TSTP Solution File: NUM689^4 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : NUM689^4 : TPTP v7.1.0. Released v7.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n160.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32218.625MB
% OS       : Linux 3.10.0-693.2.2.el7.x86_64
% CPULimit : 300s
% DateTime : Mon Jan  8 13:11:27 EST 2018

% Result   : Timeout 300.07s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.03  % Problem  : NUM689^4 : TPTP v7.1.0. Released v7.1.0.
% 0.00/0.04  % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.02/0.23  % Computer : n160.star.cs.uiowa.edu
% 0.02/0.23  % Model    : x86_64 x86_64
% 0.02/0.23  % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% 0.02/0.23  % Memory   : 32218.625MB
% 0.02/0.23  % OS       : Linux 3.10.0-693.2.2.el7.x86_64
% 0.02/0.23  % CPULimit : 300
% 0.02/0.23  % DateTime : Fri Jan  5 12:50:19 CST 2018
% 0.02/0.23  % CPUTime  : 
% 0.06/0.28  Python 2.7.13
% 0.26/0.74  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% 0.26/0.74  Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/NUM007^0.ax, trying next directory
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6a3f8>, <kernel.DependentProduct object at 0x2b8fb6e6aea8>) of role type named typ_is_of
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring is_of:(fofType->((fofType->Prop)->Prop))
% 0.26/0.74  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) is_of) (fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0))) of role definition named def_is_of
% 0.26/0.74  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) is_of) (fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)))
% 0.26/0.74  Defined: is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0))
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6a3f8>, <kernel.DependentProduct object at 0x2b8fb6e6ae18>) of role type named typ_all_of
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring all_of:((fofType->Prop)->((fofType->Prop)->Prop))
% 0.26/0.74  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->Prop))) all_of) (fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2))))) of role definition named def_all_of
% 0.26/0.74  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->Prop))) all_of) (fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))))
% 0.26/0.74  Defined: all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2))))
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6ae18>, <kernel.DependentProduct object at 0x2b8fb6e6add0>) of role type named typ_eps
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring eps:((fofType->Prop)->fofType)
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6afc8>, <kernel.DependentProduct object at 0x2b8fb6e6af80>) of role type named typ_in
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring in:(fofType->(fofType->Prop))
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6a7a0>, <kernel.DependentProduct object at 0x2b8fb6e6ae18>) of role type named typ_d_Subq
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring d_Subq:(fofType->(fofType->Prop))
% 0.26/0.74  FOF formula (((eq (fofType->(fofType->Prop))) d_Subq) (fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1))))) of role definition named def_d_Subq
% 0.26/0.74  A new definition: (((eq (fofType->(fofType->Prop))) d_Subq) (fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))))
% 0.26/0.74  Defined: d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1))))
% 0.26/0.74  FOF formula (forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1)))) of role axiom named set_ext
% 0.26/0.74  A new axiom: (forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1))))
% 0.26/0.74  FOF formula (forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1)))) of role axiom named k_In_ind
% 0.26/0.74  A new axiom: (forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1))))
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6af38>, <kernel.Single object at 0x2b8fb6e6a1b8>) of role type named typ_emptyset
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring emptyset:fofType
% 0.26/0.74  FOF formula (((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False) of role axiom named k_EmptyAx
% 0.26/0.74  A new axiom: (((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False)
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6aef0>, <kernel.DependentProduct object at 0x2b8fb6e6a878>) of role type named typ_union
% 0.26/0.74  Using role type
% 0.26/0.74  Declaring union:(fofType->fofType)
% 0.26/0.74  FOF formula (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0)))))) of role axiom named k_UnionEq
% 0.26/0.74  A new axiom: (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0))))))
% 0.26/0.74  FOF formula (<kernel.Constant object at 0x2b8fb6e6abd8>, <kernel.DependentProduct object at 0x2b8fb6e6ac68>) of role type named typ_power
% 0.26/0.74  Using role type
% 0.33/0.75  Declaring power:(fofType->fofType)
% 0.33/0.75  FOF formula (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0))) of role axiom named k_PowerEq
% 0.33/0.75  A new axiom: (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0)))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b8fb6e6ab48>, <kernel.DependentProduct object at 0x2b8fb6e6ae18>) of role type named typ_repl
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring repl:(fofType->((fofType->fofType)->fofType))
% 0.33/0.75  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3))))))) of role axiom named k_ReplEq
% 0.33/0.75  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3)))))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b8fb6e6a878>, <kernel.DependentProduct object at 0x2b8fb6e6aef0>) of role type named typ_d_Union_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_Union_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_Union_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0))))) of role definition named def_d_Union_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_Union_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))))
% 0.33/0.75  Defined: d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b8fb6e6aef0>, <kernel.DependentProduct object at 0x2b8fb6e6ac20>) of role type named typ_d_Power_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_Power_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_Power_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0))))) of role definition named def_d_Power_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_Power_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))))
% 0.33/0.75  Defined: d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b8fb6e6a878>, <kernel.DependentProduct object at 0x2b8fb6e6a830>) of role type named typ_d_Repl_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_Repl_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_Repl_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0))))))) of role definition named def_d_Repl_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_Repl_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))))
% 0.33/0.75  Defined: d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0))))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b8fb6e6aef0>, <kernel.DependentProduct object at 0x2b8faf1ce758>) of role type named typ_d_ZF_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_ZF_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_ZF_closed) (fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0)))) of role definition named def_d_ZF_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_ZF_closed) (fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))))
% 0.33/0.75  Defined: d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0)))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b8faf1ce758>, <kernel.DependentProduct object at 0x2b8fb7587290>) of role type named typ_univof
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring univof:(fofType->fofType)
% 0.33/0.75  FOF formula (forall (X0:fofType), ((in X0) (univof X0))) of role axiom named k_UnivOf_In
% 0.33/0.75  A new axiom: (forall (X0:fofType), ((in X0) (univof X0)))
% 0.33/0.75  FOF formula (forall (X0:fofType), (d_ZF_closed (univof X0))) of role axiom named k_UnivOf_ZF_closed
% 0.33/0.77  A new axiom: (forall (X0:fofType), (d_ZF_closed (univof X0)))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b8fb6e6ac68>, <kernel.DependentProduct object at 0x2b8fb6e6afc8>) of role type named typ_if
% 0.33/0.77  Using role type
% 0.33/0.77  Declaring if:(Prop->(fofType->(fofType->fofType)))
% 0.33/0.77  FOF formula (((eq (Prop->(fofType->(fofType->fofType)))) if) (fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2))))))) of role definition named def_if
% 0.33/0.77  A new definition: (((eq (Prop->(fofType->(fofType->fofType)))) if) (fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))))
% 0.33/0.77  Defined: if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2))))))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2)))) of role axiom named if_i_correct
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2))))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2))) of role axiom named if_i_0
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2)))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1))) of role axiom named if_i_1
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1)))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2))) of role axiom named if_i_or
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2)))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b8fb75879e0>, <kernel.DependentProduct object at 0x2b8fb75877a0>) of role type named typ_nIn
% 0.33/0.77  Using role type
% 0.33/0.77  Declaring nIn:(fofType->(fofType->Prop))
% 0.33/0.77  FOF formula (((eq (fofType->(fofType->Prop))) nIn) (fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False))) of role definition named def_nIn
% 0.33/0.77  A new definition: (((eq (fofType->(fofType->Prop))) nIn) (fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)))
% 0.33/0.77  Defined: nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False))
% 0.33/0.77  FOF formula (forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0))) of role axiom named k_PowerE
% 0.33/0.77  A new axiom: (forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0)))
% 0.33/0.77  FOF formula (forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0)))) of role axiom named k_PowerI
% 0.33/0.77  A new axiom: (forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0))))
% 0.33/0.77  FOF formula (forall (X0:fofType), ((in X0) (power X0))) of role axiom named k_Self_In_Power
% 0.33/0.77  A new axiom: (forall (X0:fofType), ((in X0) (power X0)))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b8fb7587950>, <kernel.DependentProduct object at 0x2b8fb7587b90>) of role type named typ_d_UPair
% 0.33/0.77  Using role type
% 0.33/0.77  Declaring d_UPair:(fofType->(fofType->fofType))
% 0.33/0.77  FOF formula (((eq (fofType->(fofType->fofType))) d_UPair) (fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1))))) of role definition named def_d_UPair
% 0.33/0.77  A new definition: (((eq (fofType->(fofType->fofType))) d_UPair) (fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))))
% 0.33/0.77  Defined: d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1))))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b8fb7587b90>, <kernel.DependentProduct object at 0x2b8fb75870e0>) of role type named typ_d_Sing
% 0.33/0.77  Using role type
% 0.36/0.79  Declaring d_Sing:(fofType->fofType)
% 0.36/0.79  FOF formula (((eq (fofType->fofType)) d_Sing) (fun (X0:fofType)=> ((d_UPair X0) X0))) of role definition named def_d_Sing
% 0.36/0.79  A new definition: (((eq (fofType->fofType)) d_Sing) (fun (X0:fofType)=> ((d_UPair X0) X0)))
% 0.36/0.79  Defined: d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0))
% 0.36/0.79  FOF formula (<kernel.Constant object at 0x2b8fb75870e0>, <kernel.DependentProduct object at 0x2b8fb7587d40>) of role type named typ_binunion
% 0.36/0.79  Using role type
% 0.36/0.79  Declaring binunion:(fofType->(fofType->fofType))
% 0.36/0.79  FOF formula (((eq (fofType->(fofType->fofType))) binunion) (fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1)))) of role definition named def_binunion
% 0.36/0.79  A new definition: (((eq (fofType->(fofType->fofType))) binunion) (fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))))
% 0.36/0.79  Defined: binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1)))
% 0.36/0.79  FOF formula (<kernel.Constant object at 0x2b8fb7587d40>, <kernel.DependentProduct object at 0x2b8fb7587c20>) of role type named typ_famunion
% 0.36/0.79  Using role type
% 0.36/0.79  Declaring famunion:(fofType->((fofType->fofType)->fofType))
% 0.36/0.79  FOF formula (((eq (fofType->((fofType->fofType)->fofType))) famunion) (fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1)))) of role definition named def_famunion
% 0.36/0.79  A new definition: (((eq (fofType->((fofType->fofType)->fofType))) famunion) (fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))))
% 0.36/0.79  Defined: famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1)))
% 0.36/0.79  FOF formula (<kernel.Constant object at 0x2b8fb7587c20>, <kernel.DependentProduct object at 0x2b8fb7587560>) of role type named typ_d_Sep
% 0.36/0.79  Using role type
% 0.36/0.79  Declaring d_Sep:(fofType->((fofType->Prop)->fofType))
% 0.36/0.79  FOF formula (((eq (fofType->((fofType->Prop)->fofType))) d_Sep) (fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset))) of role definition named def_d_Sep
% 0.36/0.79  A new definition: (((eq (fofType->((fofType->Prop)->fofType))) d_Sep) (fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)))
% 0.36/0.79  Defined: d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset))
% 0.36/0.79  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1))))) of role axiom named k_SepI
% 0.36/0.79  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1)))))
% 0.36/0.79  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0))) of role axiom named k_SepE1
% 0.36/0.79  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0)))
% 0.36/0.79  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2))) of role axiom named k_SepE2
% 0.36/0.79  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2)))
% 0.36/0.79  FOF formula (<kernel.Constant object at 0x2b8fb7587950>, <kernel.DependentProduct object at 0x2b8fb95f2320>) of role type named typ_d_ReplSep
% 0.36/0.79  Using role type
% 0.36/0.79  Declaring d_ReplSep:(fofType->((fofType->Prop)->((fofType->fofType)->fofType)))
% 0.36/0.79  FOF formula (((eq (fofType->((fofType->Prop)->((fofType->fofType)->fofType)))) d_ReplSep) (fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1)))) of role definition named def_d_ReplSep
% 0.36/0.79  A new definition: (((eq (fofType->((fofType->Prop)->((fofType->fofType)->fofType)))) d_ReplSep) (fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))))
% 0.36/0.79  Defined: d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1)))
% 0.36/0.79  FOF formula (<kernel.Constant object at 0x2b8fb7587950>, <kernel.DependentProduct object at 0x2b8fb95f2488>) of role type named typ_setminus
% 0.36/0.80  Using role type
% 0.36/0.80  Declaring setminus:(fofType->(fofType->fofType))
% 0.36/0.80  FOF formula (((eq (fofType->(fofType->fofType))) setminus) (fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1))))) of role definition named def_setminus
% 0.36/0.80  A new definition: (((eq (fofType->(fofType->fofType))) setminus) (fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))))
% 0.36/0.80  Defined: setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1))))
% 0.36/0.80  FOF formula (<kernel.Constant object at 0x2b8fb7587950>, <kernel.DependentProduct object at 0x2b8fb95f2440>) of role type named typ_d_In_rec_G
% 0.36/0.80  Using role type
% 0.36/0.80  Declaring d_In_rec_G:((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))
% 0.36/0.80  FOF formula (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))) d_In_rec_G) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2))))) of role definition named def_d_In_rec_G
% 0.36/0.80  A new definition: (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))) d_In_rec_G) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))))
% 0.36/0.80  Defined: d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2))))
% 0.36/0.80  FOF formula (<kernel.Constant object at 0x2b8fb95f2440>, <kernel.DependentProduct object at 0x2b8fb95f2710>) of role type named typ_d_In_rec
% 0.36/0.80  Using role type
% 0.36/0.80  Declaring d_In_rec:((fofType->((fofType->fofType)->fofType))->(fofType->fofType))
% 0.36/0.80  FOF formula (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->fofType))) d_In_rec) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1)))) of role definition named def_d_In_rec
% 0.36/0.80  A new definition: (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->fofType))) d_In_rec) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))))
% 0.36/0.80  Defined: d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1)))
% 0.36/0.80  FOF formula (<kernel.Constant object at 0x2b8fb95f2710>, <kernel.DependentProduct object at 0x2b8fb95f24d0>) of role type named typ_ordsucc
% 0.36/0.80  Using role type
% 0.36/0.80  Declaring ordsucc:(fofType->fofType)
% 0.36/0.80  FOF formula (((eq (fofType->fofType)) ordsucc) (fun (X0:fofType)=> ((binunion X0) (d_Sing X0)))) of role definition named def_ordsucc
% 0.36/0.80  A new definition: (((eq (fofType->fofType)) ordsucc) (fun (X0:fofType)=> ((binunion X0) (d_Sing X0))))
% 0.36/0.80  Defined: ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0)))
% 0.36/0.80  FOF formula (forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset))) of role axiom named neq_ordsucc_0
% 0.36/0.80  A new axiom: (forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset)))
% 0.36/0.80  FOF formula (forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1))) of role axiom named ordsucc_inj
% 0.36/0.80  A new axiom: (forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1)))
% 0.36/0.80  FOF formula ((in emptyset) (ordsucc emptyset)) of role axiom named k_In_0_1
% 0.36/0.80  A new axiom: ((in emptyset) (ordsucc emptyset))
% 0.36/0.80  FOF formula (<kernel.Constant object at 0x2b8fb95f2488>, <kernel.DependentProduct object at 0x2b8fb95f2200>) of role type named typ_nat_p
% 0.36/0.80  Using role type
% 0.36/0.80  Declaring nat_p:(fofType->Prop)
% 0.36/0.80  FOF formula (((eq (fofType->Prop)) nat_p) (fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0)))))) of role definition named def_nat_p
% 0.36/0.82  A new definition: (((eq (fofType->Prop)) nat_p) (fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))))
% 0.36/0.82  Defined: nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0)))))
% 0.36/0.82  FOF formula (forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0)))) of role axiom named nat_ordsucc
% 0.36/0.82  A new axiom: (forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0))))
% 0.36/0.82  FOF formula (nat_p (ordsucc emptyset)) of role axiom named nat_1
% 0.36/0.82  A new axiom: (nat_p (ordsucc emptyset))
% 0.36/0.82  FOF formula (forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1)))))) of role axiom named nat_ind
% 0.36/0.82  A new axiom: (forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1))))))
% 0.36/0.82  FOF formula (forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1)))))))) of role axiom named nat_inv
% 0.36/0.82  A new axiom: (forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1))))))))
% 0.36/0.82  FOF formula (<kernel.Constant object at 0x2b8fb95f2b00>, <kernel.Single object at 0x2b8fb95f2830>) of role type named typ_omega
% 0.36/0.82  Using role type
% 0.36/0.82  Declaring omega:fofType
% 0.36/0.82  FOF formula (((eq fofType) omega) ((d_Sep (univof emptyset)) nat_p)) of role definition named def_omega
% 0.36/0.82  A new definition: (((eq fofType) omega) ((d_Sep (univof emptyset)) nat_p))
% 0.36/0.82  Defined: omega:=((d_Sep (univof emptyset)) nat_p)
% 0.36/0.82  FOF formula (forall (X0:fofType), (((in X0) omega)->(nat_p X0))) of role axiom named omega_nat_p
% 0.36/0.82  A new axiom: (forall (X0:fofType), (((in X0) omega)->(nat_p X0)))
% 0.36/0.82  FOF formula (forall (X0:fofType), ((nat_p X0)->((in X0) omega))) of role axiom named nat_p_omega
% 0.36/0.82  A new axiom: (forall (X0:fofType), ((nat_p X0)->((in X0) omega)))
% 0.36/0.82  FOF formula (<kernel.Constant object at 0x2b8fb95f2638>, <kernel.DependentProduct object at 0x2b8fb95f2830>) of role type named typ_d_Inj1
% 0.36/0.82  Using role type
% 0.36/0.82  Declaring d_Inj1:(fofType->fofType)
% 0.36/0.82  FOF formula (((eq (fofType->fofType)) d_Inj1) (d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1))))) of role definition named def_d_Inj1
% 0.36/0.82  A new definition: (((eq (fofType->fofType)) d_Inj1) (d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))))
% 0.36/0.82  Defined: d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1))))
% 0.36/0.82  FOF formula (<kernel.Constant object at 0x2b8fb95f2b00>, <kernel.DependentProduct object at 0x2b8fb95f2e60>) of role type named typ_d_Inj0
% 0.36/0.82  Using role type
% 0.36/0.82  Declaring d_Inj0:(fofType->fofType)
% 0.36/0.82  FOF formula (((eq (fofType->fofType)) d_Inj0) (fun (X0:fofType)=> ((repl X0) d_Inj1))) of role definition named def_d_Inj0
% 0.36/0.82  A new definition: (((eq (fofType->fofType)) d_Inj0) (fun (X0:fofType)=> ((repl X0) d_Inj1)))
% 0.36/0.82  Defined: d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1))
% 0.36/0.82  FOF formula (<kernel.Constant object at 0x2b8fb95f2e60>, <kernel.DependentProduct object at 0x2b8fb95f2830>) of role type named typ_d_Unj
% 0.36/0.82  Using role type
% 0.36/0.82  Declaring d_Unj:(fofType->fofType)
% 0.36/0.82  FOF formula (((eq (fofType->fofType)) d_Unj) (d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset)))))) of role definition named def_d_Unj
% 0.36/0.82  A new definition: (((eq (fofType->fofType)) d_Unj) (d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))))
% 0.36/0.82  Defined: d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset)))))
% 0.36/0.82  FOF formula (<kernel.Constant object at 0x2b8fb95f2638>, <kernel.DependentProduct object at 0x2b8fb95f2830>) of role type named typ_pair
% 0.36/0.82  Using role type
% 0.36/0.82  Declaring pair:(fofType->(fofType->fofType))
% 0.36/0.82  FOF formula (((eq (fofType->(fofType->fofType))) pair) (fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1)))) of role definition named def_pair
% 0.42/0.84  A new definition: (((eq (fofType->(fofType->fofType))) pair) (fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))))
% 0.42/0.84  Defined: pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1)))
% 0.42/0.84  FOF formula (<kernel.Constant object at 0x2b8fb95f2830>, <kernel.DependentProduct object at 0x2b8fb95f2518>) of role type named typ_proj0
% 0.42/0.84  Using role type
% 0.42/0.84  Declaring proj0:(fofType->fofType)
% 0.42/0.84  FOF formula (((eq (fofType->fofType)) proj0) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj))) of role definition named def_proj0
% 0.42/0.84  A new definition: (((eq (fofType->fofType)) proj0) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)))
% 0.42/0.84  Defined: proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj))
% 0.42/0.84  FOF formula (<kernel.Constant object at 0x2b8fb95f2518>, <kernel.DependentProduct object at 0x2b8fb95f27a0>) of role type named typ_proj1
% 0.42/0.84  Using role type
% 0.42/0.84  Declaring _TPTP_proj1:(fofType->fofType)
% 0.42/0.84  FOF formula (((eq (fofType->fofType)) _TPTP_proj1) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj))) of role definition named def_proj1
% 0.42/0.84  A new definition: (((eq (fofType->fofType)) _TPTP_proj1) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)))
% 0.42/0.84  Defined: _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj))
% 0.42/0.84  FOF formula (forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0)) of role axiom named proj0_pair_eq
% 0.42/0.84  A new axiom: (forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0))
% 0.42/0.84  FOF formula (forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1)) of role axiom named proj1_pair_eq
% 0.42/0.84  A new axiom: (forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1))
% 0.42/0.84  FOF formula (<kernel.Constant object at 0x2b8fb95f2ab8>, <kernel.DependentProduct object at 0x2b8fb95f29e0>) of role type named typ_d_Sigma
% 0.42/0.84  Using role type
% 0.42/0.84  Declaring d_Sigma:(fofType->((fofType->fofType)->fofType))
% 0.42/0.84  FOF formula (((eq (fofType->((fofType->fofType)->fofType))) d_Sigma) (fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2)))))) of role definition named def_d_Sigma
% 0.42/0.84  A new definition: (((eq (fofType->((fofType->fofType)->fofType))) d_Sigma) (fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))))
% 0.42/0.84  Defined: d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2)))))
% 0.42/0.84  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1)))))) of role axiom named pair_Sigma
% 0.42/0.84  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1))))))
% 0.42/0.84  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))) of role axiom named k_Sigma_eta_proj0_proj1
% 0.42/0.84  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))))
% 0.42/0.84  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2))) of role axiom named proj_Sigma_eta
% 0.44/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)))
% 0.44/0.85  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0))) of role axiom named proj0_Sigma
% 0.44/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0)))
% 0.44/0.85  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))) of role axiom named proj1_Sigma
% 0.44/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))
% 0.44/0.85  FOF formula (<kernel.Constant object at 0x2b8fb95f2e60>, <kernel.DependentProduct object at 0x2b8fb95f2320>) of role type named typ_setprod
% 0.44/0.85  Using role type
% 0.44/0.85  Declaring setprod:(fofType->(fofType->fofType))
% 0.44/0.85  FOF formula (((eq (fofType->(fofType->fofType))) setprod) (fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1)))) of role definition named def_setprod
% 0.44/0.85  A new definition: (((eq (fofType->(fofType->fofType))) setprod) (fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))))
% 0.44/0.85  Defined: setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1)))
% 0.44/0.85  FOF formula (<kernel.Constant object at 0x2b8fb95f2ea8>, <kernel.DependentProduct object at 0x2b8fb95f2518>) of role type named typ_ap
% 0.44/0.85  Using role type
% 0.44/0.85  Declaring ap:(fofType->(fofType->fofType))
% 0.44/0.85  FOF formula (((eq (fofType->(fofType->fofType))) ap) (fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1))) of role definition named def_ap
% 0.44/0.85  A new definition: (((eq (fofType->(fofType->fofType))) ap) (fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)))
% 0.44/0.85  Defined: ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1))
% 0.44/0.85  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2)))) of role axiom named beta
% 0.44/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2))))
% 0.44/0.85  FOF formula (<kernel.Constant object at 0x2b8fb95f2ef0>, <kernel.DependentProduct object at 0x2b8fba1ef5f0>) of role type named typ_pair_p
% 0.44/0.85  Using role type
% 0.44/0.85  Declaring pair_p:(fofType->Prop)
% 0.44/0.85  FOF formula (((eq (fofType->Prop)) pair_p) (fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0))) of role definition named def_pair_p
% 0.44/0.85  A new definition: (((eq (fofType->Prop)) pair_p) (fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)))
% 0.44/0.85  Defined: pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0))
% 0.44/0.85  FOF formula (<kernel.Constant object at 0x2b8fb95f2ea8>, <kernel.DependentProduct object at 0x2b8fba1ef1b8>) of role type named typ_d_Pi
% 0.44/0.85  Using role type
% 0.44/0.85  Declaring d_Pi:(fofType->((fofType->fofType)->fofType))
% 0.44/0.85  FOF formula (((eq (fofType->((fofType->fofType)->fofType))) d_Pi) (fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))))) of role definition named def_d_Pi
% 0.44/0.85  A new definition: (((eq (fofType->((fofType->fofType)->fofType))) d_Pi) (fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))))
% 0.44/0.85  Defined: d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))))
% 0.44/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1)))) of role axiom named lam_Pi
% 0.44/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1))))
% 0.44/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))) of role axiom named ap_Pi
% 0.44/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))
% 0.44/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3)))))) of role axiom named k_Pi_ext
% 0.44/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3))))))
% 0.44/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2)))) of role axiom named xi_ext
% 0.44/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2))))
% 0.44/0.87  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset))))) of role axiom named k_If_In_01
% 0.44/0.87  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset)))))
% 0.44/0.87  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2)))) of role axiom named k_If_In_then_E
% 0.44/0.87  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2))))
% 0.44/0.87  FOF formula (<kernel.Constant object at 0x2b8fba1ef488>, <kernel.DependentProduct object at 0x2b8fba1ef2d8>) of role type named typ_imp
% 0.44/0.87  Using role type
% 0.44/0.87  Declaring imp:(Prop->(Prop->Prop))
% 0.44/0.87  FOF formula (((eq (Prop->(Prop->Prop))) imp) (fun (X0:Prop) (X1:Prop)=> (X0->X1))) of role definition named def_imp
% 0.44/0.87  A new definition: (((eq (Prop->(Prop->Prop))) imp) (fun (X0:Prop) (X1:Prop)=> (X0->X1)))
% 0.44/0.87  Defined: imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1))
% 0.44/0.87  FOF formula (<kernel.Constant object at 0x2b8fba1ef2d8>, <kernel.DependentProduct object at 0x2b8fba1ef710>) of role type named typ_d_not
% 0.44/0.87  Using role type
% 0.44/0.87  Declaring d_not:(Prop->Prop)
% 0.44/0.87  FOF formula (((eq (Prop->Prop)) d_not) (fun (X0:Prop)=> ((imp X0) False))) of role definition named def_d_not
% 0.44/0.87  A new definition: (((eq (Prop->Prop)) d_not) (fun (X0:Prop)=> ((imp X0) False)))
% 0.44/0.87  Defined: d_not:=(fun (X0:Prop)=> ((imp X0) False))
% 0.44/0.87  FOF formula (<kernel.Constant object at 0x2b8fba1ef710>, <kernel.DependentProduct object at 0x2b8fba1ef320>) of role type named typ_wel
% 0.44/0.87  Using role type
% 0.44/0.87  Declaring wel:(Prop->Prop)
% 0.44/0.87  FOF formula (((eq (Prop->Prop)) wel) (fun (X0:Prop)=> (d_not (d_not X0)))) of role definition named def_wel
% 0.44/0.87  A new definition: (((eq (Prop->Prop)) wel) (fun (X0:Prop)=> (d_not (d_not X0))))
% 0.44/0.87  Defined: wel:=(fun (X0:Prop)=> (d_not (d_not X0)))
% 0.44/0.87  FOF formula (forall (X0:Prop), ((wel X0)->X0)) of role axiom named l_et
% 0.44/0.87  A new axiom: (forall (X0:Prop), ((wel X0)->X0))
% 0.44/0.87  FOF formula (<kernel.Constant object at 0x2b8fba1ef758>, <kernel.Sort object at 0x2b8faf1ce170>) of role type named typ_obvious
% 0.44/0.87  Using role type
% 0.44/0.87  Declaring obvious:Prop
% 0.44/0.87  FOF formula (((eq Prop) obvious) ((imp False) False)) of role definition named def_obvious
% 0.44/0.87  A new definition: (((eq Prop) obvious) ((imp False) False))
% 0.44/0.89  Defined: obvious:=((imp False) False)
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef518>, <kernel.DependentProduct object at 0x2b8fba1ef200>) of role type named typ_l_ec
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring l_ec:(Prop->(Prop->Prop))
% 0.44/0.89  FOF formula (((eq (Prop->(Prop->Prop))) l_ec) (fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1)))) of role definition named def_l_ec
% 0.44/0.89  A new definition: (((eq (Prop->(Prop->Prop))) l_ec) (fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))))
% 0.44/0.89  Defined: l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1)))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef200>, <kernel.DependentProduct object at 0x2b8fba1ef758>) of role type named typ_d_and
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring d_and:(Prop->(Prop->Prop))
% 0.44/0.89  FOF formula (((eq (Prop->(Prop->Prop))) d_and) (fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1)))) of role definition named def_d_and
% 0.44/0.89  A new definition: (((eq (Prop->(Prop->Prop))) d_and) (fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))))
% 0.44/0.89  Defined: d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1)))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef758>, <kernel.DependentProduct object at 0x2b8fba1ef518>) of role type named typ_l_or
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring l_or:(Prop->(Prop->Prop))
% 0.44/0.89  FOF formula (((eq (Prop->(Prop->Prop))) l_or) (fun (X0:Prop)=> (imp (d_not X0)))) of role definition named def_l_or
% 0.44/0.89  A new definition: (((eq (Prop->(Prop->Prop))) l_or) (fun (X0:Prop)=> (imp (d_not X0))))
% 0.44/0.89  Defined: l_or:=(fun (X0:Prop)=> (imp (d_not X0)))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef518>, <kernel.DependentProduct object at 0x2b8fba1ef440>) of role type named typ_orec
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring orec:(Prop->(Prop->Prop))
% 0.44/0.89  FOF formula (((eq (Prop->(Prop->Prop))) orec) (fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1)))) of role definition named def_orec
% 0.44/0.89  A new definition: (((eq (Prop->(Prop->Prop))) orec) (fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))))
% 0.44/0.89  Defined: orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1)))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef440>, <kernel.DependentProduct object at 0x2b8fba1ef758>) of role type named typ_l_iff
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring l_iff:(Prop->(Prop->Prop))
% 0.44/0.89  FOF formula (((eq (Prop->(Prop->Prop))) l_iff) (fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0)))) of role definition named def_l_iff
% 0.44/0.89  A new definition: (((eq (Prop->(Prop->Prop))) l_iff) (fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))))
% 0.44/0.89  Defined: l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0)))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef758>, <kernel.DependentProduct object at 0x2b8fba1ef998>) of role type named typ_all
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring all:(fofType->((fofType->Prop)->Prop))
% 0.44/0.89  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) all) (fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0))))) of role definition named def_all
% 0.44/0.89  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) all) (fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))))
% 0.44/0.89  Defined: all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0))))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1ef998>, <kernel.DependentProduct object at 0x2b8fba1efd88>) of role type named typ_non
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring non:(fofType->((fofType->Prop)->(fofType->Prop)))
% 0.44/0.89  FOF formula (((eq (fofType->((fofType->Prop)->(fofType->Prop)))) non) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2)))) of role definition named def_non
% 0.44/0.89  A new definition: (((eq (fofType->((fofType->Prop)->(fofType->Prop)))) non) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))))
% 0.44/0.89  Defined: non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2)))
% 0.44/0.89  FOF formula (<kernel.Constant object at 0x2b8fba1efd88>, <kernel.DependentProduct object at 0x2b8fba1ef4d0>) of role type named typ_l_some
% 0.44/0.89  Using role type
% 0.44/0.89  Declaring l_some:(fofType->((fofType->Prop)->Prop))
% 0.44/0.89  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) l_some) (fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1))))) of role definition named def_l_some
% 0.44/0.90  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) l_some) (fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))))
% 0.44/0.90  Defined: l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1))))
% 0.44/0.90  FOF formula (<kernel.Constant object at 0x2b8fba1ef4d0>, <kernel.DependentProduct object at 0x2b8fba1efdd0>) of role type named typ_or3
% 0.44/0.90  Using role type
% 0.44/0.90  Declaring or3:(Prop->(Prop->(Prop->Prop)))
% 0.44/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) or3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2)))) of role definition named def_or3
% 0.44/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) or3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))))
% 0.44/0.90  Defined: or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2)))
% 0.44/0.90  FOF formula (<kernel.Constant object at 0x2b8fba1efdd0>, <kernel.DependentProduct object at 0x2b8fba1eff38>) of role type named typ_and3
% 0.44/0.90  Using role type
% 0.44/0.90  Declaring and3:(Prop->(Prop->(Prop->Prop)))
% 0.44/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) and3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2)))) of role definition named def_and3
% 0.44/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) and3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))))
% 0.44/0.90  Defined: and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2)))
% 0.44/0.90  FOF formula (<kernel.Constant object at 0x2b8fba1eff38>, <kernel.DependentProduct object at 0x2b8fba1efe18>) of role type named typ_ec3
% 0.44/0.90  Using role type
% 0.44/0.90  Declaring ec3:(Prop->(Prop->(Prop->Prop)))
% 0.44/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) ec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0)))) of role definition named def_ec3
% 0.44/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) ec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))))
% 0.44/0.90  Defined: ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0)))
% 0.44/0.90  FOF formula (<kernel.Constant object at 0x2b8fba1efe18>, <kernel.DependentProduct object at 0x2b8fba1efea8>) of role type named typ_orec3
% 0.44/0.90  Using role type
% 0.44/0.90  Declaring orec3:(Prop->(Prop->(Prop->Prop)))
% 0.44/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) orec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2)))) of role definition named def_orec3
% 0.44/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) orec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))))
% 0.44/0.90  Defined: orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2)))
% 0.44/0.90  FOF formula (<kernel.Constant object at 0x2b8fba1efea8>, <kernel.DependentProduct object at 0x2b8fba1efb90>) of role type named typ_e_is
% 0.44/0.90  Using role type
% 0.44/0.90  Declaring e_is:(fofType->(fofType->(fofType->Prop)))
% 0.44/0.90  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) e_is) (fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y))) of role definition named def_e_is
% 0.44/0.90  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) e_is) (fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)))
% 0.44/0.90  Defined: e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y))
% 0.44/0.90  FOF formula (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1)))) of role axiom named refis
% 0.44/0.90  A new axiom: (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1))))
% 0.44/0.90  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3)))))))) of role axiom named e_isp
% 0.44/0.90  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3))))))))
% 0.51/0.92  FOF formula (<kernel.Constant object at 0x2b8fba1efd40>, <kernel.DependentProduct object at 0x2b8fba1efd88>) of role type named typ_amone
% 0.51/0.92  Using role type
% 0.51/0.92  Declaring amone:(fofType->((fofType->Prop)->Prop))
% 0.51/0.92  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) amone) (fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3))))))))) of role definition named def_amone
% 0.51/0.92  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) amone) (fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))))
% 0.51/0.92  Defined: amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3))))))))
% 0.51/0.92  FOF formula (<kernel.Constant object at 0x2b8fba1efd88>, <kernel.DependentProduct object at 0x2b8fba1efa70>) of role type named typ_one
% 0.51/0.92  Using role type
% 0.51/0.92  Declaring one:(fofType->((fofType->Prop)->Prop))
% 0.51/0.92  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) one) (fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1)))) of role definition named def_one
% 0.51/0.92  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) one) (fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))))
% 0.51/0.92  Defined: one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1)))
% 0.51/0.92  FOF formula (<kernel.Constant object at 0x2b8fba1efa70>, <kernel.DependentProduct object at 0x2b8fba1eff38>) of role type named typ_ind
% 0.51/0.92  Using role type
% 0.51/0.92  Declaring ind:(fofType->((fofType->Prop)->fofType))
% 0.51/0.92  FOF formula (((eq (fofType->((fofType->Prop)->fofType))) ind) (fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2)))))) of role definition named def_ind
% 0.51/0.92  A new definition: (((eq (fofType->((fofType->Prop)->fofType))) ind) (fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))))
% 0.51/0.92  Defined: ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2)))))
% 0.51/0.92  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0))))) of role axiom named ind_p
% 0.51/0.92  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0)))))
% 0.51/0.92  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1)))) of role axiom named oneax
% 0.51/0.92  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1))))
% 0.51/0.92  FOF formula (<kernel.Constant object at 0x2b8fba1eff38>, <kernel.DependentProduct object at 0x2b8fba1ef560>) of role type named typ_injective
% 0.51/0.92  Using role type
% 0.51/0.92  Declaring injective:(fofType->(fofType->(fofType->Prop)))
% 0.51/0.92  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) injective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4)))))))) of role definition named def_injective
% 0.51/0.92  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) injective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))))
% 0.51/0.92  Defined: injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4)))))))
% 0.51/0.92  FOF formula (<kernel.Constant object at 0x2b8fba1efd88>, <kernel.DependentProduct object at 0x2b8fba1f51b8>) of role type named typ_image
% 0.51/0.92  Using role type
% 0.51/0.92  Declaring image:(fofType->(fofType->(fofType->(fofType->Prop))))
% 0.51/0.92  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) image) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))) of role definition named def_image
% 0.51/0.94  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) image) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))))
% 0.51/0.94  Defined: image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))
% 0.51/0.94  FOF formula (<kernel.Constant object at 0x2b8fba1efd88>, <kernel.DependentProduct object at 0x2b8fba1f5200>) of role type named typ_tofs
% 0.51/0.94  Using role type
% 0.51/0.94  Declaring tofs:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.51/0.94  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) tofs) (fun (X0:fofType) (X1:fofType)=> ap)) of role definition named def_tofs
% 0.51/0.94  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) tofs) (fun (X0:fofType) (X1:fofType)=> ap))
% 0.51/0.94  Defined: tofs:=(fun (X0:fofType) (X1:fofType)=> ap)
% 0.51/0.94  FOF formula (<kernel.Constant object at 0x2b8fba1efd88>, <kernel.DependentProduct object at 0x2b8fba1f5998>) of role type named typ_soft
% 0.51/0.94  Using role type
% 0.51/0.94  Declaring soft:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.51/0.94  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) soft) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))) of role definition named def_soft
% 0.51/0.94  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) soft) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))))
% 0.51/0.94  Defined: soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))
% 0.51/0.94  FOF formula (<kernel.Constant object at 0x2b8fba1f5998>, <kernel.DependentProduct object at 0x2b8fba1f5290>) of role type named typ_inverse
% 0.51/0.94  Using role type
% 0.51/0.94  Declaring inverse:(fofType->(fofType->(fofType->fofType)))
% 0.51/0.94  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) inverse) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset))))) of role definition named def_inverse
% 0.51/0.94  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) inverse) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))))
% 0.51/0.94  Defined: inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset))))
% 0.51/0.94  FOF formula (<kernel.Constant object at 0x2b8fba1f5290>, <kernel.DependentProduct object at 0x2b8fba1f5908>) of role type named typ_surjective
% 0.51/0.94  Using role type
% 0.51/0.94  Declaring surjective:(fofType->(fofType->(fofType->Prop)))
% 0.51/0.94  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) surjective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2)))) of role definition named def_surjective
% 0.51/0.94  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) surjective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))))
% 0.51/0.94  Defined: surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2)))
% 0.51/0.94  FOF formula (<kernel.Constant object at 0x2b8fba1f5908>, <kernel.DependentProduct object at 0x2b8fba1f5248>) of role type named typ_bijective
% 0.51/0.94  Using role type
% 0.51/0.94  Declaring bijective:(fofType->(fofType->(fofType->Prop)))
% 0.51/0.94  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) bijective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2)))) of role definition named def_bijective
% 0.51/0.94  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) bijective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))))
% 0.51/0.94  Defined: bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2)))
% 0.51/0.96  FOF formula (<kernel.Constant object at 0x2b8fba1f5248>, <kernel.DependentProduct object at 0x2b8fba1f53b0>) of role type named typ_invf
% 0.51/0.96  Using role type
% 0.51/0.96  Declaring invf:(fofType->(fofType->(fofType->fofType)))
% 0.51/0.96  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) invf) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2)))) of role definition named def_invf
% 0.51/0.96  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) invf) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))))
% 0.51/0.96  Defined: invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2)))
% 0.51/0.96  FOF formula (<kernel.Constant object at 0x2b8fba1f53b0>, <kernel.DependentProduct object at 0x2b8fba1f5290>) of role type named typ_inj_h
% 0.51/0.96  Using role type
% 0.51/0.96  Declaring inj_h:(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 0.51/0.96  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) inj_h) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5)))))) of role definition named def_inj_h
% 0.51/0.96  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) inj_h) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))))
% 0.51/0.96  Defined: inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5)))))
% 0.51/0.96  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3))))))) of role axiom named e_fisi
% 0.51/0.96  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3)))))))
% 0.51/0.96  FOF formula (<kernel.Constant object at 0x2b8fba1f5ab8>, <kernel.DependentProduct object at 0x2b8fba1f52d8>) of role type named typ_e_in
% 0.51/0.96  Using role type
% 0.51/0.96  Declaring e_in:(fofType->((fofType->Prop)->(fofType->fofType)))
% 0.51/0.96  FOF formula (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) e_in) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2)) of role definition named def_e_in
% 0.51/0.96  A new definition: (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) e_in) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2))
% 0.51/0.96  Defined: e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2)
% 0.51/0.96  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))) of role axiom named e_in_p
% 0.51/0.96  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 0.51/0.96  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2))))) of role axiom named e_inp
% 0.51/0.96  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2)))))
% 0.51/0.96  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))) of role axiom named otax1
% 0.51/0.96  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 0.51/0.96  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2))))) of role axiom named otax2
% 0.56/0.97  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2)))))
% 0.56/0.97  FOF formula (<kernel.Constant object at 0x2b8fba1f5098>, <kernel.DependentProduct object at 0x2b8fba1f5e18>) of role type named typ_out
% 0.56/0.97  Using role type
% 0.56/0.97  Declaring out:(fofType->((fofType->Prop)->(fofType->fofType)))
% 0.56/0.97  FOF formula (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) out) (fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))) of role definition named def_out
% 0.56/0.97  A new definition: (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) out) (fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))))
% 0.56/0.97  Defined: out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 0.56/0.97  FOF formula (<kernel.Constant object at 0x2b8fba1f5e18>, <kernel.DependentProduct object at 0x2b8fba1f5758>) of role type named typ_d_pair
% 0.56/0.97  Using role type
% 0.56/0.97  Declaring d_pair:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.56/0.97  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) d_pair) (fun (X0:fofType) (X1:fofType)=> pair)) of role definition named def_d_pair
% 0.56/0.97  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) d_pair) (fun (X0:fofType) (X1:fofType)=> pair))
% 0.56/0.97  Defined: d_pair:=(fun (X0:fofType) (X1:fofType)=> pair)
% 0.56/0.97  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1))))))))) of role axiom named e_pair_p
% 0.56/0.97  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1)))))))))
% 0.56/0.97  FOF formula (<kernel.Constant object at 0x2b8fba1f5b00>, <kernel.DependentProduct object at 0x2b8fba1f5c68>) of role type named typ_first
% 0.56/0.97  Using role type
% 0.56/0.97  Declaring first:(fofType->(fofType->(fofType->fofType)))
% 0.56/0.97  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) first) (fun (X0:fofType) (X1:fofType)=> proj0)) of role definition named def_first
% 0.56/0.97  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) first) (fun (X0:fofType) (X1:fofType)=> proj0))
% 0.56/0.97  Defined: first:=(fun (X0:fofType) (X1:fofType)=> proj0)
% 0.56/0.97  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))) of role axiom named first_p
% 0.56/0.97  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 0.56/0.97  FOF formula (<kernel.Constant object at 0x2b8fba1f5098>, <kernel.DependentProduct object at 0x2b8fba1f5710>) of role type named typ_second
% 0.56/0.97  Using role type
% 0.56/0.97  Declaring second:(fofType->(fofType->(fofType->fofType)))
% 0.56/0.97  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) second) (fun (X0:fofType) (X1:fofType)=> _TPTP_proj1)) of role definition named def_second
% 0.56/0.97  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) second) (fun (X0:fofType) (X1:fofType)=> _TPTP_proj1))
% 0.56/0.97  Defined: second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1)
% 0.56/0.97  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1)))))) of role axiom named second_p
% 0.56/0.97  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1))))))
% 0.56/0.99  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2)))) of role axiom named pairis1
% 0.56/0.99  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2))))
% 0.56/0.99  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2)))))) of role axiom named firstis1
% 0.56/0.99  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2))))))
% 0.56/0.99  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3)))))) of role axiom named secondis1
% 0.56/0.99  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3))))))
% 0.56/0.99  FOF formula (<kernel.Constant object at 0x2b8fba1f5ef0>, <kernel.DependentProduct object at 0x2b8fba1f5680>) of role type named typ_prop1
% 0.56/0.99  Using role type
% 0.56/0.99  Declaring prop1:(Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))
% 0.56/0.99  FOF formula (((eq (Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))) prop1) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3))))) of role definition named def_prop1
% 0.56/0.99  A new definition: (((eq (Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))) prop1) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))))
% 0.56/0.99  Defined: prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3))))
% 0.56/0.99  FOF formula (<kernel.Constant object at 0x2b8fba1f5680>, <kernel.DependentProduct object at 0x2b8fba1f5ef0>) of role type named typ_ite
% 0.56/0.99  Using role type
% 0.56/0.99  Declaring ite:(Prop->(fofType->(fofType->(fofType->fofType))))
% 0.56/0.99  FOF formula (((eq (Prop->(fofType->(fofType->(fofType->fofType))))) ite) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3)))) of role definition named def_ite
% 0.56/0.99  A new definition: (((eq (Prop->(fofType->(fofType->(fofType->fofType))))) ite) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))))
% 0.56/0.99  Defined: ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3)))
% 0.56/0.99  FOF formula (<kernel.Constant object at 0x2b8fba1f5ef0>, <kernel.DependentProduct object at 0x2b8fba1f5488>) of role type named typ_wissel_wa
% 0.56/0.99  Using role type
% 0.56/0.99  Declaring wissel_wa:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.56/0.99  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wa) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3))) of role definition named def_wissel_wa
% 0.56/0.99  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wa) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)))
% 0.56/0.99  Defined: wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3))
% 0.56/0.99  FOF formula (<kernel.Constant object at 0x2b8fba1f5488>, <kernel.DependentProduct object at 0x2b8fba1f5fc8>) of role type named typ_wissel_wb
% 0.56/1.01  Using role type
% 0.56/1.01  Declaring wissel_wb:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.56/1.01  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wb) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3)))) of role definition named def_wissel_wb
% 0.56/1.01  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wb) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))))
% 0.56/1.01  Defined: wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3)))
% 0.56/1.01  FOF formula (<kernel.Constant object at 0x2b8fba1f5fc8>, <kernel.DependentProduct object at 0x2b8fba1f5d88>) of role type named typ_wissel
% 0.56/1.01  Using role type
% 0.56/1.01  Declaring wissel:(fofType->(fofType->(fofType->fofType)))
% 0.56/1.01  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) wissel) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2)))) of role definition named def_wissel
% 0.56/1.01  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) wissel) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))))
% 0.56/1.01  Defined: wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2)))
% 0.56/1.01  FOF formula (<kernel.Constant object at 0x2b8fba1f5878>, <kernel.DependentProduct object at 0x2b8fba1f5830>) of role type named typ_changef
% 0.56/1.01  Using role type
% 0.56/1.01  Declaring changef:(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 0.56/1.01  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) changef) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5)))))) of role definition named def_changef
% 0.56/1.01  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) changef) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))))
% 0.56/1.01  Defined: changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5)))))
% 0.56/1.01  FOF formula (<kernel.Constant object at 0x2b8fba1f5248>, <kernel.DependentProduct object at 0x2b8fba1f5d88>) of role type named typ_r_ec
% 0.56/1.01  Using role type
% 0.56/1.01  Declaring r_ec:(Prop->(Prop->Prop))
% 0.56/1.01  FOF formula (((eq (Prop->(Prop->Prop))) r_ec) (fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1)))) of role definition named def_r_ec
% 0.56/1.01  A new definition: (((eq (Prop->(Prop->Prop))) r_ec) (fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))))
% 0.56/1.01  Defined: r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1)))
% 0.56/1.01  FOF formula (<kernel.Constant object at 0x2b8fba1f5d88>, <kernel.DependentProduct object at 0x2b8fba1f5830>) of role type named typ_esti
% 0.56/1.01  Using role type
% 0.56/1.01  Declaring esti:(fofType->(fofType->(fofType->Prop)))
% 0.56/1.01  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) esti) (fun (X0:fofType)=> in)) of role definition named def_esti
% 0.56/1.01  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) esti) (fun (X0:fofType)=> in))
% 0.56/1.01  Defined: esti:=(fun (X0:fofType)=> in)
% 0.56/1.01  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0))))) of role axiom named setof_p
% 0.56/1.01  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0)))))
% 0.56/1.01  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1)))))) of role axiom named estii
% 0.56/1.01  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1))))))
% 0.56/1.01  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2))))) of role axiom named estie
% 0.56/1.03  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2)))))
% 0.56/1.03  FOF formula (<kernel.Constant object at 0x2b8fba1f5830>, <kernel.DependentProduct object at 0x2b8fba1fc638>) of role type named typ_empty
% 0.56/1.03  Using role type
% 0.56/1.03  Declaring empty:(fofType->(fofType->Prop))
% 0.56/1.03  FOF formula (((eq (fofType->(fofType->Prop))) empty) (fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))))) of role definition named def_empty
% 0.56/1.03  A new definition: (((eq (fofType->(fofType->Prop))) empty) (fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))))
% 0.56/1.03  Defined: empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))))
% 0.56/1.03  FOF formula (<kernel.Constant object at 0x2b8fba1f5830>, <kernel.DependentProduct object at 0x2b8fba1fc440>) of role type named typ_nonempty
% 0.56/1.03  Using role type
% 0.56/1.03  Declaring nonempty:(fofType->(fofType->Prop))
% 0.56/1.03  FOF formula (((eq (fofType->(fofType->Prop))) nonempty) (fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))) of role definition named def_nonempty
% 0.56/1.03  A new definition: (((eq (fofType->(fofType->Prop))) nonempty) (fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))))
% 0.56/1.03  Defined: nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))
% 0.56/1.03  FOF formula (<kernel.Constant object at 0x2b8fba1f5830>, <kernel.DependentProduct object at 0x2b8fba1fc098>) of role type named typ_incl
% 0.56/1.03  Using role type
% 0.56/1.03  Declaring incl:(fofType->(fofType->(fofType->Prop)))
% 0.56/1.03  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) incl) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2)))))) of role definition named def_incl
% 0.56/1.03  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) incl) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))))
% 0.56/1.03  Defined: incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2)))))
% 0.56/1.03  FOF formula (<kernel.Constant object at 0x2b8fba1fc098>, <kernel.DependentProduct object at 0x2b8fba1fc638>) of role type named typ_st_disj
% 0.56/1.03  Using role type
% 0.56/1.03  Declaring st_disj:(fofType->(fofType->(fofType->Prop)))
% 0.56/1.03  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) st_disj) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2)))))) of role definition named def_st_disj
% 0.56/1.03  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) st_disj) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))))
% 0.56/1.03  Defined: st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2)))))
% 0.56/1.03  FOF formula (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2)))))))) of role axiom named isseti
% 0.56/1.03  A new axiom: (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2))))))))
% 0.56/1.03  FOF formula (<kernel.Constant object at 0x2b8fba1fc2d8>, <kernel.DependentProduct object at 0x2b8fba1fc710>) of role type named typ_nissetprop
% 0.56/1.03  Using role type
% 0.56/1.03  Declaring nissetprop:(fofType->(fofType->(fofType->(fofType->Prop))))
% 0.56/1.03  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) nissetprop) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2))))) of role definition named def_nissetprop
% 0.63/1.04  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) nissetprop) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))))
% 0.63/1.04  Defined: nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2))))
% 0.63/1.04  FOF formula (<kernel.Constant object at 0x2b8fba1fc710>, <kernel.DependentProduct object at 0x2b8fba1fc098>) of role type named typ_unmore
% 0.63/1.04  Using role type
% 0.63/1.04  Declaring unmore:(fofType->(fofType->(fofType->fofType)))
% 0.63/1.04  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) unmore) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4)))))))) of role definition named def_unmore
% 0.63/1.04  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) unmore) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))))
% 0.63/1.04  Defined: unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4)))))))
% 0.63/1.04  FOF formula (<kernel.Constant object at 0x2b8fba1fc098>, <kernel.DependentProduct object at 0x2b8fba1fc908>) of role type named typ_ecelt
% 0.63/1.04  Using role type
% 0.63/1.04  Declaring ecelt:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.04  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2)))) of role definition named def_ecelt
% 0.63/1.04  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))))
% 0.63/1.04  Defined: ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2)))
% 0.63/1.04  FOF formula (<kernel.Constant object at 0x2b8fba1fc908>, <kernel.DependentProduct object at 0x2b8fba1fc8c0>) of role type named typ_ecp
% 0.63/1.04  Using role type
% 0.63/1.04  Declaring ecp:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 0.63/1.04  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) ecp) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3)))) of role definition named def_ecp
% 0.63/1.04  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) ecp) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))))
% 0.63/1.04  Defined: ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3)))
% 0.63/1.04  FOF formula (<kernel.Constant object at 0x2b8fba1fc8c0>, <kernel.DependentProduct object at 0x2b8fba1fcc20>) of role type named typ_anec
% 0.63/1.04  Using role type
% 0.63/1.04  Declaring anec:(fofType->((fofType->(fofType->Prop))->(fofType->Prop)))
% 0.63/1.04  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->Prop)))) anec) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2)))) of role definition named def_anec
% 0.63/1.04  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->Prop)))) anec) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))))
% 0.63/1.04  Defined: anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2)))
% 0.63/1.04  FOF formula (<kernel.Constant object at 0x2b8fba1fcc20>, <kernel.DependentProduct object at 0x2b8fba1fc908>) of role type named typ_ect
% 0.63/1.04  Using role type
% 0.63/1.04  Declaring ect:(fofType->((fofType->(fofType->Prop))->fofType))
% 0.63/1.04  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->fofType))) ect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1)))) of role definition named def_ect
% 0.63/1.04  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->fofType))) ect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))))
% 0.63/1.06  Defined: ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1)))
% 0.63/1.06  FOF formula (<kernel.Constant object at 0x2b8fba1fc908>, <kernel.DependentProduct object at 0x2b8fba1fc560>) of role type named typ_ectset
% 0.63/1.06  Using role type
% 0.63/1.06  Declaring ectset:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.06  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectset) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1)))) of role definition named def_ectset
% 0.63/1.06  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectset) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))))
% 0.63/1.06  Defined: ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1)))
% 0.63/1.06  FOF formula (<kernel.Constant object at 0x2b8fba1fc560>, <kernel.DependentProduct object at 0x2b8fba1fc3b0>) of role type named typ_ectelt
% 0.63/1.06  Using role type
% 0.63/1.06  Declaring ectelt:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.06  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2)))) of role definition named def_ectelt
% 0.63/1.06  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))))
% 0.63/1.06  Defined: ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2)))
% 0.63/1.06  FOF formula (<kernel.Constant object at 0x2b8fba1fc3b0>, <kernel.DependentProduct object at 0x2b8fba1fcb00>) of role type named typ_ecect
% 0.63/1.06  Using role type
% 0.63/1.06  Declaring ecect:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.06  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1)))) of role definition named def_ecect
% 0.63/1.06  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))))
% 0.63/1.06  Defined: ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1)))
% 0.63/1.06  FOF formula (<kernel.Constant object at 0x2b8fba1fcb00>, <kernel.DependentProduct object at 0x2b8fba1fc320>) of role type named typ_fixfu
% 0.63/1.06  Using role type
% 0.63/1.06  Declaring fixfu:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 0.63/1.06  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5))))))))) of role definition named def_fixfu
% 0.63/1.06  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))))
% 0.63/1.06  Defined: fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5))))))))
% 0.63/1.06  FOF formula (<kernel.Constant object at 0x2b8fba1fc320>, <kernel.DependentProduct object at 0x2b8fba1fc998>) of role type named typ_d_10_prop1
% 0.63/1.06  Using role type
% 0.63/1.06  Declaring d_10_prop1:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))
% 0.63/1.06  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))) d_10_prop1) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5)))) of role definition named def_d_10_prop1
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))) d_10_prop1) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))))
% 0.63/1.07  Defined: d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5)))
% 0.63/1.07  FOF formula (<kernel.Constant object at 0x2b8fba1fc998>, <kernel.DependentProduct object at 0x2b8fba1fcbd8>) of role type named typ_prop2
% 0.63/1.07  Using role type
% 0.63/1.07  Declaring prop2:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))
% 0.63/1.07  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))) prop2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5)))) of role definition named def_prop2
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))) prop2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))))
% 0.63/1.07  Defined: prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5)))
% 0.63/1.07  FOF formula (<kernel.Constant object at 0x2b8fba1fcbd8>, <kernel.DependentProduct object at 0x2b8fba1fce18>) of role type named typ_indeq
% 0.63/1.07  Using role type
% 0.63/1.07  Declaring indeq:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 0.63/1.07  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) indeq) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4)))) of role definition named def_indeq
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) indeq) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))))
% 0.63/1.07  Defined: indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4)))
% 0.63/1.07  FOF formula (<kernel.Constant object at 0x2b8fba1fce18>, <kernel.DependentProduct object at 0x2b8fba1fcd88>) of role type named typ_fixfu2
% 0.63/1.07  Using role type
% 0.63/1.07  Declaring fixfu2:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 0.63/1.07  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7)))))))))))))) of role definition named def_fixfu2
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))))
% 0.63/1.07  Defined: fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7)))))))))))))
% 0.67/1.08  FOF formula (<kernel.Constant object at 0x2b8fba1fcd88>, <kernel.DependentProduct object at 0x2b8fba1fc0e0>) of role type named typ_d_11_i
% 0.67/1.08  Using role type
% 0.67/1.08  Declaring d_11_i:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 0.67/1.08  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) d_11_i) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2))))) of role definition named def_d_11_i
% 0.67/1.08  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) d_11_i) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))))
% 0.67/1.08  Defined: d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2))))
% 0.67/1.08  FOF formula (<kernel.Constant object at 0x2b8fba1fc0e0>, <kernel.DependentProduct object at 0x2b8fba1fc9e0>) of role type named typ_indeq2
% 0.67/1.08  Using role type
% 0.67/1.08  Declaring indeq2:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))
% 0.67/1.08  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))) indeq2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4)))) of role definition named def_indeq2
% 0.67/1.08  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))) indeq2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))))
% 0.67/1.08  Defined: indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4)))
% 0.67/1.08  FOF formula (<kernel.Constant object at 0x2b8fba1fc9e0>, <kernel.Single object at 0x2b8fba1fc0e0>) of role type named typ_nat
% 0.67/1.08  Using role type
% 0.67/1.08  Declaring nat:fofType
% 0.67/1.08  FOF formula (((eq fofType) nat) ((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset))))) of role definition named def_nat
% 0.67/1.08  A new definition: (((eq fofType) nat) ((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))))
% 0.67/1.08  Defined: nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset))))
% 0.67/1.08  FOF formula (<kernel.Constant object at 0x2b8fba1fc0e0>, <kernel.DependentProduct object at 0x2b8fba1fcb00>) of role type named typ_n_is
% 0.67/1.08  Using role type
% 0.67/1.08  Declaring n_is:(fofType->(fofType->Prop))
% 0.67/1.08  FOF formula (((eq (fofType->(fofType->Prop))) n_is) (e_is nat)) of role definition named def_n_is
% 0.67/1.08  A new definition: (((eq (fofType->(fofType->Prop))) n_is) (e_is nat))
% 0.67/1.08  Defined: n_is:=(e_is nat)
% 0.67/1.08  FOF formula (<kernel.Constant object at 0x2b8fba1fc998>, <kernel.DependentProduct object at 0x2b8fba1fcf38>) of role type named typ_nis
% 0.67/1.08  Using role type
% 0.67/1.08  Declaring nis:(fofType->(fofType->Prop))
% 0.67/1.08  FOF formula (((eq (fofType->(fofType->Prop))) nis) (fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1)))) of role definition named def_nis
% 0.67/1.08  A new definition: (((eq (fofType->(fofType->Prop))) nis) (fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))))
% 0.67/1.08  Defined: nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1)))
% 0.67/1.08  FOF formula (<kernel.Constant object at 0x2b8fba1fcf38>, <kernel.DependentProduct object at 0x2b8fba1fcb00>) of role type named typ_n_in
% 0.67/1.08  Using role type
% 0.67/1.08  Declaring n_in:(fofType->(fofType->Prop))
% 0.67/1.08  FOF formula (((eq (fofType->(fofType->Prop))) n_in) (esti nat)) of role definition named def_n_in
% 0.67/1.08  A new definition: (((eq (fofType->(fofType->Prop))) n_in) (esti nat))
% 0.67/1.10  Defined: n_in:=(esti nat)
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba1fcd40>, <kernel.DependentProduct object at 0x2b8fba1fcb00>) of role type named typ_n_some
% 0.67/1.10  Using role type
% 0.67/1.10  Declaring n_some:((fofType->Prop)->Prop)
% 0.67/1.10  FOF formula (((eq ((fofType->Prop)->Prop)) n_some) (l_some nat)) of role definition named def_n_some
% 0.67/1.10  A new definition: (((eq ((fofType->Prop)->Prop)) n_some) (l_some nat))
% 0.67/1.10  Defined: n_some:=(l_some nat)
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba1fcf80>, <kernel.DependentProduct object at 0x2b8fba1fcb00>) of role type named typ_n_all
% 0.67/1.10  Using role type
% 0.67/1.10  Declaring n_all:((fofType->Prop)->Prop)
% 0.67/1.10  FOF formula (((eq ((fofType->Prop)->Prop)) n_all) (all nat)) of role definition named def_n_all
% 0.67/1.10  A new definition: (((eq ((fofType->Prop)->Prop)) n_all) (all nat))
% 0.67/1.10  Defined: n_all:=(all nat)
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba1fcd40>, <kernel.DependentProduct object at 0x2b8fba1fce18>) of role type named typ_n_one
% 0.67/1.10  Using role type
% 0.67/1.10  Declaring n_one:((fofType->Prop)->Prop)
% 0.67/1.10  FOF formula (((eq ((fofType->Prop)->Prop)) n_one) (one nat)) of role definition named def_n_one
% 0.67/1.10  A new definition: (((eq ((fofType->Prop)->Prop)) n_one) (one nat))
% 0.67/1.10  Defined: n_one:=(one nat)
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba1fc8c0>, <kernel.Single object at 0x2b8fba1fcd40>) of role type named typ_n_1
% 0.67/1.10  Using role type
% 0.67/1.10  Declaring n_1:fofType
% 0.67/1.10  FOF formula (((eq fofType) n_1) (ordsucc emptyset)) of role definition named def_n_1
% 0.67/1.10  A new definition: (((eq fofType) n_1) (ordsucc emptyset))
% 0.67/1.10  Defined: n_1:=(ordsucc emptyset)
% 0.67/1.10  FOF formula ((is_of n_1) (fun (X0:fofType)=> ((in X0) nat))) of role axiom named n_1_p
% 0.67/1.10  A new axiom: ((is_of n_1) (fun (X0:fofType)=> ((in X0) nat)))
% 0.67/1.10  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat))))) of role axiom named suc_p
% 0.67/1.10  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat)))))
% 0.67/1.10  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1))) of role axiom named n_ax3
% 0.67/1.10  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1)))
% 0.67/1.10  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1)))))) of role axiom named n_ax4
% 0.67/1.10  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1))))))
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba1fcd40>, <kernel.DependentProduct object at 0x2b8fba201290>) of role type named typ_cond1
% 0.67/1.10  Using role type
% 0.67/1.10  Declaring cond1:(fofType->Prop)
% 0.67/1.10  FOF formula (((eq (fofType->Prop)) cond1) (n_in n_1)) of role definition named def_cond1
% 0.67/1.10  A new definition: (((eq (fofType->Prop)) cond1) (n_in n_1))
% 0.67/1.10  Defined: cond1:=(n_in n_1)
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba201998>, <kernel.DependentProduct object at 0x2b8fba2014d0>) of role type named typ_cond2
% 0.67/1.10  Using role type
% 0.67/1.10  Declaring cond2:(fofType->Prop)
% 0.67/1.10  FOF formula (((eq (fofType->Prop)) cond2) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0)))))) of role definition named def_cond2
% 0.67/1.10  A new definition: (((eq (fofType->Prop)) cond2) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))))
% 0.67/1.10  Defined: cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0)))))
% 0.67/1.10  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0))))))) of role axiom named n_ax5
% 0.67/1.10  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0)))))))
% 0.67/1.10  FOF formula (<kernel.Constant object at 0x2b8fba2012d8>, <kernel.DependentProduct object at 0x2b8fba201878>) of role type named typ_i1_s
% 0.67/1.12  Using role type
% 0.67/1.12  Declaring i1_s:((fofType->Prop)->fofType)
% 0.67/1.12  FOF formula (((eq ((fofType->Prop)->fofType)) i1_s) (d_Sep nat)) of role definition named def_i1_s
% 0.67/1.12  A new definition: (((eq ((fofType->Prop)->fofType)) i1_s) (d_Sep nat))
% 0.67/1.12  Defined: i1_s:=(d_Sep nat)
% 0.67/1.12  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1))))))) of role axiom named satz1
% 0.67/1.12  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1)))))))
% 0.67/1.12  FOF formula (<kernel.Constant object at 0x2b8fb6b0e710>, <kernel.DependentProduct object at 0x2b8fb758a170>) of role type named typ_d_22_prop1
% 0.67/1.12  Using role type
% 0.67/1.12  Declaring d_22_prop1:(fofType->Prop)
% 0.67/1.12  FOF formula (((eq (fofType->Prop)) d_22_prop1) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0))) of role definition named def_d_22_prop1
% 0.67/1.12  A new definition: (((eq (fofType->Prop)) d_22_prop1) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 0.67/1.12  Defined: d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0))
% 0.67/1.12  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0))) of role axiom named satz2
% 0.67/1.12  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 0.67/1.12  FOF formula (<kernel.Constant object at 0x2b8faf1ce3f8>, <kernel.DependentProduct object at 0x2b8fb758ab90>) of role type named typ_d_23_prop1
% 0.67/1.12  Using role type
% 0.67/1.12  Declaring d_23_prop1:(fofType->Prop)
% 0.67/1.12  FOF formula (((eq (fofType->Prop)) d_23_prop1) (fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))) of role definition named def_d_23_prop1
% 0.67/1.12  A new definition: (((eq (fofType->Prop)) d_23_prop1) (fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 0.67/1.12  Defined: d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))
% 0.67/1.12  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))) of role axiom named satz3
% 0.67/1.12  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 0.67/1.12  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))) of role axiom named satz3a
% 0.67/1.12  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 0.67/1.12  FOF formula (<kernel.Constant object at 0x2b8faf1ce3f8>, <kernel.DependentProduct object at 0x2b8fb758ae60>) of role type named typ_d_24_prop1
% 0.67/1.12  Using role type
% 0.67/1.12  Declaring d_24_prop1:(fofType->Prop)
% 0.67/1.12  FOF formula (((eq (fofType->Prop)) d_24_prop1) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1))))))) of role definition named def_d_24_prop1
% 0.67/1.12  A new definition: (((eq (fofType->Prop)) d_24_prop1) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))))
% 0.67/1.12  Defined: d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1))))))
% 0.67/1.12  FOF formula (<kernel.Constant object at 0x2b8fb6b0e680>, <kernel.DependentProduct object at 0x2b8fb758a170>) of role type named typ_d_24_prop2
% 0.67/1.12  Using role type
% 0.67/1.12  Declaring d_24_prop2:(fofType->(fofType->Prop))
% 0.67/1.12  FOF formula (((eq (fofType->(fofType->Prop))) d_24_prop2) (fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1)))) of role definition named def_d_24_prop2
% 0.67/1.12  A new definition: (((eq (fofType->(fofType->Prop))) d_24_prop2) (fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))))
% 0.67/1.12  Defined: d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1)))
% 0.73/1.14  FOF formula (<kernel.Constant object at 0x2b8fb6b0e290>, <kernel.DependentProduct object at 0x2b8fb758a908>) of role type named typ_prop3
% 0.73/1.14  Using role type
% 0.73/1.14  Declaring prop3:(fofType->(fofType->(fofType->Prop)))
% 0.73/1.14  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) prop3) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2)))) of role definition named def_prop3
% 0.73/1.14  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) prop3) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))))
% 0.73/1.14  Defined: prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2)))
% 0.73/1.14  FOF formula (<kernel.Constant object at 0x2b8fb6b11290>, <kernel.DependentProduct object at 0x2b8fb758a908>) of role type named typ_prop4
% 0.73/1.14  Using role type
% 0.73/1.14  Declaring prop4:(fofType->Prop)
% 0.73/1.14  FOF formula (((eq (fofType->Prop)) prop4) (fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))) of role definition named def_prop4
% 0.73/1.14  A new definition: (((eq (fofType->Prop)) prop4) (fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))))
% 0.73/1.14  Defined: prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))
% 0.73/1.14  FOF formula (<kernel.Constant object at 0x2b8fb6b11290>, <kernel.DependentProduct object at 0x2b8fb758aa70>) of role type named typ_d_24_g
% 0.73/1.14  Using role type
% 0.73/1.14  Declaring d_24_g:(fofType->fofType)
% 0.73/1.14  FOF formula (((eq (fofType->fofType)) d_24_g) (fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1)))))) of role definition named def_d_24_g
% 0.73/1.14  A new definition: (((eq (fofType->fofType)) d_24_g) (fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))))
% 0.73/1.14  Defined: d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1)))))
% 0.73/1.14  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2)))))))))) of role axiom named satz4
% 0.73/1.14  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2))))))))))
% 0.73/1.14  FOF formula (<kernel.Constant object at 0x2b8fb6b11290>, <kernel.DependentProduct object at 0x2b8fb6e6a170>) of role type named typ_plus
% 0.73/1.14  Using role type
% 0.73/1.14  Declaring plus:(fofType->fofType)
% 0.73/1.14  FOF formula (((eq (fofType->fofType)) plus) (fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))) of role definition named def_plus
% 0.73/1.14  A new definition: (((eq (fofType->fofType)) plus) (fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))))
% 0.73/1.14  Defined: plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))
% 0.73/1.14  FOF formula (<kernel.Constant object at 0x2b8fb758a170>, <kernel.DependentProduct object at 0x2b8fb6e6ae60>) of role type named typ_n_pl
% 0.73/1.14  Using role type
% 0.73/1.14  Declaring n_pl:(fofType->(fofType->fofType))
% 0.73/1.14  FOF formula (((eq (fofType->(fofType->fofType))) n_pl) (fun (X0:fofType)=> (ap (plus X0)))) of role definition named def_n_pl
% 0.73/1.14  A new definition: (((eq (fofType->(fofType->fofType))) n_pl) (fun (X0:fofType)=> (ap (plus X0))))
% 0.73/1.14  Defined: n_pl:=(fun (X0:fofType)=> (ap (plus X0)))
% 0.73/1.14  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0)))) of role axiom named satz4a
% 0.73/1.14  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0))))
% 0.73/1.14  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1))))))) of role axiom named satz4b
% 0.73/1.14  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1)))))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0)))) of role axiom named satz4c
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1))))))) of role axiom named satz4d
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1)))))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1)))) of role axiom named satz4e
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1))))))) of role axiom named satz4f
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1)))))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0)))) of role axiom named satz4g
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1)))))) of role axiom named satz4h
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1))))))
% 0.73/1.16  FOF formula (<kernel.Constant object at 0x2b8fb6e6a3f8>, <kernel.DependentProduct object at 0x2b8fb6e6ab90>) of role type named typ_d_25_prop1
% 0.73/1.16  Using role type
% 0.73/1.16  Declaring d_25_prop1:(fofType->(fofType->(fofType->Prop)))
% 0.73/1.16  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) d_25_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))) of role definition named def_d_25_prop1
% 0.73/1.16  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) d_25_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))
% 0.73/1.16  Defined: d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))
% 0.73/1.16  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))))))) of role axiom named satz5
% 0.73/1.16  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))))))
% 0.73/1.16  FOF formula (<kernel.Constant object at 0x2b8fb6e6ae60>, <kernel.DependentProduct object at 0x2b8fb6e6a5f0>) of role type named typ_d_26_prop1
% 0.73/1.16  Using role type
% 0.73/1.16  Declaring d_26_prop1:(fofType->(fofType->Prop))
% 0.73/1.16  FOF formula (((eq (fofType->(fofType->Prop))) d_26_prop1) (fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))) of role definition named def_d_26_prop1
% 0.73/1.16  A new definition: (((eq (fofType->(fofType->Prop))) d_26_prop1) (fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))
% 0.73/1.16  Defined: d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))
% 0.75/1.18  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))))) of role axiom named satz6
% 0.75/1.18  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))))
% 0.75/1.18  FOF formula (<kernel.Constant object at 0x2b8fb6e6af80>, <kernel.DependentProduct object at 0x2b8fb6e6a878>) of role type named typ_d_27_prop1
% 0.75/1.18  Using role type
% 0.75/1.18  Declaring d_27_prop1:(fofType->(fofType->Prop))
% 0.75/1.18  FOF formula (((eq (fofType->(fofType->Prop))) d_27_prop1) (fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))) of role definition named def_d_27_prop1
% 0.75/1.18  A new definition: (((eq (fofType->(fofType->Prop))) d_27_prop1) (fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))
% 0.75/1.18  Defined: d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))
% 0.75/1.18  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))))) of role axiom named satz7
% 0.75/1.18  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))))
% 0.75/1.18  FOF formula (<kernel.Constant object at 0x2b8fb6e6aea8>, <kernel.DependentProduct object at 0x2b8fb6e6af38>) of role type named typ_d_28_prop1
% 0.75/1.18  Using role type
% 0.75/1.18  Declaring d_28_prop1:(fofType->(fofType->(fofType->Prop)))
% 0.75/1.18  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) d_28_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2)))) of role definition named def_d_28_prop1
% 0.75/1.18  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) d_28_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))))
% 0.75/1.18  Defined: d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2)))
% 0.75/1.18  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2))))))))) of role axiom named satz8
% 0.75/1.18  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2)))))))))
% 0.75/1.18  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2)))))))) of role axiom named satz8a
% 0.75/1.18  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2))))))))
% 0.75/1.18  FOF formula (<kernel.Constant object at 0x2b8fb6e6add0>, <kernel.DependentProduct object at 0x2b8fb6e6af38>) of role type named typ_diffprop
% 0.75/1.18  Using role type
% 0.75/1.18  Declaring diffprop:(fofType->(fofType->(fofType->Prop)))
% 0.75/1.18  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) diffprop) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))) of role definition named def_diffprop
% 0.75/1.18  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) diffprop) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))
% 0.75/1.18  Defined: diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))
% 0.75/1.18  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))))))) of role axiom named satz8b
% 0.75/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))))))
% 0.75/1.20  FOF formula (<kernel.Constant object at 0x2b8fb6e6af38>, <kernel.DependentProduct object at 0x2b8fb6e6ac68>) of role type named typ_d_29_ii
% 0.75/1.20  Using role type
% 0.75/1.20  Declaring d_29_ii:(fofType->(fofType->Prop))
% 0.75/1.20  FOF formula (((eq (fofType->(fofType->Prop))) d_29_ii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1)))) of role definition named def_d_29_ii
% 0.75/1.20  A new definition: (((eq (fofType->(fofType->Prop))) d_29_ii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))))
% 0.75/1.20  Defined: d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1)))
% 0.75/1.20  FOF formula (<kernel.Constant object at 0x2b8fb6e6ac68>, <kernel.DependentProduct object at 0x2b8fb6e6a248>) of role type named typ_iii
% 0.75/1.20  Using role type
% 0.75/1.20  Declaring iii:(fofType->(fofType->Prop))
% 0.75/1.20  FOF formula (((eq (fofType->(fofType->Prop))) iii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0)))) of role definition named def_iii
% 0.75/1.20  A new definition: (((eq (fofType->(fofType->Prop))) iii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))))
% 0.75/1.20  Defined: iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0)))
% 0.75/1.20  FOF formula (<kernel.Constant object at 0x2b8fb6e6a248>, <kernel.DependentProduct object at 0x2b8fb6e6ab00>) of role type named typ_d_29_prop1
% 0.75/1.20  Using role type
% 0.75/1.20  Declaring d_29_prop1:(fofType->(fofType->Prop))
% 0.75/1.20  FOF formula (((eq (fofType->(fofType->Prop))) d_29_prop1) (fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))) of role definition named def_d_29_prop1
% 0.75/1.20  A new definition: (((eq (fofType->(fofType->Prop))) d_29_prop1) (fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))
% 0.75/1.20  Defined: d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))
% 0.75/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2))))))))) of role axiom named satz9
% 0.75/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2)))))))))
% 0.75/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))) of role axiom named satz9a
% 0.75/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 0.75/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))) of role axiom named satz9b
% 0.75/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 0.75/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))) of role axiom named satz10
% 0.75/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 0.75/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))) of role axiom named satz10a
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))) of role axiom named satz10b
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0)))))) of role axiom named satz11
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0))))))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0)))))) of role axiom named satz12
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0))))))
% 0.81/1.22  FOF formula (<kernel.Constant object at 0x2b8fb6e6aea8>, <kernel.DependentProduct object at 0x2b8fb7587d40>) of role type named typ_moreis
% 0.81/1.22  Using role type
% 0.81/1.22  Declaring moreis:(fofType->(fofType->Prop))
% 0.81/1.22  FOF formula (((eq (fofType->(fofType->Prop))) moreis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1)))) of role definition named def_moreis
% 0.81/1.22  A new definition: (((eq (fofType->(fofType->Prop))) moreis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))))
% 0.81/1.22  Defined: moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1)))
% 0.81/1.22  FOF formula (<kernel.Constant object at 0x2b8fb7587d40>, <kernel.DependentProduct object at 0x2b8fb7587c20>) of role type named typ_lessis
% 0.81/1.22  Using role type
% 0.81/1.22  Declaring lessis:(fofType->(fofType->Prop))
% 0.81/1.22  FOF formula (((eq (fofType->(fofType->Prop))) lessis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1)))) of role definition named def_lessis
% 0.81/1.22  A new definition: (((eq (fofType->(fofType->Prop))) lessis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))))
% 0.81/1.22  Defined: lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1)))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0)))))) of role axiom named satz13
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0))))))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((lessis X0) X1)->((moreis X1) X0)))))) of role axiom named satz14
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((lessis X0) X1)->((moreis X1) X0))))))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->(d_not ((iii X0) X1))))))) of role axiom named satz10c
% 0.81/1.22  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->(d_not ((iii X0) X1)))))))
% 0.81/1.22  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((lessis X0) X1)->(d_not ((d_29_ii X0) X1))))))) of role axiom named satz10d
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((lessis X0) X1)->(d_not ((d_29_ii X0) X1)))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((d_29_ii X0) X1))->((lessis X0) X1)))))) of role axiom named satz10e
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((d_29_ii X0) X1))->((lessis X0) X1))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((iii X0) X1))->((moreis X0) X1)))))) of role axiom named satz10f
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((iii X0) X1))->((moreis X0) X1))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->(d_not ((lessis X0) X1))))))) of role axiom named satz10g
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->(d_not ((lessis X0) X1)))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->(d_not ((moreis X0) X1))))))) of role axiom named satz10h
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->(d_not ((moreis X0) X1)))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((moreis X0) X1))->((iii X0) X1)))))) of role axiom named satz10j
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((moreis X0) X1))->((iii X0) X1))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((lessis X0) X1))->((d_29_ii X0) X1)))))) of role axiom named satz10k
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((lessis X0) X1))->((d_29_ii X0) X1))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->(((iii X1) X2)->((iii X0) X2))))))))) of role axiom named satz15
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->(((iii X1) X2)->((iii X0) X2)))))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->(((iii X1) X2)->((iii X0) X2))))))))) of role axiom named satz16a
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->(((iii X1) X2)->((iii X0) X2)))))))))
% 0.81/1.25  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->(((lessis X1) X2)->((iii X0) X2))))))))) of role axiom named satz16b
% 0.81/1.25  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->(((lessis X1) X2)->((iii X0) X2)))))))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->(((d_29_ii X1) X2)->((d_29_ii X0) X2))))))))) of role axiom named satz16c
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->(((d_29_ii X1) X2)->((d_29_ii X0) X2)))))))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->(((moreis X1) X2)->((d_29_ii X0) X2))))))))) of role axiom named satz16d
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->(((moreis X1) X2)->((d_29_ii X0) X2)))))))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->(((lessis X1) X2)->((lessis X0) X2))))))))) of role axiom named satz17
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->(((lessis X1) X2)->((lessis X0) X2)))))))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_29_ii ((n_pl X0) X1)) X0))))) of role axiom named satz18
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_29_ii ((n_pl X0) X1)) X0)))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((iii X0) ((n_pl X0) X1)))))) of role axiom named satz18a
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((iii X0) ((n_pl X0) X1))))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((d_29_ii (ordsucc X0)) X0))) of role axiom named satz18b
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((d_29_ii (ordsucc X0)) X0)))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((iii X0) (ordsucc X0)))) of role axiom named satz18c
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((iii X0) (ordsucc X0))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X2))))))))) of role axiom named satz19a
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X2)))))))))
% 0.85/1.27  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is X0) X1)->((n_is ((n_pl X0) X2)) ((n_pl X1) X2))))))))) of role axiom named satz19b
% 0.85/1.27  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is X0) X1)->((n_is ((n_pl X0) X2)) ((n_pl X1) X2)))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->((iii ((n_pl X0) X2)) ((n_pl X1) X2))))))))) of role axiom named satz19c
% 0.85/1.30  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->((iii ((n_pl X0) X2)) ((n_pl X1) X2)))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->((d_29_ii ((n_pl X2) X0)) ((n_pl X2) X1))))))))) of role axiom named satz19d
% 0.85/1.30  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->((d_29_ii ((n_pl X2) X0)) ((n_pl X2) X1)))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is X0) X1)->((n_is ((n_pl X2) X0)) ((n_pl X2) X1))))))))) of role axiom named satz19e
% 0.85/1.30  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is X0) X1)->((n_is ((n_pl X2) X0)) ((n_pl X2) X1)))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->((iii ((n_pl X2) X0)) ((n_pl X2) X1))))))))) of role axiom named satz19f
% 0.85/1.30  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->((iii ((n_pl X2) X0)) ((n_pl X2) X1)))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role axiom named satz19g
% 0.85/1.30  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X2) X0)) ((n_pl X3) X1)))))))))))) of role axiom named satz19h
% 0.85/1.30  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X2) X0)) ((n_pl X3) X1))))))))))))
% 0.85/1.30  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role axiom named satz19j
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))
% 0.85/1.32  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((iii X2) X3)->((iii ((n_pl X2) X0)) ((n_pl X3) X1)))))))))))) of role axiom named satz19k
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((iii X2) X3)->((iii ((n_pl X2) X0)) ((n_pl X3) X1))))))))))))
% 0.85/1.32  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->((moreis ((n_pl X0) X2)) ((n_pl X1) X2))))))))) of role axiom named satz19l
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->((moreis ((n_pl X0) X2)) ((n_pl X1) X2)))))))))
% 0.85/1.32  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->((moreis ((n_pl X2) X0)) ((n_pl X2) X1))))))))) of role axiom named satz19m
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->((moreis ((n_pl X2) X0)) ((n_pl X2) X1)))))))))
% 0.85/1.32  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->((lessis ((n_pl X0) X2)) ((n_pl X1) X2))))))))) of role axiom named satz19n
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->((lessis ((n_pl X0) X2)) ((n_pl X1) X2)))))))))
% 0.85/1.32  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->((lessis ((n_pl X2) X0)) ((n_pl X2) X1))))))))) of role axiom named satz19o
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->((lessis ((n_pl X2) X0)) ((n_pl X2) X1)))))))))
% 0.85/1.32  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X2))->((d_29_ii X0) X1)))))))) of role axiom named satz20a
% 0.85/1.32  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X2))->((d_29_ii X0) X1))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X2)) ((n_pl X1) X2))->((n_is X0) X1)))))))) of role axiom named satz20b
% 0.93/1.35  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X2)) ((n_pl X1) X2))->((n_is X0) X1))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii ((n_pl X0) X2)) ((n_pl X1) X2))->((iii X0) X1)))))))) of role axiom named satz20c
% 0.93/1.35  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii ((n_pl X0) X2)) ((n_pl X1) X2))->((iii X0) X1))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii ((n_pl X2) X0)) ((n_pl X2) X1))->((d_29_ii X0) X1)))))))) of role axiom named satz20d
% 0.93/1.35  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii ((n_pl X2) X0)) ((n_pl X2) X1))->((d_29_ii X0) X1))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X2) X0)) ((n_pl X2) X1))->((n_is X0) X1)))))))) of role axiom named satz20e
% 0.93/1.35  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X2) X0)) ((n_pl X2) X1))->((n_is X0) X1))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii ((n_pl X2) X0)) ((n_pl X2) X1))->((iii X0) X1)))))))) of role axiom named satz20f
% 0.93/1.35  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii ((n_pl X2) X0)) ((n_pl X2) X1))->((iii X0) X1))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((d_29_ii X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role axiom named satz21
% 0.93/1.35  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((d_29_ii X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))
% 0.93/1.35  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((iii X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role axiom named satz21a
% 0.93/1.37  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((iii X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))
% 0.93/1.37  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((moreis X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role axiom named satz22a
% 0.93/1.37  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((moreis X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))
% 0.93/1.37  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((d_29_ii X0) X1)->(((moreis X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role axiom named satz22b
% 0.93/1.37  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((d_29_ii X0) X1)->(((moreis X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))
% 0.93/1.37  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((lessis X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))) of role conjecture named satz22c
% 0.93/1.37  Conjecture to prove = ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((lessis X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))):Prop
% 0.93/1.37  We need to prove ['((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((lessis X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3))))))))))))']
% 0.93/1.37  Parameter fofType:Type.
% 0.93/1.37  Definition is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)):(fofType->((fofType->Prop)->Prop)).
% 0.93/1.37  Definition all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))):((fofType->Prop)->((fofType->Prop)->Prop)).
% 0.93/1.37  Parameter eps:((fofType->Prop)->fofType).
% 0.93/1.37  Parameter in:(fofType->(fofType->Prop)).
% 0.93/1.37  Definition d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))):(fofType->(fofType->Prop)).
% 0.93/1.37  Axiom set_ext:(forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1)))).
% 0.93/1.37  Axiom k_In_ind:(forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1)))).
% 0.93/1.37  Parameter emptyset:fofType.
% 0.93/1.37  Axiom k_EmptyAx:(((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False).
% 0.93/1.37  Parameter union:(fofType->fofType).
% 0.93/1.37  Axiom k_UnionEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0)))))).
% 0.93/1.37  Parameter power:(fofType->fofType).
% 0.93/1.37  Axiom k_PowerEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0))).
% 0.93/1.37  Parameter repl:(fofType->((fofType->fofType)->fofType)).
% 0.93/1.37  Axiom k_ReplEq:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3))))))).
% 0.93/1.37  Definition d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))):(fofType->Prop).
% 0.93/1.37  Definition d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))):(fofType->Prop).
% 0.93/1.37  Definition d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))):(fofType->Prop).
% 0.93/1.37  Definition d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))):(fofType->Prop).
% 0.93/1.37  Parameter univof:(fofType->fofType).
% 0.93/1.37  Axiom k_UnivOf_In:(forall (X0:fofType), ((in X0) (univof X0))).
% 0.93/1.37  Axiom k_UnivOf_ZF_closed:(forall (X0:fofType), (d_ZF_closed (univof X0))).
% 0.93/1.37  Definition if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))):(Prop->(fofType->(fofType->fofType))).
% 0.93/1.37  Axiom if_i_correct:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2)))).
% 0.93/1.37  Axiom if_i_0:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2))).
% 0.93/1.37  Axiom if_i_1:(forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1))).
% 0.93/1.37  Axiom if_i_or:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2))).
% 0.93/1.37  Definition nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)):(fofType->(fofType->Prop)).
% 0.93/1.37  Axiom k_PowerE:(forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0))).
% 0.93/1.37  Axiom k_PowerI:(forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0)))).
% 0.93/1.37  Axiom k_Self_In_Power:(forall (X0:fofType), ((in X0) (power X0))).
% 0.93/1.37  Definition d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))):(fofType->(fofType->fofType)).
% 0.93/1.37  Definition d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0)):(fofType->fofType).
% 0.93/1.37  Definition binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))):(fofType->(fofType->fofType)).
% 0.93/1.37  Definition famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))):(fofType->((fofType->fofType)->fofType)).
% 0.93/1.37  Definition d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)):(fofType->((fofType->Prop)->fofType)).
% 0.93/1.37  Axiom k_SepI:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1))))).
% 0.93/1.37  Axiom k_SepE1:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0))).
% 0.93/1.37  Axiom k_SepE2:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2))).
% 0.93/1.37  Definition d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))):(fofType->((fofType->Prop)->((fofType->fofType)->fofType))).
% 0.93/1.37  Definition setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))):(fofType->(fofType->fofType)).
% 0.93/1.37  Definition d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))):((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop))).
% 0.96/1.37  Definition d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))):((fofType->((fofType->fofType)->fofType))->(fofType->fofType)).
% 0.96/1.37  Definition ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0))):(fofType->fofType).
% 0.96/1.37  Axiom neq_ordsucc_0:(forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset))).
% 0.96/1.37  Axiom ordsucc_inj:(forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1))).
% 0.96/1.37  Axiom k_In_0_1:((in emptyset) (ordsucc emptyset)).
% 0.96/1.37  Definition nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))):(fofType->Prop).
% 0.96/1.37  Axiom nat_ordsucc:(forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0)))).
% 0.96/1.37  Axiom nat_1:(nat_p (ordsucc emptyset)).
% 0.96/1.37  Axiom nat_ind:(forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1)))))).
% 0.96/1.37  Axiom nat_inv:(forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1)))))))).
% 0.96/1.37  Definition omega:=((d_Sep (univof emptyset)) nat_p):fofType.
% 0.96/1.37  Axiom omega_nat_p:(forall (X0:fofType), (((in X0) omega)->(nat_p X0))).
% 0.96/1.37  Axiom nat_p_omega:(forall (X0:fofType), ((nat_p X0)->((in X0) omega))).
% 0.96/1.37  Definition d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))):(fofType->fofType).
% 0.96/1.37  Definition d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1)):(fofType->fofType).
% 0.96/1.37  Definition d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))):(fofType->fofType).
% 0.96/1.37  Definition pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))):(fofType->(fofType->fofType)).
% 0.96/1.37  Definition proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)):(fofType->fofType).
% 0.96/1.37  Definition _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)):(fofType->fofType).
% 0.96/1.37  Axiom proj0_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0)).
% 0.96/1.37  Axiom proj1_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1)).
% 0.96/1.37  Definition d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))):(fofType->((fofType->fofType)->fofType)).
% 0.96/1.37  Axiom pair_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1)))))).
% 0.96/1.37  Axiom k_Sigma_eta_proj0_proj1:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))).
% 0.96/1.37  Axiom proj_Sigma_eta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2))).
% 0.96/1.37  Axiom proj0_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0))).
% 0.96/1.37  Axiom proj1_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))).
% 0.96/1.37  Definition setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))):(fofType->(fofType->fofType)).
% 0.96/1.37  Definition ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)):(fofType->(fofType->fofType)).
% 0.96/1.37  Axiom beta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2)))).
% 0.96/1.37  Definition pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)):(fofType->Prop).
% 0.96/1.37  Definition d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))):(fofType->((fofType->fofType)->fofType)).
% 0.96/1.38  Axiom lam_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1)))).
% 0.96/1.38  Axiom ap_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))).
% 0.96/1.38  Axiom k_Pi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3)))))).
% 0.96/1.38  Axiom xi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2)))).
% 0.96/1.38  Axiom k_If_In_01:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset))))).
% 0.96/1.38  Axiom k_If_In_then_E:(forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2)))).
% 0.96/1.38  Definition imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1)):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition d_not:=(fun (X0:Prop)=> ((imp X0) False)):(Prop->Prop).
% 0.96/1.38  Definition wel:=(fun (X0:Prop)=> (d_not (d_not X0))):(Prop->Prop).
% 0.96/1.38  Axiom l_et:(forall (X0:Prop), ((wel X0)->X0)).
% 0.96/1.38  Definition obvious:=((imp False) False):Prop.
% 0.96/1.38  Definition l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition l_or:=(fun (X0:Prop)=> (imp (d_not X0))):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))):(fofType->((fofType->Prop)->Prop)).
% 0.96/1.38  Definition non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))):(fofType->((fofType->Prop)->(fofType->Prop))).
% 0.96/1.38  Definition l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))):(fofType->((fofType->Prop)->Prop)).
% 0.96/1.38  Definition or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))):(Prop->(Prop->(Prop->Prop))).
% 0.96/1.38  Definition and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))):(Prop->(Prop->(Prop->Prop))).
% 0.96/1.38  Definition ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))):(Prop->(Prop->(Prop->Prop))).
% 0.96/1.38  Definition orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))):(Prop->(Prop->(Prop->Prop))).
% 0.96/1.38  Definition e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Axiom refis:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1)))).
% 0.96/1.38  Axiom e_isp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3)))))))).
% 0.96/1.38  Definition amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))):(fofType->((fofType->Prop)->Prop)).
% 0.96/1.38  Definition one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))):(fofType->((fofType->Prop)->Prop)).
% 0.96/1.38  Definition ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))):(fofType->((fofType->Prop)->fofType)).
% 0.96/1.38  Axiom ind_p:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0))))).
% 0.96/1.38  Axiom oneax:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1)))).
% 0.96/1.38  Definition injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Definition image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->Prop)))).
% 0.96/1.38  Definition tofs:=(fun (X0:fofType) (X1:fofType)=> ap):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.96/1.38  Definition soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.96/1.38  Definition inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))):(fofType->(fofType->(fofType->fofType))).
% 0.96/1.38  Definition surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Definition bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Definition invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))):(fofType->(fofType->(fofType->fofType))).
% 0.96/1.38  Definition inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType))))).
% 0.96/1.38  Axiom e_fisi:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3))))))).
% 0.96/1.38  Definition e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2):(fofType->((fofType->Prop)->(fofType->fofType))).
% 0.96/1.38  Axiom e_in_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))).
% 0.96/1.38  Axiom e_inp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2))))).
% 0.96/1.38  Axiom otax1:(forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))).
% 0.96/1.38  Axiom otax2:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2))))).
% 0.96/1.38  Definition out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))):(fofType->((fofType->Prop)->(fofType->fofType))).
% 0.96/1.38  Definition d_pair:=(fun (X0:fofType) (X1:fofType)=> pair):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.96/1.38  Axiom e_pair_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1))))))))).
% 0.96/1.38  Definition first:=(fun (X0:fofType) (X1:fofType)=> proj0):(fofType->(fofType->(fofType->fofType))).
% 0.96/1.38  Axiom first_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))).
% 0.96/1.38  Definition second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1):(fofType->(fofType->(fofType->fofType))).
% 0.96/1.38  Axiom second_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1)))))).
% 0.96/1.38  Axiom pairis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2)))).
% 0.96/1.38  Axiom firstis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2)))))).
% 0.96/1.38  Axiom secondis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3)))))).
% 0.96/1.38  Definition prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))):(Prop->(fofType->(fofType->(fofType->(fofType->Prop))))).
% 0.96/1.38  Definition ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))):(Prop->(fofType->(fofType->(fofType->fofType)))).
% 0.96/1.38  Definition wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.96/1.38  Definition wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.96/1.38  Definition wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))):(fofType->(fofType->(fofType->fofType))).
% 0.96/1.38  Definition changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType))))).
% 0.96/1.38  Definition r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))):(Prop->(Prop->Prop)).
% 0.96/1.38  Definition esti:=(fun (X0:fofType)=> in):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Axiom setof_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0))))).
% 0.96/1.38  Axiom estii:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1)))))).
% 0.96/1.38  Axiom estie:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2))))).
% 0.96/1.38  Definition empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))):(fofType->(fofType->Prop)).
% 0.96/1.38  Definition nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))):(fofType->(fofType->Prop)).
% 0.96/1.38  Definition incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Definition st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.38  Axiom isseti:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2)))))))).
% 0.96/1.38  Definition nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))):(fofType->(fofType->(fofType->(fofType->Prop)))).
% 0.96/1.38  Definition unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))):(fofType->(fofType->(fofType->fofType))).
% 0.96/1.38  Definition ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.96/1.38  Definition ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))).
% 0.96/1.38  Definition anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->Prop))).
% 0.96/1.38  Definition ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->fofType)).
% 0.96/1.38  Definition ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.96/1.38  Definition ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.96/1.38  Definition ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.96/1.38  Definition fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))).
% 0.96/1.38  Definition d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop))))))).
% 0.96/1.38  Definition prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop)))))).
% 0.96/1.38  Definition indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType))))).
% 0.96/1.38  Definition fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))).
% 0.96/1.38  Definition d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType))))).
% 0.96/1.38  Definition indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType)))))).
% 0.96/1.38  Definition nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))):fofType.
% 0.96/1.38  Definition n_is:=(e_is nat):(fofType->(fofType->Prop)).
% 0.96/1.38  Definition nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))):(fofType->(fofType->Prop)).
% 0.96/1.38  Definition n_in:=(esti nat):(fofType->(fofType->Prop)).
% 0.96/1.38  Definition n_some:=(l_some nat):((fofType->Prop)->Prop).
% 0.96/1.38  Definition n_all:=(all nat):((fofType->Prop)->Prop).
% 0.96/1.38  Definition n_one:=(one nat):((fofType->Prop)->Prop).
% 0.96/1.38  Definition n_1:=(ordsucc emptyset):fofType.
% 0.96/1.38  Axiom n_1_p:((is_of n_1) (fun (X0:fofType)=> ((in X0) nat))).
% 0.96/1.38  Axiom suc_p:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat))))).
% 0.96/1.38  Axiom n_ax3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1))).
% 0.96/1.38  Axiom n_ax4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1)))))).
% 0.96/1.39  Definition cond1:=(n_in n_1):(fofType->Prop).
% 0.96/1.39  Definition cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))):(fofType->Prop).
% 0.96/1.39  Axiom n_ax5:((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0))))))).
% 0.96/1.39  Definition i1_s:=(d_Sep nat):((fofType->Prop)->fofType).
% 0.96/1.39  Axiom satz1:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1))))))).
% 0.96/1.39  Definition d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0)):(fofType->Prop).
% 0.96/1.39  Axiom satz2:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0))).
% 0.96/1.39  Definition d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))):(fofType->Prop).
% 0.96/1.39  Axiom satz3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))).
% 0.96/1.39  Axiom satz3a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))).
% 0.96/1.39  Definition d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))):(fofType->Prop).
% 0.96/1.39  Definition d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))):(fofType->(fofType->Prop)).
% 0.96/1.39  Definition prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.39  Definition prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->Prop).
% 0.96/1.39  Definition d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))):(fofType->fofType).
% 0.96/1.39  Axiom satz4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2)))))))))).
% 0.96/1.39  Definition plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->fofType).
% 0.96/1.39  Definition n_pl:=(fun (X0:fofType)=> (ap (plus X0))):(fofType->(fofType->fofType)).
% 0.96/1.39  Axiom satz4a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0)))).
% 0.96/1.39  Axiom satz4b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1))))))).
% 0.96/1.39  Axiom satz4c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0)))).
% 0.96/1.39  Axiom satz4d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1))))))).
% 0.96/1.39  Axiom satz4e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1)))).
% 0.96/1.39  Axiom satz4f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1))))))).
% 0.96/1.39  Axiom satz4g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0)))).
% 0.96/1.39  Axiom satz4h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1)))))).
% 0.96/1.39  Definition d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.39  Axiom satz5:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))))))).
% 0.96/1.39  Definition d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))):(fofType->(fofType->Prop)).
% 0.96/1.39  Axiom satz6:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))))).
% 0.96/1.39  Definition d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))):(fofType->(fofType->Prop)).
% 0.96/1.39  Axiom satz7:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))))).
% 0.96/1.39  Definition d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.39  Axiom satz8:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2))))))))).
% 0.96/1.39  Axiom satz8a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2)))))))).
% 0.96/1.39  Definition diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.96/1.39  Axiom satz8b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))))))).
% 0.96/1.39  Definition d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))):(fofType->(fofType->Prop)).
% 0.96/1.39  Definition iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))):(fofType->(fofType->Prop)).
% 0.96/1.39  Definition d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))):(fofType->(fofType->Prop)).
% 0.96/1.39  Axiom satz9:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2))))))))).
% 0.96/1.39  Axiom satz9a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))).
% 0.96/1.39  Axiom satz9b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))).
% 0.96/1.39  Axiom satz10:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))).
% 0.96/1.39  Axiom satz10a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))).
% 0.96/1.39  Axiom satz10b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))).
% 0.96/1.39  Axiom satz11:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0)))))).
% 0.96/1.39  Axiom satz12:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0)))))).
% 0.96/1.39  Definition moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop)).
% 0.96/1.39  Definition lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop)).
% 0.96/1.39  Axiom satz13:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0)))))).
% 0.96/1.39  Axiom satz14:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((lessis X0) X1)->((moreis X1) X0)))))).
% 0.96/1.39  Axiom satz10c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->(d_not ((iii X0) X1))))))).
% 0.96/1.39  Axiom satz10d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((lessis X0) X1)->(d_not ((d_29_ii X0) X1))))))).
% 0.96/1.39  Axiom satz10e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((d_29_ii X0) X1))->((lessis X0) X1)))))).
% 0.96/1.39  Axiom satz10f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((iii X0) X1))->((moreis X0) X1)))))).
% 0.96/1.39  Axiom satz10g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->(d_not ((lessis X0) X1))))))).
% 0.96/1.39  Axiom satz10h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->(d_not ((moreis X0) X1))))))).
% 0.96/1.39  Axiom satz10j:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((moreis X0) X1))->((iii X0) X1)))))).
% 0.96/1.39  Axiom satz10k:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_not ((lessis X0) X1))->((d_29_ii X0) X1)))))).
% 0.96/1.39  Axiom satz15:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->(((iii X1) X2)->((iii X0) X2))))))))).
% 0.96/1.39  Axiom satz16a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->(((iii X1) X2)->((iii X0) X2))))))))).
% 0.96/1.39  Axiom satz16b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->(((lessis X1) X2)->((iii X0) X2))))))))).
% 0.96/1.39  Axiom satz16c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->(((d_29_ii X1) X2)->((d_29_ii X0) X2))))))))).
% 0.96/1.39  Axiom satz16d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->(((moreis X1) X2)->((d_29_ii X0) X2))))))))).
% 0.96/1.39  Axiom satz17:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->(((lessis X1) X2)->((lessis X0) X2))))))))).
% 0.96/1.39  Axiom satz18:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((d_29_ii ((n_pl X0) X1)) X0))))).
% 0.96/1.39  Axiom satz18a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((iii X0) ((n_pl X0) X1)))))).
% 0.96/1.39  Axiom satz18b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((d_29_ii (ordsucc X0)) X0))).
% 0.96/1.39  Axiom satz18c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((iii X0) (ordsucc X0)))).
% 0.96/1.39  Axiom satz19a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X2))))))))).
% 0.96/1.39  Axiom satz19b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is X0) X1)->((n_is ((n_pl X0) X2)) ((n_pl X1) X2))))))))).
% 0.96/1.39  Axiom satz19c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->((iii ((n_pl X0) X2)) ((n_pl X1) X2))))))))).
% 0.96/1.39  Axiom satz19d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((d_29_ii X0) X1)->((d_29_ii ((n_pl X2) X0)) ((n_pl X2) X1))))))))).
% 0.96/1.39  Axiom satz19e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is X0) X1)->((n_is ((n_pl X2) X0)) ((n_pl X2) X1))))))))).
% 0.96/1.39  Axiom satz19f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((iii X0) X1)->((iii ((n_pl X2) X0)) ((n_pl X2) X1))))))))).
% 0.96/1.39  Axiom satz19g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))).
% 0.96/1.39  Axiom satz19h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((d_29_ii X2) X3)->((d_29_ii ((n_pl X2) X0)) ((n_pl X3) X1)))))))))))).
% 0.96/1.39  Axiom satz19j:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((iii X2) X3)->((iii ((n_pl X0) X2)) ((n_pl X1) X3)))))))))))).
% 0.96/1.39  Axiom satz19k:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) nat))) (fun (X3:fofType)=> (((n_is X0) X1)->(((iii X2) X3)->((iii ((n_pl X2) X0)) ((n_pl X3) X1)))))))))))).
% 0.96/1.39  Axiom satz19l:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->((moreis ((n_pl X0) X2)) ((n_pl X1) X2))))))))).
% 0.96/1.39  Axiom satz19m:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((moreis X0) X1)->((moreis ((n_pl X2) X0)) ((n_pl X2) X1))))))))).
% 0.96/1.39  Axiom satz19n:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((lessis X0) X1)->((lessis ((n_pl X0) X2)) ((n_pl X1) X2))))))))).
% 0.96/1.39  Axiom satz19o:((all_of (fun (X0:fofType)=>
%------------------------------------------------------------------------------