TSTP Solution File: REL017-4 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : REL017-4 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n018.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:43:58 EDT 2023

% Result   : Unsatisfiable 104.72s 13.80s
% Output   : Proof 105.52s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.13  % Problem  : REL017-4 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.14  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n018.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Fri Aug 25 22:10:59 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 104.72/13.80  Command-line arguments: --lhs-weight 1 --flip-ordering --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 104.72/13.80  
% 104.72/13.80  % SZS status Unsatisfiable
% 104.72/13.80  
% 105.52/13.85  % SZS output start Proof
% 105.52/13.85  Take the following subset of the input axioms:
% 105.52/13.85    fof(composition_associativity_5, axiom, ![A, B, C]: composition(A, composition(B, C))=composition(composition(A, B), C)).
% 105.52/13.86    fof(composition_distributivity_7, axiom, ![A2, B2, C2]: composition(join(A2, B2), C2)=join(composition(A2, C2), composition(B2, C2))).
% 105.52/13.86    fof(composition_identity_6, axiom, ![A2]: composition(A2, one)=A2).
% 105.52/13.86    fof(converse_additivity_9, axiom, ![A2, B2]: converse(join(A2, B2))=join(converse(A2), converse(B2))).
% 105.52/13.86    fof(converse_cancellativity_11, axiom, ![A2, B2]: join(composition(converse(A2), complement(composition(A2, B2))), complement(B2))=complement(B2)).
% 105.52/13.86    fof(converse_idempotence_8, axiom, ![A2]: converse(converse(A2))=A2).
% 105.52/13.86    fof(converse_multiplicativity_10, axiom, ![A2, B2]: converse(composition(A2, B2))=composition(converse(B2), converse(A2))).
% 105.52/13.86    fof(def_top_12, axiom, ![A2]: top=join(A2, complement(A2))).
% 105.52/13.86    fof(def_zero_13, axiom, ![A2]: zero=meet(A2, complement(A2))).
% 105.52/13.86    fof(goals_17, negated_conjecture, join(join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3))))), composition(sk1, sk3))!=join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)) | join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3))!=join(complement(composition(sk1, sk2)), composition(sk1, sk3))).
% 105.52/13.86    fof(maddux1_join_commutativity_1, axiom, ![A2, B2]: join(A2, B2)=join(B2, A2)).
% 105.52/13.86    fof(maddux2_join_associativity_2, axiom, ![A2, B2, C2]: join(A2, join(B2, C2))=join(join(A2, B2), C2)).
% 105.52/13.86    fof(maddux3_a_kind_of_de_Morgan_3, axiom, ![A2, B2]: A2=join(complement(join(complement(A2), complement(B2))), complement(join(complement(A2), B2)))).
% 105.52/13.86    fof(maddux4_definiton_of_meet_4, axiom, ![A2, B2]: meet(A2, B2)=complement(join(complement(A2), complement(B2)))).
% 105.52/13.86    fof(modular_law_1_15, axiom, ![A2, B2, C2]: join(meet(composition(A2, B2), C2), meet(composition(A2, meet(B2, composition(converse(A2), C2))), C2))=meet(composition(A2, meet(B2, composition(converse(A2), C2))), C2)).
% 105.52/13.86  
% 105.52/13.86  Now clausify the problem and encode Horn clauses using encoding 3 of
% 105.52/13.86  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 105.52/13.86  We repeatedly replace C & s=t => u=v by the two clauses:
% 105.52/13.86    fresh(y, y, x1...xn) = u
% 105.52/13.86    C => fresh(s, t, x1...xn) = v
% 105.52/13.86  where fresh is a fresh function symbol and x1..xn are the free
% 105.52/13.86  variables of u and v.
% 105.52/13.86  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 105.52/13.86  input problem has no model of domain size 1).
% 105.52/13.86  
% 105.52/13.86  The encoding turns the above axioms into the following unit equations and goals:
% 105.52/13.86  
% 105.52/13.86  Axiom 1 (composition_identity_6): composition(X, one) = X.
% 105.52/13.86  Axiom 2 (maddux1_join_commutativity_1): join(X, Y) = join(Y, X).
% 105.52/13.86  Axiom 3 (converse_idempotence_8): converse(converse(X)) = X.
% 105.52/13.86  Axiom 4 (def_top_12): top = join(X, complement(X)).
% 105.52/13.86  Axiom 5 (def_zero_13): zero = meet(X, complement(X)).
% 105.52/13.86  Axiom 6 (converse_multiplicativity_10): converse(composition(X, Y)) = composition(converse(Y), converse(X)).
% 105.52/13.86  Axiom 7 (composition_associativity_5): composition(X, composition(Y, Z)) = composition(composition(X, Y), Z).
% 105.52/13.86  Axiom 8 (converse_additivity_9): converse(join(X, Y)) = join(converse(X), converse(Y)).
% 105.52/13.86  Axiom 9 (maddux2_join_associativity_2): join(X, join(Y, Z)) = join(join(X, Y), Z).
% 105.52/13.86  Axiom 10 (maddux4_definiton_of_meet_4): meet(X, Y) = complement(join(complement(X), complement(Y))).
% 105.52/13.86  Axiom 11 (composition_distributivity_7): composition(join(X, Y), Z) = join(composition(X, Z), composition(Y, Z)).
% 105.52/13.86  Axiom 12 (converse_cancellativity_11): join(composition(converse(X), complement(composition(X, Y))), complement(Y)) = complement(Y).
% 105.52/13.86  Axiom 13 (maddux3_a_kind_of_de_Morgan_3): X = join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y))).
% 105.52/13.86  Axiom 14 (modular_law_1_15): join(meet(composition(X, Y), Z), meet(composition(X, meet(Y, composition(converse(X), Z))), Z)) = meet(composition(X, meet(Y, composition(converse(X), Z))), Z).
% 105.52/13.86  
% 105.52/13.86  Lemma 15: complement(top) = zero.
% 105.52/13.86  Proof:
% 105.52/13.86    complement(top)
% 105.52/13.86  = { by axiom 4 (def_top_12) }
% 105.52/13.86    complement(join(complement(X), complement(complement(X))))
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.86    meet(X, complement(X))
% 105.52/13.86  = { by axiom 5 (def_zero_13) R->L }
% 105.52/13.86    zero
% 105.52/13.86  
% 105.52/13.86  Lemma 16: converse(composition(converse(X), Y)) = composition(converse(Y), X).
% 105.52/13.86  Proof:
% 105.52/13.86    converse(composition(converse(X), Y))
% 105.52/13.86  = { by axiom 6 (converse_multiplicativity_10) }
% 105.52/13.86    composition(converse(Y), converse(converse(X)))
% 105.52/13.86  = { by axiom 3 (converse_idempotence_8) }
% 105.52/13.86    composition(converse(Y), X)
% 105.52/13.86  
% 105.52/13.86  Lemma 17: composition(converse(one), X) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    composition(converse(one), X)
% 105.52/13.86  = { by lemma 16 R->L }
% 105.52/13.86    converse(composition(converse(X), one))
% 105.52/13.86  = { by axiom 1 (composition_identity_6) }
% 105.52/13.86    converse(converse(X))
% 105.52/13.86  = { by axiom 3 (converse_idempotence_8) }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 18: join(complement(X), complement(X)) = complement(X).
% 105.52/13.86  Proof:
% 105.52/13.86    join(complement(X), complement(X))
% 105.52/13.86  = { by lemma 17 R->L }
% 105.52/13.86    join(complement(X), complement(composition(converse(one), X)))
% 105.52/13.86  = { by axiom 1 (composition_identity_6) R->L }
% 105.52/13.86    join(complement(X), complement(composition(composition(converse(one), one), X)))
% 105.52/13.86  = { by axiom 7 (composition_associativity_5) R->L }
% 105.52/13.86    join(complement(X), complement(composition(converse(one), composition(one, X))))
% 105.52/13.86  = { by lemma 17 }
% 105.52/13.86    join(complement(X), complement(composition(one, X)))
% 105.52/13.86  = { by axiom 3 (converse_idempotence_8) R->L }
% 105.52/13.86    join(complement(X), complement(composition(converse(converse(one)), X)))
% 105.52/13.86  = { by lemma 17 R->L }
% 105.52/13.86    join(complement(X), composition(converse(one), complement(composition(converse(converse(one)), X))))
% 105.52/13.86  = { by axiom 3 (converse_idempotence_8) R->L }
% 105.52/13.86    join(complement(X), composition(converse(converse(converse(one))), complement(composition(converse(converse(one)), X))))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(composition(converse(converse(converse(one))), complement(composition(converse(converse(one)), X))), complement(X))
% 105.52/13.86  = { by axiom 12 (converse_cancellativity_11) }
% 105.52/13.86    complement(X)
% 105.52/13.86  
% 105.52/13.86  Lemma 19: join(meet(X, Y), complement(join(complement(X), Y))) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    join(meet(X, Y), complement(join(complement(X), Y)))
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.86    join(complement(join(complement(X), complement(Y))), complement(join(complement(X), Y)))
% 105.52/13.86  = { by axiom 13 (maddux3_a_kind_of_de_Morgan_3) R->L }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 20: join(X, join(Y, complement(X))) = join(Y, top).
% 105.52/13.86  Proof:
% 105.52/13.86    join(X, join(Y, complement(X)))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(X, join(complement(X), Y))
% 105.52/13.86  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.86    join(join(X, complement(X)), Y)
% 105.52/13.86  = { by axiom 4 (def_top_12) R->L }
% 105.52/13.86    join(top, Y)
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.86    join(Y, top)
% 105.52/13.86  
% 105.52/13.86  Lemma 21: join(complement(X), X) = top.
% 105.52/13.86  Proof:
% 105.52/13.86    join(complement(X), X)
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(X, complement(X))
% 105.52/13.86  = { by axiom 4 (def_top_12) R->L }
% 105.52/13.86    top
% 105.52/13.86  
% 105.52/13.86  Lemma 22: meet(Y, X) = meet(X, Y).
% 105.52/13.86  Proof:
% 105.52/13.86    meet(Y, X)
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.86    complement(join(complement(Y), complement(X)))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    complement(join(complement(X), complement(Y)))
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.86    meet(X, Y)
% 105.52/13.86  
% 105.52/13.86  Lemma 23: join(meet(X, Y), complement(join(X, complement(Y)))) = Y.
% 105.52/13.86  Proof:
% 105.52/13.86    join(meet(X, Y), complement(join(X, complement(Y))))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(meet(X, Y), complement(join(complement(Y), X)))
% 105.52/13.86  = { by lemma 22 }
% 105.52/13.86    join(meet(Y, X), complement(join(complement(Y), X)))
% 105.52/13.86  = { by lemma 19 }
% 105.52/13.86    Y
% 105.52/13.86  
% 105.52/13.86  Lemma 24: join(X, join(Y, complement(join(X, Y)))) = top.
% 105.52/13.86  Proof:
% 105.52/13.86    join(X, join(Y, complement(join(X, Y))))
% 105.52/13.86  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.86    join(join(X, Y), complement(join(X, Y)))
% 105.52/13.86  = { by axiom 4 (def_top_12) R->L }
% 105.52/13.86    top
% 105.52/13.86  
% 105.52/13.86  Lemma 25: join(X, top) = top.
% 105.52/13.86  Proof:
% 105.52/13.86    join(X, top)
% 105.52/13.86  = { by lemma 21 R->L }
% 105.52/13.86    join(X, join(complement(Y), Y))
% 105.52/13.86  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.86    join(join(X, complement(Y)), Y)
% 105.52/13.86  = { by lemma 23 R->L }
% 105.52/13.86    join(join(X, complement(Y)), join(meet(X, Y), complement(join(X, complement(Y)))))
% 105.52/13.86  = { by lemma 20 }
% 105.52/13.86    join(meet(X, Y), top)
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.86    join(top, meet(X, Y))
% 105.52/13.86  = { by axiom 1 (composition_identity_6) R->L }
% 105.52/13.86    join(top, meet(X, composition(Y, one)))
% 105.52/13.86  = { by lemma 22 }
% 105.52/13.86    join(top, meet(composition(Y, one), X))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(meet(composition(Y, one), X), top)
% 105.52/13.86  = { by axiom 4 (def_top_12) }
% 105.52/13.86    join(meet(composition(Y, one), X), join(meet(composition(Y, meet(one, composition(converse(Y), X))), X), complement(meet(composition(Y, meet(one, composition(converse(Y), X))), X))))
% 105.52/13.86  = { by axiom 14 (modular_law_1_15) R->L }
% 105.52/13.86    join(meet(composition(Y, one), X), join(meet(composition(Y, meet(one, composition(converse(Y), X))), X), complement(join(meet(composition(Y, one), X), meet(composition(Y, meet(one, composition(converse(Y), X))), X)))))
% 105.52/13.86  = { by lemma 24 }
% 105.52/13.86    top
% 105.52/13.86  
% 105.52/13.86  Lemma 26: join(X, complement(zero)) = top.
% 105.52/13.86  Proof:
% 105.52/13.86    join(X, complement(zero))
% 105.52/13.86  = { by lemma 19 R->L }
% 105.52/13.86    join(join(meet(X, complement(X)), complement(join(complement(X), complement(X)))), complement(zero))
% 105.52/13.86  = { by axiom 5 (def_zero_13) R->L }
% 105.52/13.86    join(join(zero, complement(join(complement(X), complement(X)))), complement(zero))
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.86    join(join(zero, meet(X, X)), complement(zero))
% 105.52/13.86  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.86    join(zero, join(meet(X, X), complement(zero)))
% 105.52/13.86  = { by lemma 20 }
% 105.52/13.86    join(meet(X, X), top)
% 105.52/13.86  = { by lemma 25 }
% 105.52/13.86    top
% 105.52/13.86  
% 105.52/13.86  Lemma 27: meet(X, zero) = zero.
% 105.52/13.86  Proof:
% 105.52/13.86    meet(X, zero)
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.86    complement(join(complement(X), complement(zero)))
% 105.52/13.86  = { by lemma 26 }
% 105.52/13.86    complement(top)
% 105.52/13.86  = { by lemma 15 }
% 105.52/13.86    zero
% 105.52/13.86  
% 105.52/13.86  Lemma 28: join(meet(X, Y), meet(X, complement(Y))) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    join(meet(X, Y), meet(X, complement(Y)))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(meet(X, complement(Y)), meet(X, Y))
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.86    join(meet(X, complement(Y)), complement(join(complement(X), complement(Y))))
% 105.52/13.86  = { by lemma 19 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 29: join(meet(X, top), meet(X, zero)) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    join(meet(X, top), meet(X, zero))
% 105.52/13.86  = { by lemma 15 R->L }
% 105.52/13.86    join(meet(X, top), meet(X, complement(top)))
% 105.52/13.86  = { by lemma 28 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 30: join(X, zero) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    join(X, zero)
% 105.52/13.86  = { by lemma 27 R->L }
% 105.52/13.86    join(X, meet(complement(X), zero))
% 105.52/13.86  = { by lemma 22 R->L }
% 105.52/13.86    join(X, meet(zero, complement(X)))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(meet(zero, complement(X)), X)
% 105.52/13.86  = { by lemma 19 R->L }
% 105.52/13.86    join(meet(zero, complement(X)), join(meet(X, complement(zero)), complement(join(complement(X), complement(zero)))))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.86    join(meet(zero, complement(X)), join(meet(X, complement(zero)), complement(join(complement(zero), complement(X)))))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(meet(zero, complement(X)), join(complement(join(complement(zero), complement(X))), meet(X, complement(zero))))
% 105.52/13.86  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.86    join(join(meet(zero, complement(X)), complement(join(complement(zero), complement(X)))), meet(X, complement(zero)))
% 105.52/13.86  = { by lemma 19 }
% 105.52/13.86    join(zero, meet(X, complement(zero)))
% 105.52/13.86  = { by lemma 18 R->L }
% 105.52/13.86    join(zero, meet(X, join(complement(zero), complement(zero))))
% 105.52/13.86  = { by lemma 26 }
% 105.52/13.86    join(zero, meet(X, top))
% 105.52/13.86  = { by lemma 27 R->L }
% 105.52/13.86    join(meet(X, zero), meet(X, top))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    join(meet(X, top), meet(X, zero))
% 105.52/13.86  = { by lemma 29 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 31: meet(X, join(Y, complement(join(Y, complement(X))))) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    meet(X, join(Y, complement(join(Y, complement(X)))))
% 105.52/13.86  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.86    meet(X, join(Y, complement(join(complement(X), Y))))
% 105.52/13.86  = { by lemma 30 R->L }
% 105.52/13.86    join(meet(X, join(Y, complement(join(complement(X), Y)))), zero)
% 105.52/13.86  = { by lemma 15 R->L }
% 105.52/13.86    join(meet(X, join(Y, complement(join(complement(X), Y)))), complement(top))
% 105.52/13.86  = { by lemma 24 R->L }
% 105.52/13.86    join(meet(X, join(Y, complement(join(complement(X), Y)))), complement(join(complement(X), join(Y, complement(join(complement(X), Y))))))
% 105.52/13.86  = { by lemma 19 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 32: complement(complement(X)) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    complement(complement(X))
% 105.52/13.86  = { by lemma 18 R->L }
% 105.52/13.86    complement(join(complement(X), complement(X)))
% 105.52/13.86  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.86    meet(X, X)
% 105.52/13.86  = { by lemma 30 R->L }
% 105.52/13.86    meet(X, join(X, zero))
% 105.52/13.86  = { by lemma 15 R->L }
% 105.52/13.86    meet(X, join(X, complement(top)))
% 105.52/13.86  = { by axiom 4 (def_top_12) }
% 105.52/13.86    meet(X, join(X, complement(join(X, complement(X)))))
% 105.52/13.86  = { by lemma 31 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 33: join(X, X) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    join(X, X)
% 105.52/13.86  = { by lemma 32 R->L }
% 105.52/13.86    join(X, complement(complement(X)))
% 105.52/13.86  = { by lemma 32 R->L }
% 105.52/13.86    join(complement(complement(X)), complement(complement(X)))
% 105.52/13.86  = { by lemma 18 }
% 105.52/13.86    complement(complement(X))
% 105.52/13.86  = { by lemma 32 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 34: meet(X, top) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    meet(X, top)
% 105.52/13.86  = { by lemma 30 R->L }
% 105.52/13.86    meet(join(X, zero), top)
% 105.52/13.86  = { by lemma 15 R->L }
% 105.52/13.86    meet(join(X, complement(top)), top)
% 105.52/13.86  = { by lemma 26 R->L }
% 105.52/13.86    meet(join(X, complement(join(X, complement(zero)))), top)
% 105.52/13.86  = { by lemma 30 R->L }
% 105.52/13.86    join(meet(join(X, complement(join(X, complement(zero)))), top), zero)
% 105.52/13.86  = { by lemma 31 R->L }
% 105.52/13.86    join(meet(join(X, complement(join(X, complement(zero)))), top), meet(zero, join(X, complement(join(X, complement(zero))))))
% 105.52/13.86  = { by lemma 22 }
% 105.52/13.86    join(meet(join(X, complement(join(X, complement(zero)))), top), meet(join(X, complement(join(X, complement(zero)))), zero))
% 105.52/13.86  = { by lemma 29 }
% 105.52/13.86    join(X, complement(join(X, complement(zero))))
% 105.52/13.86  = { by lemma 26 }
% 105.52/13.86    join(X, complement(top))
% 105.52/13.86  = { by lemma 15 }
% 105.52/13.86    join(X, zero)
% 105.52/13.86  = { by lemma 30 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 35: meet(top, X) = X.
% 105.52/13.86  Proof:
% 105.52/13.86    meet(top, X)
% 105.52/13.86  = { by lemma 22 }
% 105.52/13.86    meet(X, top)
% 105.52/13.86  = { by lemma 34 }
% 105.52/13.86    X
% 105.52/13.86  
% 105.52/13.86  Lemma 36: join(zero, complement(X)) = complement(X).
% 105.52/13.86  Proof:
% 105.52/13.86    join(zero, complement(X))
% 105.52/13.86  = { by lemma 33 R->L }
% 105.52/13.86    join(zero, complement(join(X, X)))
% 105.52/13.86  = { by lemma 32 R->L }
% 105.52/13.86    join(zero, complement(join(complement(complement(X)), X)))
% 105.52/13.86  = { by axiom 5 (def_zero_13) }
% 105.52/13.86    join(meet(X, complement(X)), complement(join(complement(complement(X)), X)))
% 105.52/13.86  = { by lemma 22 }
% 105.52/13.86    join(meet(complement(X), X), complement(join(complement(complement(X)), X)))
% 105.52/13.86  = { by lemma 19 }
% 105.52/13.87    complement(X)
% 105.52/13.87  
% 105.52/13.87  Lemma 37: join(Y, join(X, Z)) = join(X, join(Y, Z)).
% 105.52/13.87  Proof:
% 105.52/13.87    join(Y, join(X, Z))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    join(join(X, Z), Y)
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.87    join(X, join(Z, Y))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    join(X, join(Y, Z))
% 105.52/13.87  
% 105.52/13.87  Lemma 38: complement(join(X, complement(Y))) = meet(Y, complement(X)).
% 105.52/13.87  Proof:
% 105.52/13.87    complement(join(X, complement(Y)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    complement(join(complement(Y), X))
% 105.52/13.87  = { by lemma 35 R->L }
% 105.52/13.87    complement(join(complement(Y), meet(top, X)))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    complement(join(complement(Y), meet(X, top)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    complement(join(meet(X, top), complement(Y)))
% 105.52/13.87  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.87    complement(join(complement(join(complement(X), complement(top))), complement(Y)))
% 105.52/13.87  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.87    meet(join(complement(X), complement(top)), Y)
% 105.52/13.87  = { by lemma 22 R->L }
% 105.52/13.87    meet(Y, join(complement(X), complement(top)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    meet(Y, join(complement(top), complement(X)))
% 105.52/13.87  = { by lemma 15 }
% 105.52/13.87    meet(Y, join(zero, complement(X)))
% 105.52/13.87  = { by lemma 36 }
% 105.52/13.87    meet(Y, complement(X))
% 105.52/13.87  
% 105.52/13.87  Lemma 39: complement(join(zero, complement(X))) = meet(X, top).
% 105.52/13.87  Proof:
% 105.52/13.87    complement(join(zero, complement(X)))
% 105.52/13.87  = { by lemma 15 R->L }
% 105.52/13.87    complement(join(complement(top), complement(X)))
% 105.52/13.87  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.87    meet(top, X)
% 105.52/13.87  = { by lemma 22 R->L }
% 105.52/13.87    meet(X, top)
% 105.52/13.87  
% 105.52/13.87  Lemma 40: meet(X, join(X, Y)) = X.
% 105.52/13.87  Proof:
% 105.52/13.87    meet(X, join(X, Y))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    meet(X, join(Y, X))
% 105.52/13.87  = { by lemma 30 R->L }
% 105.52/13.87    meet(X, join(Y, join(X, zero)))
% 105.52/13.87  = { by lemma 15 R->L }
% 105.52/13.87    meet(X, join(Y, join(X, complement(top))))
% 105.52/13.87  = { by lemma 25 R->L }
% 105.52/13.87    meet(X, join(Y, join(X, complement(join(Y, top)))))
% 105.52/13.87  = { by lemma 32 R->L }
% 105.52/13.87    meet(X, join(Y, join(complement(complement(X)), complement(join(Y, top)))))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.87    meet(X, join(join(Y, complement(complement(X))), complement(join(Y, top))))
% 105.52/13.87  = { by lemma 20 R->L }
% 105.52/13.87    meet(X, join(join(Y, complement(complement(X))), complement(join(complement(X), join(Y, complement(complement(X)))))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    meet(X, join(join(Y, complement(complement(X))), complement(join(join(Y, complement(complement(X))), complement(X)))))
% 105.52/13.87  = { by lemma 31 }
% 105.52/13.87    X
% 105.52/13.87  
% 105.52/13.87  Lemma 41: join(complement(X), join(X, Y)) = top.
% 105.52/13.87  Proof:
% 105.52/13.87    join(complement(X), join(X, Y))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.87    join(join(complement(X), X), Y)
% 105.52/13.87  = { by lemma 21 }
% 105.52/13.87    join(top, Y)
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    join(Y, top)
% 105.52/13.87  = { by lemma 25 }
% 105.52/13.87    top
% 105.52/13.87  
% 105.52/13.87  Lemma 42: join(composition(X, Y), composition(X, Z)) = composition(X, join(Z, Y)).
% 105.52/13.87  Proof:
% 105.52/13.87    join(composition(X, Y), composition(X, Z))
% 105.52/13.87  = { by axiom 3 (converse_idempotence_8) R->L }
% 105.52/13.87    join(composition(X, Y), composition(converse(converse(X)), Z))
% 105.52/13.87  = { by axiom 3 (converse_idempotence_8) R->L }
% 105.52/13.87    join(converse(converse(composition(X, Y))), composition(converse(converse(X)), Z))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    join(composition(converse(converse(X)), Z), converse(converse(composition(X, Y))))
% 105.52/13.87  = { by lemma 16 R->L }
% 105.52/13.87    join(converse(composition(converse(Z), converse(X))), converse(converse(composition(X, Y))))
% 105.52/13.87  = { by axiom 8 (converse_additivity_9) R->L }
% 105.52/13.87    converse(join(composition(converse(Z), converse(X)), converse(composition(X, Y))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    converse(join(converse(composition(X, Y)), composition(converse(Z), converse(X))))
% 105.52/13.87  = { by axiom 6 (converse_multiplicativity_10) }
% 105.52/13.87    converse(join(composition(converse(Y), converse(X)), composition(converse(Z), converse(X))))
% 105.52/13.87  = { by axiom 11 (composition_distributivity_7) R->L }
% 105.52/13.87    converse(composition(join(converse(Y), converse(Z)), converse(X)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    converse(composition(join(converse(Z), converse(Y)), converse(X)))
% 105.52/13.87  = { by axiom 6 (converse_multiplicativity_10) }
% 105.52/13.87    composition(converse(converse(X)), converse(join(converse(Z), converse(Y))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    composition(converse(converse(X)), converse(join(converse(Y), converse(Z))))
% 105.52/13.87  = { by axiom 8 (converse_additivity_9) }
% 105.52/13.87    composition(converse(converse(X)), join(converse(converse(Y)), converse(converse(Z))))
% 105.52/13.87  = { by axiom 3 (converse_idempotence_8) }
% 105.52/13.87    composition(converse(converse(X)), join(Y, converse(converse(Z))))
% 105.52/13.87  = { by axiom 3 (converse_idempotence_8) }
% 105.52/13.87    composition(X, join(Y, converse(converse(Z))))
% 105.52/13.87  = { by axiom 3 (converse_idempotence_8) }
% 105.52/13.87    composition(X, join(Y, Z))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    composition(X, join(Z, Y))
% 105.52/13.87  
% 105.52/13.87  Lemma 43: join(join(join(X, W), Y), Z) = join(X, join(join(Y, Z), W)).
% 105.52/13.87  Proof:
% 105.52/13.87    join(join(join(X, W), Y), Z)
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.87    join(join(X, W), join(Y, Z))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.87    join(X, join(W, join(Y, Z)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    join(X, join(join(Y, Z), W))
% 105.52/13.87  
% 105.52/13.87  Lemma 44: join(join(join(X, Y), Z), Y) = join(join(X, Y), Z).
% 105.52/13.87  Proof:
% 105.52/13.87    join(join(join(X, Y), Z), Y)
% 105.52/13.87  = { by lemma 40 R->L }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(join(join(join(X, Y), Z), Y), Z))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(Z, join(join(join(X, Y), Z), Y)))
% 105.52/13.87  = { by lemma 43 }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(Z, join(X, join(join(Z, Y), Y))))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(Z, join(join(X, join(Z, Y)), Y)))
% 105.52/13.87  = { by lemma 37 R->L }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(join(X, join(Z, Y)), join(Z, Y)))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(X, join(join(Z, Y), join(Z, Y))))
% 105.52/13.87  = { by lemma 33 }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(X, join(Z, Y)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(X, join(Y, Z)))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.87    meet(join(join(join(X, Y), Z), Y), join(join(X, Y), Z))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    meet(join(join(X, Y), Z), join(join(join(X, Y), Z), Y))
% 105.52/13.87  = { by lemma 40 }
% 105.52/13.87    join(join(X, Y), Z)
% 105.52/13.87  
% 105.52/13.87  Lemma 45: meet(join(X, Y), join(X, complement(Y))) = X.
% 105.52/13.87  Proof:
% 105.52/13.87    meet(join(X, Y), join(X, complement(Y)))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    meet(join(Y, X), join(X, complement(Y)))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    meet(join(X, complement(Y)), join(Y, X))
% 105.52/13.87  = { by lemma 34 R->L }
% 105.52/13.87    meet(join(X, complement(Y)), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 34 R->L }
% 105.52/13.87    meet(meet(join(X, complement(Y)), top), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 39 R->L }
% 105.52/13.87    meet(complement(join(zero, complement(join(X, complement(Y))))), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 38 }
% 105.52/13.87    meet(complement(join(zero, meet(Y, complement(X)))), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    meet(complement(join(zero, meet(complement(X), Y))), join(Y, meet(X, top)))
% 105.52/13.87  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.87    meet(complement(join(zero, complement(join(complement(complement(X)), complement(Y))))), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 36 }
% 105.52/13.87    meet(complement(complement(join(complement(complement(X)), complement(Y)))), join(Y, meet(X, top)))
% 105.52/13.87  = { by axiom 10 (maddux4_definiton_of_meet_4) R->L }
% 105.52/13.87    meet(complement(meet(complement(X), Y)), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 22 R->L }
% 105.52/13.87    meet(complement(meet(Y, complement(X))), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 36 R->L }
% 105.52/13.87    meet(complement(meet(Y, join(zero, complement(X)))), join(Y, meet(X, top)))
% 105.52/13.87  = { by lemma 39 R->L }
% 105.52/13.87    meet(complement(meet(Y, join(zero, complement(X)))), join(Y, complement(join(zero, complement(X)))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    meet(complement(meet(Y, join(zero, complement(X)))), join(complement(join(zero, complement(X))), Y))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    meet(complement(meet(join(zero, complement(X)), Y)), join(complement(join(zero, complement(X))), Y))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    meet(join(complement(join(zero, complement(X))), Y), complement(meet(join(zero, complement(X)), Y)))
% 105.52/13.87  = { by lemma 38 R->L }
% 105.52/13.87    complement(join(meet(join(zero, complement(X)), Y), complement(join(complement(join(zero, complement(X))), Y))))
% 105.52/13.87  = { by lemma 19 }
% 105.52/13.87    complement(join(zero, complement(X)))
% 105.52/13.87  = { by lemma 39 }
% 105.52/13.87    meet(X, top)
% 105.52/13.87  = { by lemma 34 }
% 105.52/13.87    X
% 105.52/13.87  
% 105.52/13.87  Lemma 46: join(composition(X, meet(Y, complement(Z))), composition(X, Z)) = join(composition(X, Y), composition(X, Z)).
% 105.52/13.87  Proof:
% 105.52/13.87    join(composition(X, meet(Y, complement(Z))), composition(X, Z))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    join(composition(X, Z), composition(X, meet(Y, complement(Z))))
% 105.52/13.87  = { by lemma 42 }
% 105.52/13.87    composition(X, join(meet(Y, complement(Z)), Z))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    composition(X, join(Z, meet(Y, complement(Z))))
% 105.52/13.87  = { by lemma 40 R->L }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(meet(Y, complement(Z)), join(Z, meet(Z, Y))))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(meet(Y, complement(Z)), join(meet(Z, Y), Z)))))
% 105.52/13.87  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(join(meet(Y, complement(Z)), meet(Z, Y)), Z))))
% 105.52/13.87  = { by axiom 10 (maddux4_definiton_of_meet_4) }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(join(meet(Y, complement(Z)), complement(join(complement(Z), complement(Y)))), Z))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(join(meet(Y, complement(Z)), complement(join(complement(Y), complement(Z)))), Z))))
% 105.52/13.87  = { by lemma 19 }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(Y, Z))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    composition(X, join(Z, meet(meet(Y, complement(Z)), join(Z, Y))))
% 105.52/13.87  = { by lemma 32 R->L }
% 105.52/13.87    composition(X, join(Z, meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by lemma 32 R->L }
% 105.52/13.87    composition(X, join(complement(complement(Z)), meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by lemma 23 R->L }
% 105.52/13.87    composition(X, join(complement(join(meet(Y, complement(Z)), complement(join(Y, complement(complement(Z)))))), meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by lemma 38 }
% 105.52/13.87    composition(X, join(meet(join(Y, complement(complement(Z))), complement(meet(Y, complement(Z)))), meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by lemma 32 }
% 105.52/13.87    composition(X, join(meet(join(Y, Z), complement(meet(Y, complement(Z)))), meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by lemma 22 R->L }
% 105.52/13.87    composition(X, join(meet(complement(meet(Y, complement(Z))), join(Y, Z)), meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.87    composition(X, join(meet(complement(meet(Y, complement(Z))), join(Z, Y)), meet(complement(complement(meet(Y, complement(Z)))), join(Z, Y))))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    composition(X, join(meet(complement(meet(Y, complement(Z))), join(Z, Y)), meet(join(Z, Y), complement(complement(meet(Y, complement(Z)))))))
% 105.52/13.87  = { by lemma 22 }
% 105.52/13.87    composition(X, join(meet(join(Z, Y), complement(meet(Y, complement(Z)))), meet(join(Z, Y), complement(complement(meet(Y, complement(Z)))))))
% 105.52/13.87  = { by lemma 28 }
% 105.52/13.87    composition(X, join(Z, Y))
% 105.52/13.87  = { by lemma 42 R->L }
% 105.52/13.87    join(composition(X, Y), composition(X, Z))
% 105.52/13.87  
% 105.52/13.87  Goal 1 (goals_17): tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3))))), composition(sk1, sk3))) = tuple(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3))).
% 105.52/13.87  Proof:
% 105.52/13.87    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3))))), composition(sk1, sk3)))
% 105.52/13.87  = { by lemma 43 }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(complement(composition(sk1, sk2)), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), composition(sk1, sk3))))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), composition(sk1, sk3)), complement(composition(sk1, sk2))))
% 105.52/13.88  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), join(composition(sk1, sk3), complement(composition(sk1, sk2)))))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), join(complement(composition(sk1, sk2)), composition(sk1, sk3))))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3))))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), join(composition(sk1, sk3), complement(composition(sk1, meet(sk2, complement(sk3)))))))
% 105.52/13.88  = { by axiom 9 (maddux2_join_associativity_2) }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3))))))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(complement(composition(sk1, meet(sk2, complement(sk3)))), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), composition(sk1, sk3))))
% 105.52/13.88  = { by lemma 43 R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 44 }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))))
% 105.52/13.88  = { by lemma 35 R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), meet(top, join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2)))))
% 105.52/13.88  = { by lemma 41 R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), meet(join(complement(composition(sk1, meet(sk2, complement(sk3)))), join(composition(sk1, meet(sk2, complement(sk3))), composition(sk1, sk3))), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2)))))
% 105.52/13.88  = { by lemma 46 }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), meet(join(complement(composition(sk1, meet(sk2, complement(sk3)))), join(composition(sk1, sk2), composition(sk1, sk3))), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2)))))
% 105.52/13.88  = { by lemma 37 R->L }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), meet(join(composition(sk1, sk2), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3))), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2)))))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), meet(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), composition(sk1, sk2)), join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2)))))
% 105.52/13.88  = { by lemma 45 }
% 105.52/13.88    tuple(join(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), composition(sk1, sk3)), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 44 }
% 105.52/13.88    tuple(join(join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)), complement(composition(sk1, sk2))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by axiom 9 (maddux2_join_associativity_2) R->L }
% 105.52/13.88    tuple(join(complement(composition(sk1, meet(sk2, complement(sk3)))), join(composition(sk1, sk3), complement(composition(sk1, sk2)))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.88    tuple(join(complement(composition(sk1, meet(sk2, complement(sk3)))), join(complement(composition(sk1, sk2)), composition(sk1, sk3))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.88    tuple(join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3))))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 35 R->L }
% 105.52/13.88    tuple(meet(top, join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3)))))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 41 R->L }
% 105.52/13.88    tuple(meet(join(complement(composition(sk1, sk2)), join(composition(sk1, sk2), composition(sk1, sk3))), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3)))))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 46 R->L }
% 105.52/13.88    tuple(meet(join(complement(composition(sk1, sk2)), join(composition(sk1, meet(sk2, complement(sk3))), composition(sk1, sk3))), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3)))))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 37 R->L }
% 105.52/13.88    tuple(meet(join(composition(sk1, meet(sk2, complement(sk3))), join(complement(composition(sk1, sk2)), composition(sk1, sk3))), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3)))))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by axiom 2 (maddux1_join_commutativity_1) }
% 105.52/13.88    tuple(meet(join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), composition(sk1, meet(sk2, complement(sk3)))), join(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), complement(composition(sk1, meet(sk2, complement(sk3)))))), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  = { by lemma 45 }
% 105.52/13.88    tuple(join(complement(composition(sk1, sk2)), composition(sk1, sk3)), join(complement(composition(sk1, meet(sk2, complement(sk3)))), composition(sk1, sk3)))
% 105.52/13.88  % SZS output end Proof
% 105.52/13.88  
% 105.52/13.88  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------