TSTP Solution File: RNG089+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : RNG089+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:59:13 EDT 2023

% Result   : Theorem 0.19s 0.54s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : RNG089+1 : TPTP v8.1.2. Released v4.0.0.
% 0.13/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n011.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Sun Aug 27 02:46:39 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.19/0.54  Command-line arguments: --kbo-weight0 --lhs-weight 5 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10 --goal-heuristic
% 0.19/0.54  
% 0.19/0.54  % SZS status Theorem
% 0.19/0.54  
% 0.19/0.54  % SZS output start Proof
% 0.19/0.54  Take the following subset of the input axioms:
% 0.19/0.54    fof(mDefIdeal, definition, ![W0]: (aIdeal0(W0) <=> (aSet0(W0) & ![W1]: (aElementOf0(W1, W0) => (![W2]: (aElementOf0(W2, W0) => aElementOf0(sdtpldt0(W1, W2), W0)) & ![W2_2]: (aElement0(W2_2) => aElementOf0(sdtasdt0(W2_2, W1), W0))))))).
% 0.19/0.54    fof(m__, conjecture, aElementOf0(sdtasdt0(xz, xk), xI) & aElementOf0(sdtasdt0(xz, xl), xJ)).
% 0.19/0.54    fof(m__870, hypothesis, aIdeal0(xI) & aIdeal0(xJ)).
% 0.19/0.54    fof(m__901, hypothesis, aElementOf0(xx, sdtpldt1(xI, xJ)) & (aElementOf0(xy, sdtpldt1(xI, xJ)) & aElement0(xz))).
% 0.19/0.54    fof(m__934, hypothesis, aElementOf0(xk, xI) & (aElementOf0(xl, xJ) & xx=sdtpldt0(xk, xl))).
% 0.19/0.54  
% 0.19/0.54  Now clausify the problem and encode Horn clauses using encoding 3 of
% 0.19/0.54  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 0.19/0.54  We repeatedly replace C & s=t => u=v by the two clauses:
% 0.19/0.54    fresh(y, y, x1...xn) = u
% 0.19/0.54    C => fresh(s, t, x1...xn) = v
% 0.19/0.54  where fresh is a fresh function symbol and x1..xn are the free
% 0.19/0.54  variables of u and v.
% 0.19/0.54  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 0.19/0.54  input problem has no model of domain size 1).
% 0.19/0.54  
% 0.19/0.54  The encoding turns the above axioms into the following unit equations and goals:
% 0.19/0.54  
% 0.19/0.54  Axiom 1 (m__901): aElement0(xz) = true.
% 0.19/0.54  Axiom 2 (m__934_1): aElementOf0(xk, xI) = true.
% 0.19/0.54  Axiom 3 (m__934_2): aElementOf0(xl, xJ) = true.
% 0.19/0.54  Axiom 4 (m__870): aIdeal0(xI) = true.
% 0.19/0.54  Axiom 5 (m__870_1): aIdeal0(xJ) = true.
% 0.19/0.54  Axiom 6 (mDefIdeal): fresh41(X, X, Y, Z, W) = true.
% 0.19/0.54  Axiom 7 (mDefIdeal): fresh32(X, X, Y, Z, W) = aElementOf0(sdtasdt0(W, Z), Y).
% 0.19/0.54  Axiom 8 (mDefIdeal): fresh40(X, X, Y, Z, W) = fresh41(aElement0(W), true, Y, Z, W).
% 0.19/0.54  Axiom 9 (mDefIdeal): fresh40(aIdeal0(X), true, X, Y, Z) = fresh32(aElementOf0(Y, X), true, X, Y, Z).
% 0.19/0.54  
% 0.19/0.54  Lemma 10: fresh40(X, X, Y, Z, xz) = true.
% 0.19/0.54  Proof:
% 0.19/0.54    fresh40(X, X, Y, Z, xz)
% 0.19/0.54  = { by axiom 8 (mDefIdeal) }
% 0.19/0.54    fresh41(aElement0(xz), true, Y, Z, xz)
% 0.19/0.54  = { by axiom 1 (m__901) }
% 0.19/0.54    fresh41(true, true, Y, Z, xz)
% 0.19/0.54  = { by axiom 6 (mDefIdeal) }
% 0.19/0.54    true
% 0.19/0.54  
% 0.19/0.54  Goal 1 (m__): tuple(aElementOf0(sdtasdt0(xz, xk), xI), aElementOf0(sdtasdt0(xz, xl), xJ)) = tuple(true, true).
% 0.19/0.54  Proof:
% 0.19/0.54    tuple(aElementOf0(sdtasdt0(xz, xk), xI), aElementOf0(sdtasdt0(xz, xl), xJ))
% 0.19/0.54  = { by axiom 7 (mDefIdeal) R->L }
% 0.19/0.54    tuple(aElementOf0(sdtasdt0(xz, xk), xI), fresh32(true, true, xJ, xl, xz))
% 0.19/0.54  = { by axiom 3 (m__934_2) R->L }
% 0.19/0.54    tuple(aElementOf0(sdtasdt0(xz, xk), xI), fresh32(aElementOf0(xl, xJ), true, xJ, xl, xz))
% 0.19/0.54  = { by axiom 9 (mDefIdeal) R->L }
% 0.19/0.54    tuple(aElementOf0(sdtasdt0(xz, xk), xI), fresh40(aIdeal0(xJ), true, xJ, xl, xz))
% 0.19/0.54  = { by axiom 5 (m__870_1) }
% 0.19/0.54    tuple(aElementOf0(sdtasdt0(xz, xk), xI), fresh40(true, true, xJ, xl, xz))
% 0.19/0.54  = { by lemma 10 }
% 0.19/0.54    tuple(aElementOf0(sdtasdt0(xz, xk), xI), true)
% 0.19/0.54  = { by axiom 7 (mDefIdeal) R->L }
% 0.19/0.54    tuple(fresh32(true, true, xI, xk, xz), true)
% 0.19/0.54  = { by axiom 2 (m__934_1) R->L }
% 0.19/0.54    tuple(fresh32(aElementOf0(xk, xI), true, xI, xk, xz), true)
% 0.19/0.54  = { by axiom 9 (mDefIdeal) R->L }
% 0.19/0.54    tuple(fresh40(aIdeal0(xI), true, xI, xk, xz), true)
% 0.19/0.54  = { by axiom 4 (m__870) }
% 0.19/0.54    tuple(fresh40(true, true, xI, xk, xz), true)
% 0.19/0.54  = { by lemma 10 }
% 0.19/0.54    tuple(true, true)
% 0.19/0.54  % SZS output end Proof
% 0.19/0.54  
% 0.19/0.54  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------