18)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (power_set(v2) = v1) |  ~ (power_set(v2) = v0))
% 4.13/1.61  | (19)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v1) | member(v0, v3))
% 4.13/1.61  | (20)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (intersection(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v1))
% 4.13/1.61  | (21)  ! [v0] :  ~ member(v0, empty_set)
% 4.13/1.61  | (22)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v3) | member(v0, v2) | member(v0, v1))
% 4.13/1.61  | (23)  ~ (all_0_6_6 = all_0_8_8)
% 4.13/1.61  | (24) unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4
% 4.13/1.61  | (25)  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v1, v0))
% 4.13/1.61  | (26)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v1 = v0 |  ~ (union(v3, v2) = v1) |  ~ (union(v3, v2) = v0))
% 4.13/1.61  | (27)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : (v2 = v0 | v1 = v0 |  ~ (unordered_pair(v1, v2) = v3) |  ~ member(v0, v3))
% 4.13/1.61  | (28)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (sum(v2) = v1) |  ~ (sum(v2) = v0))
% 4.13/1.61  | (29) unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1
% 4.13/1.61  | (30)  ? [v0] :  ! [v1] :  ! [v2] : ( ~ (product(v1) = v2) | member(v0, v2) |  ? [v3] : (member(v3, v1) &  ~ member(v0, v3)))
% 4.13/1.61  | (31)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ member(v2, v0) |  ~ subset(v0, v1) | member(v2, v1))
% 4.13/1.61  | (32)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (union(v1, v2) = v3) |  ~ member(v0, v2) | member(v0, v3))
% 4.13/1.61  | (33)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v0, v1) = v2) | member(v0, v2))
% 4.13/1.62  | (34)  ! [v0] :  ! [v1] :  ! [v2] : ( ~ (unordered_pair(v1, v0) = v2) | member(v0, v2))
% 4.13/1.62  | (35)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v1) = v2) |  ~ member(v0, v2))
% 4.13/1.62  | (36)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v2) | member(v0, v3) | member(v0, v1))
% 4.13/1.62  | (37) unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0
% 4.13/1.62  | (38)  ! [v0] :  ! [v1] : ( ~ equal_set(v0, v1) | subset(v0, v1))
% 4.13/1.62  | (39) unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3
% 4.13/1.62  | (40)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) | member(v0, v2))
% 4.13/1.62  | (41)  ! [v0] :  ! [v1] :  ! [v2] :  ! [v3] : ( ~ (difference(v2, v1) = v3) |  ~ member(v0, v3) |  ~ member(v0, v1))
% 4.13/1.62  | (42)  ! [v0] :  ! [v1] :  ! [v2] : (v1 = v0 |  ~ (singleton(v2) = v1) |  ~ (singleton(v2) = v0))
% 4.13/1.62  | (43)  ! [v0] :  ! [v1] : ( ~ subset(v1, v0) |  ~ subset(v0, v1) | equal_set(v0, v1))
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (34) with all_0_0_0, all_0_2_2, all_0_1_1 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, yields:
% 4.13/1.62  | (44) member(all_0_1_1, all_0_0_0)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (33) with all_0_0_0, all_0_1_1, all_0_2_2 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, yields:
% 4.13/1.62  | (45) member(all_0_2_2, all_0_0_0)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (34) with all_0_3_3, all_0_5_5, all_0_4_4 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, yields:
% 4.13/1.62  | (46) member(all_0_4_4, all_0_3_3)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (33) with all_0_3_3, all_0_4_4, all_0_5_5 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, yields:
% 4.13/1.62  | (47) member(all_0_5_5, all_0_3_3)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (34) with all_0_1_1, all_0_7_7, all_0_6_6 and discharging atoms unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1, yields:
% 4.13/1.62  | (48) member(all_0_6_6, all_0_1_1)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (33) with all_0_1_1, all_0_6_6, all_0_7_7 and discharging atoms unordered_pair(all_0_7_7, all_0_6_6) = all_0_1_1, yields:
% 4.13/1.62  | (49) member(all_0_7_7, all_0_1_1)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (34) with all_0_4_4, all_0_9_9, all_0_8_8 and discharging atoms unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4, yields:
% 4.13/1.62  | (50) member(all_0_8_8, all_0_4_4)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (4) with all_0_2_2, all_0_7_7 and discharging atoms singleton(all_0_7_7) = all_0_2_2, yields:
% 4.13/1.62  | (51) member(all_0_7_7, all_0_2_2)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (25) with all_0_0_0, all_0_3_3 and discharging atoms equal_set(all_0_3_3, all_0_0_0), yields:
% 4.13/1.62  | (52) subset(all_0_0_0, all_0_3_3)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (38) with all_0_0_0, all_0_3_3 and discharging atoms equal_set(all_0_3_3, all_0_0_0), yields:
% 4.13/1.62  | (53) subset(all_0_3_3, all_0_0_0)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (31) with all_0_1_1, all_0_3_3, all_0_0_0 and discharging atoms member(all_0_1_1, all_0_0_0), subset(all_0_0_0, all_0_3_3), yields:
% 4.13/1.62  | (54) member(all_0_1_1, all_0_3_3)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (31) with all_0_2_2, all_0_3_3, all_0_0_0 and discharging atoms member(all_0_2_2, all_0_0_0), subset(all_0_0_0, all_0_3_3), yields:
% 4.13/1.62  | (55) member(all_0_2_2, all_0_3_3)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (31) with all_0_4_4, all_0_0_0, all_0_3_3 and discharging atoms member(all_0_4_4, all_0_3_3), subset(all_0_3_3, all_0_0_0), yields:
% 4.13/1.62  | (56) member(all_0_4_4, all_0_0_0)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (31) with all_0_5_5, all_0_0_0, all_0_3_3 and discharging atoms member(all_0_5_5, all_0_3_3), subset(all_0_3_3, all_0_0_0), yields:
% 4.13/1.62  | (57) member(all_0_5_5, all_0_0_0)
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (27) with all_0_3_3, all_0_4_4, all_0_5_5, all_0_1_1 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_0_1_1, all_0_3_3), yields:
% 4.13/1.62  | (58) all_0_1_1 = all_0_4_4 | all_0_1_1 = all_0_5_5
% 4.13/1.62  |
% 4.13/1.62  | Instantiating formula (27) with all_0_3_3, all_0_4_4, all_0_5_5, all_0_2_2 and discharging atoms unordered_pair(all_0_5_5, all_0_4_4) = all_0_3_3, member(all_0_2_2, all_0_3_3), yields:
% 4.13/1.63  | (59) all_0_2_2 = all_0_4_4 | all_0_2_2 = all_0_5_5
% 4.13/1.63  |
% 4.13/1.63  | Instantiating formula (27) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_4_4 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, member(all_0_4_4, all_0_0_0), yields:
% 4.13/1.63  | (60) all_0_1_1 = all_0_4_4 | all_0_2_2 = all_0_4_4
% 4.13/1.63  |
% 4.13/1.63  | Instantiating formula (27) with all_0_0_0, all_0_1_1, all_0_2_2, all_0_5_5 and discharging atoms unordered_pair(all_0_2_2, all_0_1_1) = all_0_0_0, member(all_0_5_5, all_0_0_0), yields:
% 4.13/1.63  | (61) all_0_1_1 = all_0_5_5 | all_0_2_2 = all_0_5_5
% 4.13/1.63  |
% 4.13/1.63  +-Applying beta-rule and splitting (60), into two cases.
% 4.13/1.63  |-Branch one:
% 4.13/1.63  | (62) all_0_1_1 = all_0_4_4
% 4.13/1.63  |
% 4.13/1.63  	| From (62) and (29) follows:
% 4.13/1.63  	| (63) unordered_pair(all_0_7_7, all_0_6_6) = all_0_4_4
% 4.13/1.63  	|
% 4.13/1.63  	| From (62) and (48) follows:
% 4.13/1.63  	| (64) member(all_0_6_6, all_0_4_4)
% 4.13/1.63  	|
% 4.13/1.63  	| Instantiating formula (27) with all_0_4_4, all_0_6_6, all_0_7_7, all_0_8_8 and discharging atoms unordered_pair(all_0_7_7, all_0_6_6) = all_0_4_4, member(all_0_8_8, all_0_4_4), yields:
% 4.13/1.63  	| (65) all_0_6_6 = all_0_8_8 | all_0_7_7 = all_0_8_8
% 4.13/1.63  	|
% 4.13/1.63  	| Instantiating formula (27) with all_0_4_4, all_0_8_8, all_0_9_9, all_0_6_6 and discharging atoms unordered_pair(all_0_9_9, all_0_8_8) = all_0_4_4, member(all_0_6_6, all_0_4_4), yields:
% 4.13/1.63  	| (66) all_0_6_6 = all_0_8_8 | all_0_6_6 = all_0_9_9
% 4.13/1.63  	|
% 4.13/1.63  	+-Applying beta-rule and splitting (61), into two cases.
% 4.13/1.63  	|-Branch one:
% 4.13/1.63  	| (67) all_0_1_1 = all_0_5_5
% 4.13/1.63  	|
% 4.13/1.63  		| Combining equations (67,62) yields a new equation:
% 4.13/1.63  		| (68) all_0_4_4 = all_0_5_5
% 4.13/1.63  		|
% 4.13/1.63  		+-Applying beta-rule and splitting (59), into two cases.
% 4.13/1.63  		|-Branch one:
% 4.13/1.63  		| (69) all_0_2_2 = all_0_4_4
% 4.13/1.63  		|
% 4.13/1.63  			| Combining equations (68,69) yields a new equation:
% 4.13/1.63  			| (70) all_0_2_2 = all_0_5_5
% 4.13/1.63  			|
% 4.13/1.63  			| From (70) and (51) follows:
% 4.13/1.63  			| (71) member(all_0_7_7, all_0_5_5)
% 4.13/1.63  			|
% 4.13/1.63  			+-Applying beta-rule and splitting (66), into two cases.
% 4.13/1.63  			|-Branch one:
% 4.13/1.63  			| (72) all_0_6_6 = all_0_8_8
% 4.13/1.63  			|
% 4.13/1.63  				| Equations (72) can reduce 23 to:
% 4.13/1.63  				| (73) $false
% 4.13/1.63  				|
% 4.13/1.63  				|-The branch is then unsatisfiable
% 4.13/1.63  			|-Branch two:
% 4.13/1.63  			| (23)  ~ (all_0_6_6 = all_0_8_8)
% 4.13/1.63  			| (75) all_0_6_6 = all_0_9_9
% 4.13/1.63  			|
% 4.13/1.63  				| Equations (75) can reduce 23 to:
% 4.13/1.63  				| (76)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.63  				|
% 4.13/1.63  				| Simplifying 76 yields:
% 4.13/1.63  				| (77)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.63  				|
% 4.13/1.63  				+-Applying beta-rule and splitting (65), into two cases.
% 4.13/1.63  				|-Branch one:
% 4.13/1.63  				| (72) all_0_6_6 = all_0_8_8
% 4.13/1.63  				|
% 4.13/1.63  					| Combining equations (72,75) yields a new equation:
% 4.13/1.63  					| (79) all_0_8_8 = all_0_9_9
% 4.13/1.63  					|
% 4.13/1.63  					| Simplifying 79 yields:
% 4.13/1.63  					| (80) all_0_8_8 = all_0_9_9
% 4.13/1.63  					|
% 4.13/1.63  					| Equations (80) can reduce 77 to:
% 4.13/1.63  					| (73) $false
% 4.13/1.63  					|
% 4.13/1.63  					|-The branch is then unsatisfiable
% 4.13/1.63  				|-Branch two:
% 4.13/1.63  				| (23)  ~ (all_0_6_6 = all_0_8_8)
% 4.13/1.63  				| (83) all_0_7_7 = all_0_8_8
% 4.13/1.63  				|
% 4.13/1.63  					| Equations (75) can reduce 23 to:
% 4.13/1.63  					| (76)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.63  					|
% 4.13/1.63  					| Simplifying 76 yields:
% 4.13/1.63  					| (77)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.63  					|
% 4.13/1.63  					| From (83) and (71) follows:
% 4.13/1.63  					| (86) member(all_0_8_8, all_0_5_5)
% 4.13/1.63  					|
% 4.13/1.63  					| Instantiating formula (35) with all_0_5_5, all_0_9_9, all_0_8_8 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_8_8, all_0_5_5), yields:
% 4.13/1.63  					| (80) all_0_8_8 = all_0_9_9
% 4.13/1.64  					|
% 4.13/1.64  					| Equations (80) can reduce 77 to:
% 4.13/1.64  					| (73) $false
% 4.13/1.64  					|
% 4.13/1.64  					|-The branch is then unsatisfiable
% 4.13/1.64  		|-Branch two:
% 4.13/1.64  		| (89)  ~ (all_0_2_2 = all_0_4_4)
% 4.13/1.64  		| (70) all_0_2_2 = all_0_5_5
% 4.13/1.64  		|
% 4.13/1.64  			| Equations (70,68) can reduce 89 to:
% 4.13/1.64  			| (73) $false
% 4.13/1.64  			|
% 4.13/1.64  			|-The branch is then unsatisfiable
% 4.13/1.64  	|-Branch two:
% 4.13/1.64  	| (92)  ~ (all_0_1_1 = all_0_5_5)
% 4.13/1.64  	| (70) all_0_2_2 = all_0_5_5
% 4.13/1.64  	|
% 4.13/1.64  		| From (70) and (51) follows:
% 4.13/1.64  		| (71) member(all_0_7_7, all_0_5_5)
% 4.13/1.64  		|
% 4.13/1.64  		+-Applying beta-rule and splitting (66), into two cases.
% 4.13/1.64  		|-Branch one:
% 4.13/1.64  		| (72) all_0_6_6 = all_0_8_8
% 4.13/1.64  		|
% 4.13/1.64  			| Equations (72) can reduce 23 to:
% 4.13/1.64  			| (73) $false
% 4.13/1.64  			|
% 4.13/1.64  			|-The branch is then unsatisfiable
% 4.13/1.64  		|-Branch two:
% 4.13/1.64  		| (23)  ~ (all_0_6_6 = all_0_8_8)
% 4.13/1.64  		| (75) all_0_6_6 = all_0_9_9
% 4.13/1.64  		|
% 4.13/1.64  			| Equations (75) can reduce 23 to:
% 4.13/1.64  			| (76)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.64  			|
% 4.13/1.64  			| Simplifying 76 yields:
% 4.13/1.64  			| (77)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.64  			|
% 4.13/1.64  			+-Applying beta-rule and splitting (65), into two cases.
% 4.13/1.64  			|-Branch one:
% 4.13/1.64  			| (72) all_0_6_6 = all_0_8_8
% 4.13/1.64  			|
% 4.13/1.64  				| Combining equations (72,75) yields a new equation:
% 4.13/1.64  				| (79) all_0_8_8 = all_0_9_9
% 4.13/1.64  				|
% 4.13/1.64  				| Simplifying 79 yields:
% 4.13/1.64  				| (80) all_0_8_8 = all_0_9_9
% 4.13/1.64  				|
% 4.13/1.64  				| Equations (80) can reduce 77 to:
% 4.13/1.64  				| (73) $false
% 4.13/1.64  				|
% 4.13/1.64  				|-The branch is then unsatisfiable
% 4.13/1.64  			|-Branch two:
% 4.13/1.64  			| (23)  ~ (all_0_6_6 = all_0_8_8)
% 4.13/1.64  			| (83) all_0_7_7 = all_0_8_8
% 4.13/1.64  			|
% 4.13/1.64  				| Equations (75) can reduce 23 to:
% 4.13/1.64  				| (76)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.64  				|
% 4.13/1.64  				| Simplifying 76 yields:
% 4.13/1.64  				| (77)  ~ (all_0_8_8 = all_0_9_9)
% 4.13/1.64  				|
% 4.13/1.64  				| From (83) and (71) follows:
% 4.13/1.64  				| (86) member(all_0_8_8, all_0_5_5)
% 4.13/1.64  				|
% 4.13/1.64  				| Instantiating formula (35) with all_0_5_5, all_0_9_9, all_0_8_8 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_8_8, all_0_5_5), yields:
% 4.13/1.64  				| (80) all_0_8_8 = all_0_9_9
% 4.13/1.64  				|
% 4.13/1.64  				| Equations (80) can reduce 77 to:
% 4.13/1.64  				| (73) $false
% 4.13/1.64  				|
% 4.13/1.64  				|-The branch is then unsatisfiable
% 4.13/1.64  |-Branch two:
% 4.13/1.64  | (112)  ~ (all_0_1_1 = all_0_4_4)
% 4.13/1.64  | (69) all_0_2_2 = all_0_4_4
% 4.13/1.64  |
% 4.13/1.64  	| From (69) and (16) follows:
% 4.13/1.64  	| (114) singleton(all_0_7_7) = all_0_4_4
% 4.13/1.64  	|
% 4.13/1.64  	+-Applying beta-rule and splitting (58), into two cases.
% 4.13/1.64  	|-Branch one:
% 4.13/1.64  	| (62) all_0_1_1 = all_0_4_4
% 4.13/1.64  	|
% 4.13/1.64  		| Equations (62) can reduce 112 to:
% 4.13/1.64  		| (73) $false
% 4.13/1.64  		|
% 4.13/1.64  		|-The branch is then unsatisfiable
% 4.13/1.64  	|-Branch two:
% 4.13/1.64  	| (112)  ~ (all_0_1_1 = all_0_4_4)
% 4.13/1.64  	| (67) all_0_1_1 = all_0_5_5
% 4.13/1.64  	|
% 4.13/1.64  		| From (67) and (48) follows:
% 4.13/1.64  		| (119) member(all_0_6_6, all_0_5_5)
% 4.13/1.64  		|
% 4.13/1.64  		| From (67) and (49) follows:
% 4.13/1.64  		| (71) member(all_0_7_7, all_0_5_5)
% 4.13/1.64  		|
% 4.13/1.64  		| Instantiating formula (35) with all_0_4_4, all_0_7_7, all_0_8_8 and discharging atoms singleton(all_0_7_7) = all_0_4_4, member(all_0_8_8, all_0_4_4), yields:
% 4.13/1.64  		| (83) all_0_7_7 = all_0_8_8
% 4.13/1.64  		|
% 4.13/1.64  		| Instantiating formula (35) with all_0_5_5, all_0_9_9, all_0_6_6 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_6_6, all_0_5_5), yields:
% 4.46/1.64  		| (75) all_0_6_6 = all_0_9_9
% 4.46/1.64  		|
% 4.46/1.64  		| Instantiating formula (35) with all_0_5_5, all_0_9_9, all_0_7_7 and discharging atoms singleton(all_0_9_9) = all_0_5_5, member(all_0_7_7, all_0_5_5), yields:
% 4.46/1.64  		| (123) all_0_7_7 = all_0_9_9
% 4.46/1.64  		|
% 4.46/1.64  		| Combining equations (83,123) yields a new equation:
% 4.46/1.64  		| (79) all_0_8_8 = all_0_9_9
% 4.46/1.64  		|
% 4.46/1.64  		| Simplifying 79 yields:
% 4.46/1.64  		| (80) all_0_8_8 = all_0_9_9
% 4.46/1.64  		|
% 4.46/1.64  		| Equations (75,80) can reduce 23 to:
% 4.46/1.64  		| (73) $false
% 4.46/1.64  		|
% 4.46/1.64  		|-The branch is then unsatisfiable
% 4.46/1.64  % SZS output end Proof for theBenchmark
% 4.46/1.65  
% 4.46/1.65  1055ms
%------------------------------------------------------------------------------