TSTP Solution File: ROB011-1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : ROB011-1 : TPTP v8.1.2. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 14:09:08 EDT 2023

% Result   : Unsatisfiable 0.20s 0.39s
% Output   : Proof 0.20s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : ROB011-1 : TPTP v8.1.2. Released v1.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.17/0.35  % Computer : n022.cluster.edu
% 0.17/0.35  % Model    : x86_64 x86_64
% 0.17/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.17/0.35  % Memory   : 8042.1875MB
% 0.17/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.17/0.35  % CPULimit : 300
% 0.17/0.35  % WCLimit  : 300
% 0.17/0.35  % DateTime : Mon Aug 28 06:59:09 EDT 2023
% 0.17/0.35  % CPUTime  : 
% 0.20/0.39  Command-line arguments: --set-join --lhs-weight 1 --no-flatten-goal --complete-subsets --goal-heuristic
% 0.20/0.39  
% 0.20/0.39  % SZS status Unsatisfiable
% 0.20/0.39  
% 0.20/0.40  % SZS output start Proof
% 0.20/0.40  Take the following subset of the input axioms:
% 0.20/0.40    fof(associativity_of_add, axiom, ![X, Y, Z]: add(add(X, Y), Z)=add(X, add(Y, Z))).
% 0.20/0.40    fof(commutativity_of_add, axiom, ![X2, Y2]: add(X2, Y2)=add(Y2, X2)).
% 0.20/0.40    fof(condition, hypothesis, negate(add(a, negate(b)))=c).
% 0.20/0.40    fof(one_times_x, axiom, ![X2]: multiply(one, X2)=X2).
% 0.20/0.40    fof(prove_base_step, negated_conjecture, negate(add(a, negate(add(b, multiply(one, add(a, c))))))!=c).
% 0.20/0.40    fof(robbins_axiom, axiom, ![X2, Y2]: negate(add(negate(add(X2, Y2)), negate(add(X2, negate(Y2)))))=X2).
% 0.20/0.40  
% 0.20/0.40  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.20/0.40  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.20/0.40  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.20/0.40    fresh(y, y, x1...xn) = u
% 0.20/0.40    C => fresh(s, t, x1...xn) = v
% 0.20/0.40  where fresh is a fresh function symbol and x1..xn are the free
% 0.20/0.40  variables of u and v.
% 0.20/0.40  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.20/0.40  input problem has no model of domain size 1).
% 0.20/0.40  
% 0.20/0.40  The encoding turns the above axioms into the following unit equations and goals:
% 0.20/0.40  
% 0.20/0.40  Axiom 1 (one_times_x): multiply(one, X) = X.
% 0.20/0.40  Axiom 2 (commutativity_of_add): add(X, Y) = add(Y, X).
% 0.20/0.40  Axiom 3 (condition): negate(add(a, negate(b))) = c.
% 0.20/0.40  Axiom 4 (associativity_of_add): add(add(X, Y), Z) = add(X, add(Y, Z)).
% 0.20/0.40  Axiom 5 (robbins_axiom): negate(add(negate(add(X, Y)), negate(add(X, negate(Y))))) = X.
% 0.20/0.40  
% 0.20/0.40  Goal 1 (prove_base_step): negate(add(a, negate(add(b, multiply(one, add(a, c)))))) = c.
% 0.20/0.40  Proof:
% 0.20/0.40    negate(add(a, negate(add(b, multiply(one, add(a, c))))))
% 0.20/0.40  = { by axiom 1 (one_times_x) }
% 0.20/0.40    negate(add(a, negate(add(b, add(a, c)))))
% 0.20/0.40  = { by axiom 2 (commutativity_of_add) R->L }
% 0.20/0.40    negate(add(a, negate(add(b, add(c, a)))))
% 0.20/0.40  = { by axiom 2 (commutativity_of_add) R->L }
% 0.20/0.40    negate(add(a, negate(add(add(c, a), b))))
% 0.20/0.40  = { by axiom 4 (associativity_of_add) }
% 0.20/0.40    negate(add(a, negate(add(c, add(a, b)))))
% 0.20/0.40  = { by axiom 2 (commutativity_of_add) }
% 0.20/0.40    negate(add(a, negate(add(c, add(b, a)))))
% 0.20/0.40  = { by axiom 2 (commutativity_of_add) R->L }
% 0.20/0.40    negate(add(negate(add(c, add(b, a))), a))
% 0.20/0.40  = { by axiom 5 (robbins_axiom) R->L }
% 0.20/0.40    negate(add(negate(add(c, add(b, a))), negate(add(negate(add(a, b)), negate(add(a, negate(b)))))))
% 0.20/0.40  = { by axiom 3 (condition) }
% 0.20/0.40    negate(add(negate(add(c, add(b, a))), negate(add(negate(add(a, b)), c))))
% 0.20/0.40  = { by axiom 2 (commutativity_of_add) }
% 0.20/0.40    negate(add(negate(add(c, add(b, a))), negate(add(c, negate(add(a, b))))))
% 0.20/0.40  = { by axiom 2 (commutativity_of_add) }
% 0.20/0.40    negate(add(negate(add(c, add(b, a))), negate(add(c, negate(add(b, a))))))
% 0.20/0.40  = { by axiom 5 (robbins_axiom) }
% 0.20/0.40    c
% 0.20/0.40  % SZS output end Proof
% 0.20/0.40  
% 0.20/0.40  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------