TSTP Solution File: NUM924+5 by Zipperpin---2.1.9999

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zipperpin---2.1.9999
% Problem  : NUM924+5 : TPTP v8.1.2. Released v5.3.0.
% Transfm  : NO INFORMATION
% Format   : NO INFORMATION
% Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.Z5OGJ9KQ3t true

% Computer : n003.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 12:44:50 EDT 2023

% Result   : Theorem 1.75s 0.83s
% Output   : Refutation 1.75s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    6
%            Number of leaves      :   23
% Syntax   : Number of formulae    :   52 (  37 unt;  15 typ;   0 def)
%            Number of atoms       :   37 (  28 equ;   0 cnn)
%            Maximal formula atoms :    1 (   1 avg)
%            Number of connectives :  344 (   5   ~;   0   |;   0   &; 339   @)
%                                         (   0 <=>;   0  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   13 (   4 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :   18 (  18   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   17 (  15 usr;   7 con; 0-3 aty)
%            Number of variables   :   34 (   0   ^;  34   !;   0   ?;  34   :)

% Comments : 
%------------------------------------------------------------------------------
thf(m_type,type,
    m: $i ).

thf(times_times_type,type,
    times_times: $i > $i > $i > $i ).

thf(pls_type,type,
    pls: $i ).

thf(bit0_type,type,
    bit0: $i > $i ).

thf(one_one_type,type,
    one_one: $i > $i ).

thf(t_type,type,
    t: $i ).

thf(bit1_type,type,
    bit1: $i > $i ).

thf(power_power_type,type,
    power_power: $i > $i > $i > $i ).

thf(nat_type,type,
    nat: $i ).

thf(number_number_of_type,type,
    number_number_of: $i > $i > $i ).

thf(plus_plus_type,type,
    plus_plus: $i > $i > $i > $i ).

thf(int_type,type,
    int: $i ).

thf(s_type,type,
    s: $i ).

thf(ord_less_type,type,
    ord_less: $i > $i > $i > $o ).

thf(zero_zero_type,type,
    zero_zero: $i > $i ).

thf(fact_2__096_I4_A_K_Am_A_L_A1_J_A_K_At_A_060_A_I4_A_K_Am_A_L_A1_J_A_K_A0_096,axiom,
    ord_less @ int @ ( times_times @ int @ ( plus_plus @ int @ ( times_times @ int @ ( number_number_of @ int @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ m ) @ ( one_one @ int ) ) @ t ) @ ( times_times @ int @ ( plus_plus @ int @ ( times_times @ int @ ( number_number_of @ int @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ m ) @ ( one_one @ int ) ) @ ( zero_zero @ int ) ) ).

thf(zip_derived_cl51,plain,
    ord_less @ int @ ( times_times @ int @ ( plus_plus @ int @ ( times_times @ int @ ( number_number_of @ int @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ m ) @ ( one_one @ int ) ) @ t ) @ ( times_times @ int @ ( plus_plus @ int @ ( times_times @ int @ ( number_number_of @ int @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ m ) @ ( one_one @ int ) ) @ ( zero_zero @ int ) ),
    inference(cnf,[status(esa)],[fact_2__096_I4_A_K_Am_A_L_A1_J_A_K_At_A_060_A_I4_A_K_Am_A_L_A1_J_A_K_A0_096]) ).

thf(fact_22_number__of__is__id,axiom,
    ! [K_1: $i] :
      ( ( number_number_of @ int @ K_1 )
      = K_1 ) ).

thf(zip_derived_cl77,plain,
    ! [X0: $i] :
      ( ( number_number_of @ int @ X0 )
      = X0 ),
    inference(cnf,[status(esa)],[fact_22_number__of__is__id]) ).

thf(fact_23_zmult__commute,axiom,
    ! [Z: $i,W: $i] :
      ( ( times_times @ int @ Z @ W )
      = ( times_times @ int @ W @ Z ) ) ).

thf(zip_derived_cl78,plain,
    ! [X0: $i,X1: $i] :
      ( ( times_times @ int @ X1 @ X0 )
      = ( times_times @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_23_zmult__commute]) ).

thf(fact_96_zadd__commute,axiom,
    ! [Z: $i,W: $i] :
      ( ( plus_plus @ int @ Z @ W )
      = ( plus_plus @ int @ W @ Z ) ) ).

thf(zip_derived_cl195,plain,
    ! [X0: $i,X1: $i] :
      ( ( plus_plus @ int @ X1 @ X0 )
      = ( plus_plus @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_96_zadd__commute]) ).

thf(zip_derived_cl78_001,plain,
    ! [X0: $i,X1: $i] :
      ( ( times_times @ int @ X1 @ X0 )
      = ( times_times @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_23_zmult__commute]) ).

thf(fact_3_t,axiom,
    ( ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) )
    = ( times_times @ int @ ( plus_plus @ int @ ( times_times @ int @ ( number_number_of @ int @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ m ) @ ( one_one @ int ) ) @ t ) ) ).

thf(zip_derived_cl52,plain,
    ( ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) )
    = ( times_times @ int @ ( plus_plus @ int @ ( times_times @ int @ ( number_number_of @ int @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ m ) @ ( one_one @ int ) ) @ t ) ),
    inference(cnf,[status(esa)],[fact_3_t]) ).

thf(zip_derived_cl195_002,plain,
    ! [X0: $i,X1: $i] :
      ( ( plus_plus @ int @ X1 @ X0 )
      = ( plus_plus @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_96_zadd__commute]) ).

thf(zip_derived_cl77_003,plain,
    ! [X0: $i] :
      ( ( number_number_of @ int @ X0 )
      = X0 ),
    inference(cnf,[status(esa)],[fact_22_number__of__is__id]) ).

thf(zip_derived_cl78_004,plain,
    ! [X0: $i,X1: $i] :
      ( ( times_times @ int @ X1 @ X0 )
      = ( times_times @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_23_zmult__commute]) ).

thf(zip_derived_cl195_005,plain,
    ! [X0: $i,X1: $i] :
      ( ( plus_plus @ int @ X1 @ X0 )
      = ( plus_plus @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_96_zadd__commute]) ).

thf(zip_derived_cl78_006,plain,
    ! [X0: $i,X1: $i] :
      ( ( times_times @ int @ X1 @ X0 )
      = ( times_times @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_23_zmult__commute]) ).

thf(zip_derived_cl236,plain,
    ( ( plus_plus @ int @ ( one_one @ int ) @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) )
    = ( times_times @ int @ t @ ( plus_plus @ int @ ( one_one @ int ) @ ( times_times @ int @ m @ ( bit0 @ ( bit0 @ ( bit1 @ pls ) ) ) ) ) ) ),
    inference(demod,[status(thm)],[zip_derived_cl52,zip_derived_cl195,zip_derived_cl77,zip_derived_cl78,zip_derived_cl195,zip_derived_cl78]) ).

thf(zip_derived_cl77_007,plain,
    ! [X0: $i] :
      ( ( number_number_of @ int @ X0 )
      = X0 ),
    inference(cnf,[status(esa)],[fact_22_number__of__is__id]) ).

thf(zip_derived_cl78_008,plain,
    ! [X0: $i,X1: $i] :
      ( ( times_times @ int @ X1 @ X0 )
      = ( times_times @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_23_zmult__commute]) ).

thf(zip_derived_cl195_009,plain,
    ! [X0: $i,X1: $i] :
      ( ( plus_plus @ int @ X1 @ X0 )
      = ( plus_plus @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_96_zadd__commute]) ).

thf(fact_97_zero__is__num__zero,axiom,
    ( ( zero_zero @ int )
    = ( number_number_of @ int @ pls ) ) ).

thf(zip_derived_cl196,plain,
    ( ( zero_zero @ int )
    = ( number_number_of @ int @ pls ) ),
    inference(cnf,[status(esa)],[fact_97_zero__is__num__zero]) ).

thf(zip_derived_cl77_010,plain,
    ! [X0: $i] :
      ( ( number_number_of @ int @ X0 )
      = X0 ),
    inference(cnf,[status(esa)],[fact_22_number__of__is__id]) ).

thf(zip_derived_cl216,plain,
    ( ( zero_zero @ int )
    = pls ),
    inference(demod,[status(thm)],[zip_derived_cl196,zip_derived_cl77]) ).

thf(zip_derived_cl78_011,plain,
    ! [X0: $i,X1: $i] :
      ( ( times_times @ int @ X1 @ X0 )
      = ( times_times @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_23_zmult__commute]) ).

thf(fact_62_mult__Pls,axiom,
    ! [W: $i] :
      ( ( times_times @ int @ pls @ W )
      = pls ) ).

thf(zip_derived_cl140,plain,
    ! [X0: $i] :
      ( ( times_times @ int @ pls @ X0 )
      = pls ),
    inference(cnf,[status(esa)],[fact_62_mult__Pls]) ).

thf(conj_0,conjecture,
    ord_less @ int @ ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) ) @ ( zero_zero @ int ) ).

thf(zf_stmt_0,negated_conjecture,
    ~ ( ord_less @ int @ ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) ) @ ( zero_zero @ int ) ),
    inference('cnf.neg',[status(esa)],[conj_0]) ).

thf(zip_derived_cl214,plain,
    ~ ( ord_less @ int @ ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) ) @ ( zero_zero @ int ) ),
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(zip_derived_cl196_012,plain,
    ( ( zero_zero @ int )
    = ( number_number_of @ int @ pls ) ),
    inference(cnf,[status(esa)],[fact_97_zero__is__num__zero]) ).

thf(zip_derived_cl215,plain,
    ~ ( ord_less @ int @ ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) ) @ ( number_number_of @ int @ pls ) ),
    inference(demod,[status(thm)],[zip_derived_cl214,zip_derived_cl196]) ).

thf(zip_derived_cl77_013,plain,
    ! [X0: $i] :
      ( ( number_number_of @ int @ X0 )
      = X0 ),
    inference(cnf,[status(esa)],[fact_22_number__of__is__id]) ).

thf(zip_derived_cl217,plain,
    ~ ( ord_less @ int @ ( plus_plus @ int @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) @ ( one_one @ int ) ) @ pls ),
    inference(demod,[status(thm)],[zip_derived_cl215,zip_derived_cl77]) ).

thf(zip_derived_cl195_014,plain,
    ! [X0: $i,X1: $i] :
      ( ( plus_plus @ int @ X1 @ X0 )
      = ( plus_plus @ int @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[fact_96_zadd__commute]) ).

thf(zip_derived_cl220,plain,
    ~ ( ord_less @ int @ ( plus_plus @ int @ ( one_one @ int ) @ ( power_power @ int @ s @ ( number_number_of @ nat @ ( bit0 @ ( bit1 @ pls ) ) ) ) ) @ pls ),
    inference(demod,[status(thm)],[zip_derived_cl217,zip_derived_cl195]) ).

thf(zip_derived_cl241,plain,
    $false,
    inference(demod,[status(thm)],[zip_derived_cl51,zip_derived_cl77,zip_derived_cl78,zip_derived_cl195,zip_derived_cl78,zip_derived_cl236,zip_derived_cl77,zip_derived_cl78,zip_derived_cl195,zip_derived_cl216,zip_derived_cl78,zip_derived_cl140,zip_derived_cl220]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.11/0.12  % Problem  : NUM924+5 : TPTP v8.1.2. Released v5.3.0.
% 0.11/0.13  % Command  : python3 /export/starexec/sandbox/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox/tmp/tmp.Z5OGJ9KQ3t true
% 0.13/0.34  % Computer : n003.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 13:54:38 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  % Running portfolio for 300 s
% 0.13/0.34  % File         : /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.13/0.34  % Number of cores: 8
% 0.13/0.34  % Python version: Python 3.6.8
% 0.13/0.35  % Running in FO mode
% 0.20/0.64  % Total configuration time : 435
% 0.20/0.64  % Estimated wc time : 1092
% 0.20/0.64  % Estimated cpu time (7 cpus) : 156.0
% 0.20/0.67  % /export/starexec/sandbox/solver/bin/fo/fo6_bce.sh running for 75s
% 0.20/0.73  % /export/starexec/sandbox/solver/bin/fo/fo3_bce.sh running for 75s
% 0.20/0.73  % /export/starexec/sandbox/solver/bin/fo/fo1_av.sh running for 75s
% 0.20/0.73  % /export/starexec/sandbox/solver/bin/fo/fo13.sh running for 50s
% 0.20/0.74  % /export/starexec/sandbox/solver/bin/fo/fo7.sh running for 63s
% 0.20/0.74  % /export/starexec/sandbox/solver/bin/fo/fo5.sh running for 50s
% 0.20/0.77  % /export/starexec/sandbox/solver/bin/fo/fo4.sh running for 50s
% 1.75/0.83  % Solved by fo/fo13.sh.
% 1.75/0.83  % done 0 iterations in 0.076s
% 1.75/0.83  % SZS status Theorem for '/export/starexec/sandbox/benchmark/theBenchmark.p'
% 1.75/0.83  % SZS output start Refutation
% See solution above
% 1.75/0.83  
% 1.75/0.83  
% 1.75/0.83  % Terminating...
% 2.19/0.94  % Runner terminated.
% 2.19/0.95  % Zipperpin 1.5 exiting
%------------------------------------------------------------------------------