TSTP Solution File: NUM660^4 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : NUM660^4 : TPTP v7.1.0. Released v7.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n038.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32218.625MB
% OS       : Linux 3.10.0-693.2.2.el7.x86_64
% CPULimit : 300s
% DateTime : Mon Jan  8 13:11:20 EST 2018

% Result   : Unknown 13.54s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.03  % Problem  : NUM660^4 : TPTP v7.1.0. Released v7.1.0.
% 0.00/0.04  % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.03/0.24  % Computer : n038.star.cs.uiowa.edu
% 0.03/0.24  % Model    : x86_64 x86_64
% 0.03/0.24  % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% 0.03/0.24  % Memory   : 32218.625MB
% 0.03/0.24  % OS       : Linux 3.10.0-693.2.2.el7.x86_64
% 0.03/0.24  % CPULimit : 300
% 0.03/0.24  % DateTime : Fri Jan  5 11:45:45 CST 2018
% 0.03/0.24  % CPUTime  : 
% 0.08/0.26  Python 2.7.13
% 0.33/0.73  Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% 0.33/0.73  Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/NUM007^0.ax, trying next directory
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff915f0>, <kernel.DependentProduct object at 0x2b88aff919e0>) of role type named typ_is_of
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring is_of:(fofType->((fofType->Prop)->Prop))
% 0.33/0.73  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) is_of) (fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0))) of role definition named def_is_of
% 0.33/0.73  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) is_of) (fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)))
% 0.33/0.73  Defined: is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0))
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff915f0>, <kernel.DependentProduct object at 0x2b88aff918c0>) of role type named typ_all_of
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring all_of:((fofType->Prop)->((fofType->Prop)->Prop))
% 0.33/0.73  FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->Prop))) all_of) (fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2))))) of role definition named def_all_of
% 0.33/0.73  A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->Prop))) all_of) (fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))))
% 0.33/0.73  Defined: all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2))))
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff918c0>, <kernel.DependentProduct object at 0x2b88aff911b8>) of role type named typ_eps
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring eps:((fofType->Prop)->fofType)
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff913b0>, <kernel.DependentProduct object at 0x2b88aff915f0>) of role type named typ_in
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring in:(fofType->(fofType->Prop))
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff91908>, <kernel.DependentProduct object at 0x2b88aff918c0>) of role type named typ_d_Subq
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring d_Subq:(fofType->(fofType->Prop))
% 0.33/0.73  FOF formula (((eq (fofType->(fofType->Prop))) d_Subq) (fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1))))) of role definition named def_d_Subq
% 0.33/0.73  A new definition: (((eq (fofType->(fofType->Prop))) d_Subq) (fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))))
% 0.33/0.73  Defined: d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1))))
% 0.33/0.73  FOF formula (forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1)))) of role axiom named set_ext
% 0.33/0.73  A new axiom: (forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1))))
% 0.33/0.73  FOF formula (forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1)))) of role axiom named k_In_ind
% 0.33/0.73  A new axiom: (forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1))))
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff915a8>, <kernel.Single object at 0x2b88aff91170>) of role type named typ_emptyset
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring emptyset:fofType
% 0.33/0.73  FOF formula (((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False) of role axiom named k_EmptyAx
% 0.33/0.73  A new axiom: (((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False)
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88aff91c20>, <kernel.DependentProduct object at 0x2b88aff913b0>) of role type named typ_union
% 0.33/0.73  Using role type
% 0.33/0.73  Declaring union:(fofType->fofType)
% 0.33/0.73  FOF formula (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0)))))) of role axiom named k_UnionEq
% 0.33/0.73  A new axiom: (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0))))))
% 0.33/0.73  FOF formula (<kernel.Constant object at 0x2b88afff7f80>, <kernel.DependentProduct object at 0x2b88aff918c0>) of role type named typ_power
% 0.33/0.73  Using role type
% 0.33/0.75  Declaring power:(fofType->fofType)
% 0.33/0.75  FOF formula (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0))) of role axiom named k_PowerEq
% 0.33/0.75  A new axiom: (forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0)))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b88aff91908>, <kernel.DependentProduct object at 0x2b88aff91170>) of role type named typ_repl
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring repl:(fofType->((fofType->fofType)->fofType))
% 0.33/0.75  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3))))))) of role axiom named k_ReplEq
% 0.33/0.75  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3)))))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b88aff918c0>, <kernel.DependentProduct object at 0x2b88aff91cf8>) of role type named typ_d_Union_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_Union_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_Union_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0))))) of role definition named def_d_Union_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_Union_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))))
% 0.33/0.75  Defined: d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b88aff91248>, <kernel.DependentProduct object at 0x2b88aff91128>) of role type named typ_d_Power_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_Power_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_Power_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0))))) of role definition named def_d_Power_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_Power_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))))
% 0.33/0.75  Defined: d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b88b0688b00>, <kernel.DependentProduct object at 0x2b88aff91ea8>) of role type named typ_d_Repl_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_Repl_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_Repl_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0))))))) of role definition named def_d_Repl_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_Repl_closed) (fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))))
% 0.33/0.75  Defined: d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0))))))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b88b0016bd8>, <kernel.DependentProduct object at 0x2b88aff91ea8>) of role type named typ_d_ZF_closed
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring d_ZF_closed:(fofType->Prop)
% 0.33/0.75  FOF formula (((eq (fofType->Prop)) d_ZF_closed) (fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0)))) of role definition named def_d_ZF_closed
% 0.33/0.75  A new definition: (((eq (fofType->Prop)) d_ZF_closed) (fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))))
% 0.33/0.75  Defined: d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0)))
% 0.33/0.75  FOF formula (<kernel.Constant object at 0x2b88b0016bd8>, <kernel.DependentProduct object at 0x2b88aff918c0>) of role type named typ_univof
% 0.33/0.75  Using role type
% 0.33/0.75  Declaring univof:(fofType->fofType)
% 0.33/0.75  FOF formula (forall (X0:fofType), ((in X0) (univof X0))) of role axiom named k_UnivOf_In
% 0.33/0.75  A new axiom: (forall (X0:fofType), ((in X0) (univof X0)))
% 0.33/0.75  FOF formula (forall (X0:fofType), (d_ZF_closed (univof X0))) of role axiom named k_UnivOf_ZF_closed
% 0.33/0.77  A new axiom: (forall (X0:fofType), (d_ZF_closed (univof X0)))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b88afc38d88>, <kernel.DependentProduct object at 0x2b88aff91ea8>) of role type named typ_if
% 0.33/0.77  Using role type
% 0.33/0.77  Declaring if:(Prop->(fofType->(fofType->fofType)))
% 0.33/0.77  FOF formula (((eq (Prop->(fofType->(fofType->fofType)))) if) (fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2))))))) of role definition named def_if
% 0.33/0.77  A new definition: (((eq (Prop->(fofType->(fofType->fofType)))) if) (fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))))
% 0.33/0.77  Defined: if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2))))))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2)))) of role axiom named if_i_correct
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2))))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2))) of role axiom named if_i_0
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2)))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1))) of role axiom named if_i_1
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1)))
% 0.33/0.77  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2))) of role axiom named if_i_or
% 0.33/0.77  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2)))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b88aff913b0>, <kernel.DependentProduct object at 0x2b88b06b4128>) of role type named typ_nIn
% 0.33/0.77  Using role type
% 0.33/0.77  Declaring nIn:(fofType->(fofType->Prop))
% 0.33/0.77  FOF formula (((eq (fofType->(fofType->Prop))) nIn) (fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False))) of role definition named def_nIn
% 0.33/0.77  A new definition: (((eq (fofType->(fofType->Prop))) nIn) (fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)))
% 0.33/0.77  Defined: nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False))
% 0.33/0.77  FOF formula (forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0))) of role axiom named k_PowerE
% 0.33/0.77  A new axiom: (forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0)))
% 0.33/0.77  FOF formula (forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0)))) of role axiom named k_PowerI
% 0.33/0.77  A new axiom: (forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0))))
% 0.33/0.77  FOF formula (forall (X0:fofType), ((in X0) (power X0))) of role axiom named k_Self_In_Power
% 0.33/0.77  A new axiom: (forall (X0:fofType), ((in X0) (power X0)))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b88b06b4998>, <kernel.DependentProduct object at 0x2b88b06b4ab8>) of role type named typ_d_UPair
% 0.33/0.77  Using role type
% 0.33/0.77  Declaring d_UPair:(fofType->(fofType->fofType))
% 0.33/0.77  FOF formula (((eq (fofType->(fofType->fofType))) d_UPair) (fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1))))) of role definition named def_d_UPair
% 0.33/0.77  A new definition: (((eq (fofType->(fofType->fofType))) d_UPair) (fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))))
% 0.33/0.77  Defined: d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1))))
% 0.33/0.77  FOF formula (<kernel.Constant object at 0x2b88b06b4ab8>, <kernel.DependentProduct object at 0x2b88b06b4a28>) of role type named typ_d_Sing
% 0.33/0.77  Using role type
% 0.39/0.78  Declaring d_Sing:(fofType->fofType)
% 0.39/0.78  FOF formula (((eq (fofType->fofType)) d_Sing) (fun (X0:fofType)=> ((d_UPair X0) X0))) of role definition named def_d_Sing
% 0.39/0.78  A new definition: (((eq (fofType->fofType)) d_Sing) (fun (X0:fofType)=> ((d_UPair X0) X0)))
% 0.39/0.78  Defined: d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0))
% 0.39/0.78  FOF formula (<kernel.Constant object at 0x2b88b06b4a28>, <kernel.DependentProduct object at 0x2b88b06b4908>) of role type named typ_binunion
% 0.39/0.78  Using role type
% 0.39/0.78  Declaring binunion:(fofType->(fofType->fofType))
% 0.39/0.78  FOF formula (((eq (fofType->(fofType->fofType))) binunion) (fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1)))) of role definition named def_binunion
% 0.39/0.78  A new definition: (((eq (fofType->(fofType->fofType))) binunion) (fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))))
% 0.39/0.78  Defined: binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1)))
% 0.39/0.78  FOF formula (<kernel.Constant object at 0x2b88b06b4908>, <kernel.DependentProduct object at 0x2b88b06b45a8>) of role type named typ_famunion
% 0.39/0.78  Using role type
% 0.39/0.78  Declaring famunion:(fofType->((fofType->fofType)->fofType))
% 0.39/0.78  FOF formula (((eq (fofType->((fofType->fofType)->fofType))) famunion) (fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1)))) of role definition named def_famunion
% 0.39/0.78  A new definition: (((eq (fofType->((fofType->fofType)->fofType))) famunion) (fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))))
% 0.39/0.78  Defined: famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1)))
% 0.39/0.78  FOF formula (<kernel.Constant object at 0x2b88b06b45a8>, <kernel.DependentProduct object at 0x2b88b06b4488>) of role type named typ_d_Sep
% 0.39/0.78  Using role type
% 0.39/0.78  Declaring d_Sep:(fofType->((fofType->Prop)->fofType))
% 0.39/0.78  FOF formula (((eq (fofType->((fofType->Prop)->fofType))) d_Sep) (fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset))) of role definition named def_d_Sep
% 0.39/0.78  A new definition: (((eq (fofType->((fofType->Prop)->fofType))) d_Sep) (fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)))
% 0.39/0.78  Defined: d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset))
% 0.39/0.78  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1))))) of role axiom named k_SepI
% 0.39/0.78  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1)))))
% 0.39/0.78  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0))) of role axiom named k_SepE1
% 0.39/0.78  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0)))
% 0.39/0.78  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2))) of role axiom named k_SepE2
% 0.39/0.78  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2)))
% 0.39/0.78  FOF formula (<kernel.Constant object at 0x2b88b06b4998>, <kernel.DependentProduct object at 0x2b88b2719320>) of role type named typ_d_ReplSep
% 0.39/0.78  Using role type
% 0.39/0.78  Declaring d_ReplSep:(fofType->((fofType->Prop)->((fofType->fofType)->fofType)))
% 0.39/0.78  FOF formula (((eq (fofType->((fofType->Prop)->((fofType->fofType)->fofType)))) d_ReplSep) (fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1)))) of role definition named def_d_ReplSep
% 0.39/0.78  A new definition: (((eq (fofType->((fofType->Prop)->((fofType->fofType)->fofType)))) d_ReplSep) (fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))))
% 0.39/0.78  Defined: d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1)))
% 0.39/0.78  FOF formula (<kernel.Constant object at 0x2b88b06b4998>, <kernel.DependentProduct object at 0x2b88b2719488>) of role type named typ_setminus
% 0.39/0.80  Using role type
% 0.39/0.80  Declaring setminus:(fofType->(fofType->fofType))
% 0.39/0.80  FOF formula (((eq (fofType->(fofType->fofType))) setminus) (fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1))))) of role definition named def_setminus
% 0.39/0.80  A new definition: (((eq (fofType->(fofType->fofType))) setminus) (fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))))
% 0.39/0.80  Defined: setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1))))
% 0.39/0.80  FOF formula (<kernel.Constant object at 0x2b88b06b4998>, <kernel.DependentProduct object at 0x2b88b2719440>) of role type named typ_d_In_rec_G
% 0.39/0.80  Using role type
% 0.39/0.80  Declaring d_In_rec_G:((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))
% 0.39/0.80  FOF formula (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))) d_In_rec_G) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2))))) of role definition named def_d_In_rec_G
% 0.39/0.80  A new definition: (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))) d_In_rec_G) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))))
% 0.39/0.80  Defined: d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2))))
% 0.39/0.80  FOF formula (<kernel.Constant object at 0x2b88b2719440>, <kernel.DependentProduct object at 0x2b88b2719710>) of role type named typ_d_In_rec
% 0.39/0.80  Using role type
% 0.39/0.80  Declaring d_In_rec:((fofType->((fofType->fofType)->fofType))->(fofType->fofType))
% 0.39/0.80  FOF formula (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->fofType))) d_In_rec) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1)))) of role definition named def_d_In_rec
% 0.39/0.80  A new definition: (((eq ((fofType->((fofType->fofType)->fofType))->(fofType->fofType))) d_In_rec) (fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))))
% 0.39/0.80  Defined: d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1)))
% 0.39/0.80  FOF formula (<kernel.Constant object at 0x2b88b2719710>, <kernel.DependentProduct object at 0x2b88b27194d0>) of role type named typ_ordsucc
% 0.39/0.80  Using role type
% 0.39/0.80  Declaring ordsucc:(fofType->fofType)
% 0.39/0.80  FOF formula (((eq (fofType->fofType)) ordsucc) (fun (X0:fofType)=> ((binunion X0) (d_Sing X0)))) of role definition named def_ordsucc
% 0.39/0.80  A new definition: (((eq (fofType->fofType)) ordsucc) (fun (X0:fofType)=> ((binunion X0) (d_Sing X0))))
% 0.39/0.80  Defined: ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0)))
% 0.39/0.80  FOF formula (forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset))) of role axiom named neq_ordsucc_0
% 0.39/0.80  A new axiom: (forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset)))
% 0.39/0.80  FOF formula (forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1))) of role axiom named ordsucc_inj
% 0.39/0.80  A new axiom: (forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1)))
% 0.39/0.80  FOF formula ((in emptyset) (ordsucc emptyset)) of role axiom named k_In_0_1
% 0.39/0.80  A new axiom: ((in emptyset) (ordsucc emptyset))
% 0.39/0.80  FOF formula (<kernel.Constant object at 0x2b88b2719488>, <kernel.DependentProduct object at 0x2b88b2719200>) of role type named typ_nat_p
% 0.39/0.80  Using role type
% 0.39/0.80  Declaring nat_p:(fofType->Prop)
% 0.39/0.80  FOF formula (((eq (fofType->Prop)) nat_p) (fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0)))))) of role definition named def_nat_p
% 0.39/0.81  A new definition: (((eq (fofType->Prop)) nat_p) (fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))))
% 0.39/0.81  Defined: nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0)))))
% 0.39/0.81  FOF formula (forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0)))) of role axiom named nat_ordsucc
% 0.39/0.81  A new axiom: (forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0))))
% 0.39/0.81  FOF formula (nat_p (ordsucc emptyset)) of role axiom named nat_1
% 0.39/0.81  A new axiom: (nat_p (ordsucc emptyset))
% 0.39/0.81  FOF formula (forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1)))))) of role axiom named nat_ind
% 0.39/0.81  A new axiom: (forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1))))))
% 0.39/0.81  FOF formula (forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1)))))))) of role axiom named nat_inv
% 0.39/0.81  A new axiom: (forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1))))))))
% 0.39/0.81  FOF formula (<kernel.Constant object at 0x2b88b2719b00>, <kernel.Single object at 0x2b88b2719830>) of role type named typ_omega
% 0.39/0.81  Using role type
% 0.39/0.81  Declaring omega:fofType
% 0.39/0.81  FOF formula (((eq fofType) omega) ((d_Sep (univof emptyset)) nat_p)) of role definition named def_omega
% 0.39/0.81  A new definition: (((eq fofType) omega) ((d_Sep (univof emptyset)) nat_p))
% 0.39/0.81  Defined: omega:=((d_Sep (univof emptyset)) nat_p)
% 0.39/0.81  FOF formula (forall (X0:fofType), (((in X0) omega)->(nat_p X0))) of role axiom named omega_nat_p
% 0.39/0.81  A new axiom: (forall (X0:fofType), (((in X0) omega)->(nat_p X0)))
% 0.39/0.81  FOF formula (forall (X0:fofType), ((nat_p X0)->((in X0) omega))) of role axiom named nat_p_omega
% 0.39/0.81  A new axiom: (forall (X0:fofType), ((nat_p X0)->((in X0) omega)))
% 0.39/0.81  FOF formula (<kernel.Constant object at 0x2b88b2719638>, <kernel.DependentProduct object at 0x2b88b2719830>) of role type named typ_d_Inj1
% 0.39/0.81  Using role type
% 0.39/0.81  Declaring d_Inj1:(fofType->fofType)
% 0.39/0.81  FOF formula (((eq (fofType->fofType)) d_Inj1) (d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1))))) of role definition named def_d_Inj1
% 0.39/0.81  A new definition: (((eq (fofType->fofType)) d_Inj1) (d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))))
% 0.39/0.81  Defined: d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1))))
% 0.39/0.81  FOF formula (<kernel.Constant object at 0x2b88b2719b00>, <kernel.DependentProduct object at 0x2b88b2719e60>) of role type named typ_d_Inj0
% 0.39/0.81  Using role type
% 0.39/0.81  Declaring d_Inj0:(fofType->fofType)
% 0.39/0.81  FOF formula (((eq (fofType->fofType)) d_Inj0) (fun (X0:fofType)=> ((repl X0) d_Inj1))) of role definition named def_d_Inj0
% 0.39/0.81  A new definition: (((eq (fofType->fofType)) d_Inj0) (fun (X0:fofType)=> ((repl X0) d_Inj1)))
% 0.39/0.81  Defined: d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1))
% 0.39/0.81  FOF formula (<kernel.Constant object at 0x2b88b2719e60>, <kernel.DependentProduct object at 0x2b88b2719830>) of role type named typ_d_Unj
% 0.39/0.81  Using role type
% 0.39/0.81  Declaring d_Unj:(fofType->fofType)
% 0.39/0.81  FOF formula (((eq (fofType->fofType)) d_Unj) (d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset)))))) of role definition named def_d_Unj
% 0.39/0.81  A new definition: (((eq (fofType->fofType)) d_Unj) (d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))))
% 0.39/0.81  Defined: d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset)))))
% 0.39/0.81  FOF formula (<kernel.Constant object at 0x2b88b2719638>, <kernel.DependentProduct object at 0x2b88b2719830>) of role type named typ_pair
% 0.39/0.81  Using role type
% 0.39/0.81  Declaring pair:(fofType->(fofType->fofType))
% 0.39/0.81  FOF formula (((eq (fofType->(fofType->fofType))) pair) (fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1)))) of role definition named def_pair
% 0.39/0.83  A new definition: (((eq (fofType->(fofType->fofType))) pair) (fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))))
% 0.39/0.83  Defined: pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1)))
% 0.39/0.83  FOF formula (<kernel.Constant object at 0x2b88b2719830>, <kernel.DependentProduct object at 0x2b88b2719518>) of role type named typ_proj0
% 0.39/0.83  Using role type
% 0.39/0.83  Declaring proj0:(fofType->fofType)
% 0.39/0.83  FOF formula (((eq (fofType->fofType)) proj0) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj))) of role definition named def_proj0
% 0.39/0.83  A new definition: (((eq (fofType->fofType)) proj0) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)))
% 0.39/0.83  Defined: proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj))
% 0.39/0.83  FOF formula (<kernel.Constant object at 0x2b88b2719518>, <kernel.DependentProduct object at 0x2b88b27197a0>) of role type named typ_proj1
% 0.39/0.83  Using role type
% 0.39/0.83  Declaring _TPTP_proj1:(fofType->fofType)
% 0.39/0.83  FOF formula (((eq (fofType->fofType)) _TPTP_proj1) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj))) of role definition named def_proj1
% 0.39/0.83  A new definition: (((eq (fofType->fofType)) _TPTP_proj1) (fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)))
% 0.39/0.83  Defined: _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj))
% 0.39/0.83  FOF formula (forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0)) of role axiom named proj0_pair_eq
% 0.39/0.83  A new axiom: (forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0))
% 0.39/0.83  FOF formula (forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1)) of role axiom named proj1_pair_eq
% 0.39/0.83  A new axiom: (forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1))
% 0.39/0.83  FOF formula (<kernel.Constant object at 0x2b88b2719ab8>, <kernel.DependentProduct object at 0x2b88b27199e0>) of role type named typ_d_Sigma
% 0.39/0.83  Using role type
% 0.39/0.83  Declaring d_Sigma:(fofType->((fofType->fofType)->fofType))
% 0.39/0.83  FOF formula (((eq (fofType->((fofType->fofType)->fofType))) d_Sigma) (fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2)))))) of role definition named def_d_Sigma
% 0.39/0.83  A new definition: (((eq (fofType->((fofType->fofType)->fofType))) d_Sigma) (fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))))
% 0.39/0.83  Defined: d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2)))))
% 0.39/0.83  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1)))))) of role axiom named pair_Sigma
% 0.39/0.83  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1))))))
% 0.39/0.83  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))) of role axiom named k_Sigma_eta_proj0_proj1
% 0.39/0.83  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))))
% 0.39/0.83  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2))) of role axiom named proj_Sigma_eta
% 0.39/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)))
% 0.39/0.85  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0))) of role axiom named proj0_Sigma
% 0.39/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0)))
% 0.39/0.85  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))) of role axiom named proj1_Sigma
% 0.39/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))
% 0.39/0.85  FOF formula (<kernel.Constant object at 0x2b88b2719e60>, <kernel.DependentProduct object at 0x2b88b2719320>) of role type named typ_setprod
% 0.39/0.85  Using role type
% 0.39/0.85  Declaring setprod:(fofType->(fofType->fofType))
% 0.39/0.85  FOF formula (((eq (fofType->(fofType->fofType))) setprod) (fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1)))) of role definition named def_setprod
% 0.39/0.85  A new definition: (((eq (fofType->(fofType->fofType))) setprod) (fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))))
% 0.39/0.85  Defined: setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1)))
% 0.39/0.85  FOF formula (<kernel.Constant object at 0x2b88b2719ea8>, <kernel.DependentProduct object at 0x2b88b2719518>) of role type named typ_ap
% 0.39/0.85  Using role type
% 0.39/0.85  Declaring ap:(fofType->(fofType->fofType))
% 0.39/0.85  FOF formula (((eq (fofType->(fofType->fofType))) ap) (fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1))) of role definition named def_ap
% 0.39/0.85  A new definition: (((eq (fofType->(fofType->fofType))) ap) (fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)))
% 0.39/0.85  Defined: ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1))
% 0.39/0.85  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2)))) of role axiom named beta
% 0.39/0.85  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2))))
% 0.39/0.85  FOF formula (<kernel.Constant object at 0x2b88b2719ef0>, <kernel.DependentProduct object at 0x2b88b33165f0>) of role type named typ_pair_p
% 0.39/0.85  Using role type
% 0.39/0.85  Declaring pair_p:(fofType->Prop)
% 0.39/0.85  FOF formula (((eq (fofType->Prop)) pair_p) (fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0))) of role definition named def_pair_p
% 0.39/0.85  A new definition: (((eq (fofType->Prop)) pair_p) (fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)))
% 0.39/0.85  Defined: pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0))
% 0.39/0.85  FOF formula (<kernel.Constant object at 0x2b88b2719ea8>, <kernel.DependentProduct object at 0x2b88b33161b8>) of role type named typ_d_Pi
% 0.39/0.85  Using role type
% 0.39/0.85  Declaring d_Pi:(fofType->((fofType->fofType)->fofType))
% 0.39/0.85  FOF formula (((eq (fofType->((fofType->fofType)->fofType))) d_Pi) (fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))))) of role definition named def_d_Pi
% 0.39/0.85  A new definition: (((eq (fofType->((fofType->fofType)->fofType))) d_Pi) (fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))))
% 0.39/0.85  Defined: d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))))
% 0.46/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1)))) of role axiom named lam_Pi
% 0.46/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1))))
% 0.46/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))) of role axiom named ap_Pi
% 0.46/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))
% 0.46/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3)))))) of role axiom named k_Pi_ext
% 0.46/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3))))))
% 0.46/0.87  FOF formula (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2)))) of role axiom named xi_ext
% 0.46/0.87  A new axiom: (forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2))))
% 0.46/0.87  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset))))) of role axiom named k_If_In_01
% 0.46/0.87  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset)))))
% 0.46/0.87  FOF formula (forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2)))) of role axiom named k_If_In_then_E
% 0.46/0.87  A new axiom: (forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2))))
% 0.46/0.87  FOF formula (<kernel.Constant object at 0x2b88b3316488>, <kernel.DependentProduct object at 0x2b88b33162d8>) of role type named typ_imp
% 0.46/0.87  Using role type
% 0.46/0.87  Declaring imp:(Prop->(Prop->Prop))
% 0.46/0.87  FOF formula (((eq (Prop->(Prop->Prop))) imp) (fun (X0:Prop) (X1:Prop)=> (X0->X1))) of role definition named def_imp
% 0.46/0.87  A new definition: (((eq (Prop->(Prop->Prop))) imp) (fun (X0:Prop) (X1:Prop)=> (X0->X1)))
% 0.46/0.87  Defined: imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1))
% 0.46/0.87  FOF formula (<kernel.Constant object at 0x2b88b33162d8>, <kernel.DependentProduct object at 0x2b88b3316710>) of role type named typ_d_not
% 0.46/0.87  Using role type
% 0.46/0.87  Declaring d_not:(Prop->Prop)
% 0.46/0.87  FOF formula (((eq (Prop->Prop)) d_not) (fun (X0:Prop)=> ((imp X0) False))) of role definition named def_d_not
% 0.46/0.87  A new definition: (((eq (Prop->Prop)) d_not) (fun (X0:Prop)=> ((imp X0) False)))
% 0.46/0.87  Defined: d_not:=(fun (X0:Prop)=> ((imp X0) False))
% 0.46/0.87  FOF formula (<kernel.Constant object at 0x2b88b3316710>, <kernel.DependentProduct object at 0x2b88b3316320>) of role type named typ_wel
% 0.46/0.87  Using role type
% 0.46/0.87  Declaring wel:(Prop->Prop)
% 0.46/0.87  FOF formula (((eq (Prop->Prop)) wel) (fun (X0:Prop)=> (d_not (d_not X0)))) of role definition named def_wel
% 0.46/0.87  A new definition: (((eq (Prop->Prop)) wel) (fun (X0:Prop)=> (d_not (d_not X0))))
% 0.46/0.87  Defined: wel:=(fun (X0:Prop)=> (d_not (d_not X0)))
% 0.46/0.87  FOF formula (forall (X0:Prop), ((wel X0)->X0)) of role axiom named l_et
% 0.46/0.87  A new axiom: (forall (X0:Prop), ((wel X0)->X0))
% 0.46/0.87  FOF formula (<kernel.Constant object at 0x2b88b3316758>, <kernel.Sort object at 0x2b88afff7cb0>) of role type named typ_obvious
% 0.46/0.87  Using role type
% 0.46/0.87  Declaring obvious:Prop
% 0.46/0.87  FOF formula (((eq Prop) obvious) ((imp False) False)) of role definition named def_obvious
% 0.46/0.87  A new definition: (((eq Prop) obvious) ((imp False) False))
% 0.48/0.88  Defined: obvious:=((imp False) False)
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316518>, <kernel.DependentProduct object at 0x2b88b3316200>) of role type named typ_l_ec
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring l_ec:(Prop->(Prop->Prop))
% 0.48/0.88  FOF formula (((eq (Prop->(Prop->Prop))) l_ec) (fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1)))) of role definition named def_l_ec
% 0.48/0.88  A new definition: (((eq (Prop->(Prop->Prop))) l_ec) (fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))))
% 0.48/0.88  Defined: l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1)))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316200>, <kernel.DependentProduct object at 0x2b88b3316758>) of role type named typ_d_and
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring d_and:(Prop->(Prop->Prop))
% 0.48/0.88  FOF formula (((eq (Prop->(Prop->Prop))) d_and) (fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1)))) of role definition named def_d_and
% 0.48/0.88  A new definition: (((eq (Prop->(Prop->Prop))) d_and) (fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))))
% 0.48/0.88  Defined: d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1)))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316758>, <kernel.DependentProduct object at 0x2b88b3316518>) of role type named typ_l_or
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring l_or:(Prop->(Prop->Prop))
% 0.48/0.88  FOF formula (((eq (Prop->(Prop->Prop))) l_or) (fun (X0:Prop)=> (imp (d_not X0)))) of role definition named def_l_or
% 0.48/0.88  A new definition: (((eq (Prop->(Prop->Prop))) l_or) (fun (X0:Prop)=> (imp (d_not X0))))
% 0.48/0.88  Defined: l_or:=(fun (X0:Prop)=> (imp (d_not X0)))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316518>, <kernel.DependentProduct object at 0x2b88b3316440>) of role type named typ_orec
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring orec:(Prop->(Prop->Prop))
% 0.48/0.88  FOF formula (((eq (Prop->(Prop->Prop))) orec) (fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1)))) of role definition named def_orec
% 0.48/0.88  A new definition: (((eq (Prop->(Prop->Prop))) orec) (fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))))
% 0.48/0.88  Defined: orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1)))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316440>, <kernel.DependentProduct object at 0x2b88b3316758>) of role type named typ_l_iff
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring l_iff:(Prop->(Prop->Prop))
% 0.48/0.88  FOF formula (((eq (Prop->(Prop->Prop))) l_iff) (fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0)))) of role definition named def_l_iff
% 0.48/0.88  A new definition: (((eq (Prop->(Prop->Prop))) l_iff) (fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))))
% 0.48/0.88  Defined: l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0)))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316758>, <kernel.DependentProduct object at 0x2b88b3316998>) of role type named typ_all
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring all:(fofType->((fofType->Prop)->Prop))
% 0.48/0.88  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) all) (fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0))))) of role definition named def_all
% 0.48/0.88  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) all) (fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))))
% 0.48/0.88  Defined: all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0))))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316998>, <kernel.DependentProduct object at 0x2b88b3316d88>) of role type named typ_non
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring non:(fofType->((fofType->Prop)->(fofType->Prop)))
% 0.48/0.88  FOF formula (((eq (fofType->((fofType->Prop)->(fofType->Prop)))) non) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2)))) of role definition named def_non
% 0.48/0.88  A new definition: (((eq (fofType->((fofType->Prop)->(fofType->Prop)))) non) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))))
% 0.48/0.88  Defined: non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2)))
% 0.48/0.88  FOF formula (<kernel.Constant object at 0x2b88b3316d88>, <kernel.DependentProduct object at 0x2b88b33164d0>) of role type named typ_l_some
% 0.48/0.88  Using role type
% 0.48/0.88  Declaring l_some:(fofType->((fofType->Prop)->Prop))
% 0.48/0.88  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) l_some) (fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1))))) of role definition named def_l_some
% 0.48/0.90  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) l_some) (fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))))
% 0.48/0.90  Defined: l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1))))
% 0.48/0.90  FOF formula (<kernel.Constant object at 0x2b88b33164d0>, <kernel.DependentProduct object at 0x2b88b3316dd0>) of role type named typ_or3
% 0.48/0.90  Using role type
% 0.48/0.90  Declaring or3:(Prop->(Prop->(Prop->Prop)))
% 0.48/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) or3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2)))) of role definition named def_or3
% 0.48/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) or3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))))
% 0.48/0.90  Defined: or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2)))
% 0.48/0.90  FOF formula (<kernel.Constant object at 0x2b88b3316dd0>, <kernel.DependentProduct object at 0x2b88b3316f38>) of role type named typ_and3
% 0.48/0.90  Using role type
% 0.48/0.90  Declaring and3:(Prop->(Prop->(Prop->Prop)))
% 0.48/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) and3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2)))) of role definition named def_and3
% 0.48/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) and3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))))
% 0.48/0.90  Defined: and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2)))
% 0.48/0.90  FOF formula (<kernel.Constant object at 0x2b88b3316f38>, <kernel.DependentProduct object at 0x2b88b3316e18>) of role type named typ_ec3
% 0.48/0.90  Using role type
% 0.48/0.90  Declaring ec3:(Prop->(Prop->(Prop->Prop)))
% 0.48/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) ec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0)))) of role definition named def_ec3
% 0.48/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) ec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))))
% 0.48/0.90  Defined: ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0)))
% 0.48/0.90  FOF formula (<kernel.Constant object at 0x2b88b3316e18>, <kernel.DependentProduct object at 0x2b88b3316ea8>) of role type named typ_orec3
% 0.48/0.90  Using role type
% 0.48/0.90  Declaring orec3:(Prop->(Prop->(Prop->Prop)))
% 0.48/0.90  FOF formula (((eq (Prop->(Prop->(Prop->Prop)))) orec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2)))) of role definition named def_orec3
% 0.48/0.90  A new definition: (((eq (Prop->(Prop->(Prop->Prop)))) orec3) (fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))))
% 0.48/0.90  Defined: orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2)))
% 0.48/0.90  FOF formula (<kernel.Constant object at 0x2b88b3316ea8>, <kernel.DependentProduct object at 0x2b88b3316b90>) of role type named typ_e_is
% 0.48/0.90  Using role type
% 0.48/0.90  Declaring e_is:(fofType->(fofType->(fofType->Prop)))
% 0.48/0.90  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) e_is) (fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y))) of role definition named def_e_is
% 0.48/0.90  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) e_is) (fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)))
% 0.48/0.90  Defined: e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y))
% 0.48/0.90  FOF formula (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1)))) of role axiom named refis
% 0.48/0.90  A new axiom: (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1))))
% 0.48/0.90  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3)))))))) of role axiom named e_isp
% 0.48/0.90  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3))))))))
% 0.53/0.92  FOF formula (<kernel.Constant object at 0x2b88b3316d40>, <kernel.DependentProduct object at 0x2b88b3316d88>) of role type named typ_amone
% 0.53/0.92  Using role type
% 0.53/0.92  Declaring amone:(fofType->((fofType->Prop)->Prop))
% 0.53/0.92  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) amone) (fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3))))))))) of role definition named def_amone
% 0.53/0.92  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) amone) (fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))))
% 0.53/0.92  Defined: amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3))))))))
% 0.53/0.92  FOF formula (<kernel.Constant object at 0x2b88b3316d88>, <kernel.DependentProduct object at 0x2b88b3316a70>) of role type named typ_one
% 0.53/0.92  Using role type
% 0.53/0.92  Declaring one:(fofType->((fofType->Prop)->Prop))
% 0.53/0.92  FOF formula (((eq (fofType->((fofType->Prop)->Prop))) one) (fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1)))) of role definition named def_one
% 0.53/0.92  A new definition: (((eq (fofType->((fofType->Prop)->Prop))) one) (fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))))
% 0.53/0.92  Defined: one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1)))
% 0.53/0.92  FOF formula (<kernel.Constant object at 0x2b88b3316a70>, <kernel.DependentProduct object at 0x2b88b3316f38>) of role type named typ_ind
% 0.53/0.92  Using role type
% 0.53/0.92  Declaring ind:(fofType->((fofType->Prop)->fofType))
% 0.53/0.92  FOF formula (((eq (fofType->((fofType->Prop)->fofType))) ind) (fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2)))))) of role definition named def_ind
% 0.53/0.92  A new definition: (((eq (fofType->((fofType->Prop)->fofType))) ind) (fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))))
% 0.53/0.92  Defined: ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2)))))
% 0.53/0.92  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0))))) of role axiom named ind_p
% 0.53/0.92  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0)))))
% 0.53/0.92  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1)))) of role axiom named oneax
% 0.53/0.92  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1))))
% 0.53/0.92  FOF formula (<kernel.Constant object at 0x2b88b3316f38>, <kernel.DependentProduct object at 0x2b88b3316560>) of role type named typ_injective
% 0.53/0.92  Using role type
% 0.53/0.92  Declaring injective:(fofType->(fofType->(fofType->Prop)))
% 0.53/0.92  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) injective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4)))))))) of role definition named def_injective
% 0.53/0.92  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) injective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))))
% 0.53/0.92  Defined: injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4)))))))
% 0.53/0.92  FOF formula (<kernel.Constant object at 0x2b88b3316d88>, <kernel.DependentProduct object at 0x2b88b331c1b8>) of role type named typ_image
% 0.53/0.92  Using role type
% 0.53/0.92  Declaring image:(fofType->(fofType->(fofType->(fofType->Prop))))
% 0.53/0.92  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) image) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))) of role definition named def_image
% 0.53/0.93  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) image) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))))
% 0.53/0.93  Defined: image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))
% 0.53/0.93  FOF formula (<kernel.Constant object at 0x2b88b3316d88>, <kernel.DependentProduct object at 0x2b88b331c200>) of role type named typ_tofs
% 0.53/0.93  Using role type
% 0.53/0.93  Declaring tofs:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.53/0.93  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) tofs) (fun (X0:fofType) (X1:fofType)=> ap)) of role definition named def_tofs
% 0.53/0.93  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) tofs) (fun (X0:fofType) (X1:fofType)=> ap))
% 0.53/0.93  Defined: tofs:=(fun (X0:fofType) (X1:fofType)=> ap)
% 0.53/0.93  FOF formula (<kernel.Constant object at 0x2b88b3316d88>, <kernel.DependentProduct object at 0x2b88b331c998>) of role type named typ_soft
% 0.53/0.93  Using role type
% 0.53/0.93  Declaring soft:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.53/0.93  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) soft) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))) of role definition named def_soft
% 0.53/0.93  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) soft) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))))
% 0.53/0.93  Defined: soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4)))))
% 0.53/0.93  FOF formula (<kernel.Constant object at 0x2b88b331c998>, <kernel.DependentProduct object at 0x2b88b331c290>) of role type named typ_inverse
% 0.53/0.93  Using role type
% 0.53/0.93  Declaring inverse:(fofType->(fofType->(fofType->fofType)))
% 0.53/0.93  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) inverse) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset))))) of role definition named def_inverse
% 0.53/0.93  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) inverse) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))))
% 0.53/0.93  Defined: inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset))))
% 0.53/0.93  FOF formula (<kernel.Constant object at 0x2b88b331c290>, <kernel.DependentProduct object at 0x2b88b331c908>) of role type named typ_surjective
% 0.53/0.93  Using role type
% 0.53/0.93  Declaring surjective:(fofType->(fofType->(fofType->Prop)))
% 0.53/0.93  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) surjective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2)))) of role definition named def_surjective
% 0.53/0.93  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) surjective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))))
% 0.53/0.93  Defined: surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2)))
% 0.53/0.93  FOF formula (<kernel.Constant object at 0x2b88b331c908>, <kernel.DependentProduct object at 0x2b88b331c248>) of role type named typ_bijective
% 0.53/0.93  Using role type
% 0.53/0.93  Declaring bijective:(fofType->(fofType->(fofType->Prop)))
% 0.53/0.93  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) bijective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2)))) of role definition named def_bijective
% 0.53/0.93  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) bijective) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))))
% 0.53/0.93  Defined: bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2)))
% 0.55/0.95  FOF formula (<kernel.Constant object at 0x2b88b331c248>, <kernel.DependentProduct object at 0x2b88b331c3b0>) of role type named typ_invf
% 0.55/0.95  Using role type
% 0.55/0.95  Declaring invf:(fofType->(fofType->(fofType->fofType)))
% 0.55/0.95  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) invf) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2)))) of role definition named def_invf
% 0.55/0.95  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) invf) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))))
% 0.55/0.95  Defined: invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2)))
% 0.55/0.95  FOF formula (<kernel.Constant object at 0x2b88b331c3b0>, <kernel.DependentProduct object at 0x2b88b331c290>) of role type named typ_inj_h
% 0.55/0.95  Using role type
% 0.55/0.95  Declaring inj_h:(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 0.55/0.95  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) inj_h) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5)))))) of role definition named def_inj_h
% 0.55/0.95  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) inj_h) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))))
% 0.55/0.95  Defined: inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5)))))
% 0.55/0.95  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3))))))) of role axiom named e_fisi
% 0.55/0.95  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3)))))))
% 0.55/0.95  FOF formula (<kernel.Constant object at 0x2b88b331cab8>, <kernel.DependentProduct object at 0x2b88b331c2d8>) of role type named typ_e_in
% 0.55/0.95  Using role type
% 0.55/0.95  Declaring e_in:(fofType->((fofType->Prop)->(fofType->fofType)))
% 0.55/0.95  FOF formula (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) e_in) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2)) of role definition named def_e_in
% 0.55/0.95  A new definition: (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) e_in) (fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2))
% 0.55/0.95  Defined: e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2)
% 0.55/0.95  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))) of role axiom named e_in_p
% 0.55/0.95  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 0.55/0.95  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2))))) of role axiom named e_inp
% 0.55/0.95  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2)))))
% 0.55/0.95  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))) of role axiom named otax1
% 0.55/0.95  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 0.55/0.95  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2))))) of role axiom named otax2
% 0.55/0.97  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2)))))
% 0.55/0.97  FOF formula (<kernel.Constant object at 0x2b88b331c098>, <kernel.DependentProduct object at 0x2b88b331ce18>) of role type named typ_out
% 0.55/0.97  Using role type
% 0.55/0.97  Declaring out:(fofType->((fofType->Prop)->(fofType->fofType)))
% 0.55/0.97  FOF formula (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) out) (fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))) of role definition named def_out
% 0.55/0.97  A new definition: (((eq (fofType->((fofType->Prop)->(fofType->fofType)))) out) (fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))))
% 0.55/0.97  Defined: out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 0.55/0.97  FOF formula (<kernel.Constant object at 0x2b88b331ce18>, <kernel.DependentProduct object at 0x2b88b331c758>) of role type named typ_d_pair
% 0.55/0.97  Using role type
% 0.55/0.97  Declaring d_pair:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.55/0.97  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) d_pair) (fun (X0:fofType) (X1:fofType)=> pair)) of role definition named def_d_pair
% 0.55/0.97  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) d_pair) (fun (X0:fofType) (X1:fofType)=> pair))
% 0.55/0.97  Defined: d_pair:=(fun (X0:fofType) (X1:fofType)=> pair)
% 0.55/0.97  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1))))))))) of role axiom named e_pair_p
% 0.55/0.97  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1)))))))))
% 0.55/0.97  FOF formula (<kernel.Constant object at 0x2b88b331cb00>, <kernel.DependentProduct object at 0x2b88b331cc68>) of role type named typ_first
% 0.55/0.97  Using role type
% 0.55/0.97  Declaring first:(fofType->(fofType->(fofType->fofType)))
% 0.55/0.97  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) first) (fun (X0:fofType) (X1:fofType)=> proj0)) of role definition named def_first
% 0.55/0.97  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) first) (fun (X0:fofType) (X1:fofType)=> proj0))
% 0.55/0.97  Defined: first:=(fun (X0:fofType) (X1:fofType)=> proj0)
% 0.55/0.97  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))) of role axiom named first_p
% 0.55/0.97  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 0.55/0.97  FOF formula (<kernel.Constant object at 0x2b88b331c098>, <kernel.DependentProduct object at 0x2b88b331c710>) of role type named typ_second
% 0.55/0.97  Using role type
% 0.55/0.97  Declaring second:(fofType->(fofType->(fofType->fofType)))
% 0.55/0.97  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) second) (fun (X0:fofType) (X1:fofType)=> _TPTP_proj1)) of role definition named def_second
% 0.55/0.97  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) second) (fun (X0:fofType) (X1:fofType)=> _TPTP_proj1))
% 0.55/0.97  Defined: second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1)
% 0.55/0.97  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1)))))) of role axiom named second_p
% 0.55/0.97  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1))))))
% 0.55/0.99  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2)))) of role axiom named pairis1
% 0.55/0.99  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2))))
% 0.55/0.99  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2)))))) of role axiom named firstis1
% 0.55/0.99  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2))))))
% 0.55/0.99  FOF formula (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3)))))) of role axiom named secondis1
% 0.55/0.99  A new axiom: (forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3))))))
% 0.55/0.99  FOF formula (<kernel.Constant object at 0x2b88b331cef0>, <kernel.DependentProduct object at 0x2b88b331c680>) of role type named typ_prop1
% 0.55/0.99  Using role type
% 0.55/0.99  Declaring prop1:(Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))
% 0.55/0.99  FOF formula (((eq (Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))) prop1) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3))))) of role definition named def_prop1
% 0.55/0.99  A new definition: (((eq (Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))) prop1) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))))
% 0.55/0.99  Defined: prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3))))
% 0.55/0.99  FOF formula (<kernel.Constant object at 0x2b88b331c680>, <kernel.DependentProduct object at 0x2b88b331cef0>) of role type named typ_ite
% 0.55/0.99  Using role type
% 0.55/0.99  Declaring ite:(Prop->(fofType->(fofType->(fofType->fofType))))
% 0.55/0.99  FOF formula (((eq (Prop->(fofType->(fofType->(fofType->fofType))))) ite) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3)))) of role definition named def_ite
% 0.55/0.99  A new definition: (((eq (Prop->(fofType->(fofType->(fofType->fofType))))) ite) (fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))))
% 0.55/0.99  Defined: ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3)))
% 0.55/0.99  FOF formula (<kernel.Constant object at 0x2b88b331cef0>, <kernel.DependentProduct object at 0x2b88b331c488>) of role type named typ_wissel_wa
% 0.55/0.99  Using role type
% 0.55/0.99  Declaring wissel_wa:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.55/0.99  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wa) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3))) of role definition named def_wissel_wa
% 0.55/0.99  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wa) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)))
% 0.55/0.99  Defined: wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3))
% 0.55/0.99  FOF formula (<kernel.Constant object at 0x2b88b331c488>, <kernel.DependentProduct object at 0x2b88b331cfc8>) of role type named typ_wissel_wb
% 0.55/1.00  Using role type
% 0.55/1.00  Declaring wissel_wb:(fofType->(fofType->(fofType->(fofType->fofType))))
% 0.55/1.00  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wb) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3)))) of role definition named def_wissel_wb
% 0.55/1.00  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->fofType))))) wissel_wb) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))))
% 0.55/1.00  Defined: wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3)))
% 0.55/1.00  FOF formula (<kernel.Constant object at 0x2b88b331cfc8>, <kernel.DependentProduct object at 0x2b88b331cd88>) of role type named typ_wissel
% 0.55/1.00  Using role type
% 0.55/1.00  Declaring wissel:(fofType->(fofType->(fofType->fofType)))
% 0.55/1.00  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) wissel) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2)))) of role definition named def_wissel
% 0.55/1.00  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) wissel) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))))
% 0.55/1.00  Defined: wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2)))
% 0.55/1.00  FOF formula (<kernel.Constant object at 0x2b88b331c878>, <kernel.DependentProduct object at 0x2b88b331c830>) of role type named typ_changef
% 0.55/1.00  Using role type
% 0.55/1.00  Declaring changef:(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 0.55/1.00  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) changef) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5)))))) of role definition named def_changef
% 0.55/1.00  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))) changef) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))))
% 0.55/1.00  Defined: changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5)))))
% 0.55/1.00  FOF formula (<kernel.Constant object at 0x2b88b331c248>, <kernel.DependentProduct object at 0x2b88b331cd88>) of role type named typ_r_ec
% 0.55/1.00  Using role type
% 0.55/1.00  Declaring r_ec:(Prop->(Prop->Prop))
% 0.55/1.00  FOF formula (((eq (Prop->(Prop->Prop))) r_ec) (fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1)))) of role definition named def_r_ec
% 0.55/1.00  A new definition: (((eq (Prop->(Prop->Prop))) r_ec) (fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))))
% 0.55/1.00  Defined: r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1)))
% 0.55/1.00  FOF formula (<kernel.Constant object at 0x2b88b331cd88>, <kernel.DependentProduct object at 0x2b88b331c830>) of role type named typ_esti
% 0.55/1.00  Using role type
% 0.55/1.00  Declaring esti:(fofType->(fofType->(fofType->Prop)))
% 0.55/1.00  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) esti) (fun (X0:fofType)=> in)) of role definition named def_esti
% 0.55/1.00  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) esti) (fun (X0:fofType)=> in))
% 0.55/1.00  Defined: esti:=(fun (X0:fofType)=> in)
% 0.55/1.00  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0))))) of role axiom named setof_p
% 0.55/1.00  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0)))))
% 0.55/1.00  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1)))))) of role axiom named estii
% 0.55/1.00  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1))))))
% 0.55/1.00  FOF formula (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2))))) of role axiom named estie
% 0.55/1.02  A new axiom: (forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2)))))
% 0.55/1.02  FOF formula (<kernel.Constant object at 0x2b88b331c830>, <kernel.DependentProduct object at 0x2b88b3323638>) of role type named typ_empty
% 0.55/1.02  Using role type
% 0.55/1.02  Declaring empty:(fofType->(fofType->Prop))
% 0.55/1.02  FOF formula (((eq (fofType->(fofType->Prop))) empty) (fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))))) of role definition named def_empty
% 0.55/1.02  A new definition: (((eq (fofType->(fofType->Prop))) empty) (fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))))
% 0.55/1.02  Defined: empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))))
% 0.55/1.02  FOF formula (<kernel.Constant object at 0x2b88b331c830>, <kernel.DependentProduct object at 0x2b88b3323440>) of role type named typ_nonempty
% 0.55/1.02  Using role type
% 0.55/1.02  Declaring nonempty:(fofType->(fofType->Prop))
% 0.55/1.02  FOF formula (((eq (fofType->(fofType->Prop))) nonempty) (fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))) of role definition named def_nonempty
% 0.55/1.02  A new definition: (((eq (fofType->(fofType->Prop))) nonempty) (fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))))
% 0.55/1.02  Defined: nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))
% 0.55/1.02  FOF formula (<kernel.Constant object at 0x2b88b331c830>, <kernel.DependentProduct object at 0x2b88b3323098>) of role type named typ_incl
% 0.55/1.02  Using role type
% 0.55/1.02  Declaring incl:(fofType->(fofType->(fofType->Prop)))
% 0.55/1.02  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) incl) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2)))))) of role definition named def_incl
% 0.55/1.02  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) incl) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))))
% 0.55/1.02  Defined: incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2)))))
% 0.55/1.02  FOF formula (<kernel.Constant object at 0x2b88b3323098>, <kernel.DependentProduct object at 0x2b88b3323638>) of role type named typ_st_disj
% 0.55/1.02  Using role type
% 0.55/1.02  Declaring st_disj:(fofType->(fofType->(fofType->Prop)))
% 0.55/1.02  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) st_disj) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2)))))) of role definition named def_st_disj
% 0.55/1.02  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) st_disj) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))))
% 0.55/1.02  Defined: st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2)))))
% 0.55/1.02  FOF formula (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2)))))))) of role axiom named isseti
% 0.55/1.02  A new axiom: (forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2))))))))
% 0.55/1.02  FOF formula (<kernel.Constant object at 0x2b88b33232d8>, <kernel.DependentProduct object at 0x2b88b3323710>) of role type named typ_nissetprop
% 0.55/1.02  Using role type
% 0.55/1.02  Declaring nissetprop:(fofType->(fofType->(fofType->(fofType->Prop))))
% 0.55/1.02  FOF formula (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) nissetprop) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2))))) of role definition named def_nissetprop
% 0.63/1.03  A new definition: (((eq (fofType->(fofType->(fofType->(fofType->Prop))))) nissetprop) (fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))))
% 0.63/1.03  Defined: nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2))))
% 0.63/1.03  FOF formula (<kernel.Constant object at 0x2b88b3323710>, <kernel.DependentProduct object at 0x2b88b3323098>) of role type named typ_unmore
% 0.63/1.03  Using role type
% 0.63/1.03  Declaring unmore:(fofType->(fofType->(fofType->fofType)))
% 0.63/1.03  FOF formula (((eq (fofType->(fofType->(fofType->fofType)))) unmore) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4)))))))) of role definition named def_unmore
% 0.63/1.03  A new definition: (((eq (fofType->(fofType->(fofType->fofType)))) unmore) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))))
% 0.63/1.03  Defined: unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4)))))))
% 0.63/1.03  FOF formula (<kernel.Constant object at 0x2b88b3323098>, <kernel.DependentProduct object at 0x2b88b3323908>) of role type named typ_ecelt
% 0.63/1.03  Using role type
% 0.63/1.03  Declaring ecelt:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.03  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2)))) of role definition named def_ecelt
% 0.63/1.03  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))))
% 0.63/1.03  Defined: ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2)))
% 0.63/1.03  FOF formula (<kernel.Constant object at 0x2b88b3323908>, <kernel.DependentProduct object at 0x2b88b33238c0>) of role type named typ_ecp
% 0.63/1.03  Using role type
% 0.63/1.03  Declaring ecp:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 0.63/1.03  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) ecp) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3)))) of role definition named def_ecp
% 0.63/1.03  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) ecp) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))))
% 0.63/1.03  Defined: ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3)))
% 0.63/1.03  FOF formula (<kernel.Constant object at 0x2b88b33238c0>, <kernel.DependentProduct object at 0x2b88b3323c20>) of role type named typ_anec
% 0.63/1.03  Using role type
% 0.63/1.03  Declaring anec:(fofType->((fofType->(fofType->Prop))->(fofType->Prop)))
% 0.63/1.03  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->Prop)))) anec) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2)))) of role definition named def_anec
% 0.63/1.03  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->Prop)))) anec) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))))
% 0.63/1.03  Defined: anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2)))
% 0.63/1.03  FOF formula (<kernel.Constant object at 0x2b88b3323c20>, <kernel.DependentProduct object at 0x2b88b3323908>) of role type named typ_ect
% 0.63/1.03  Using role type
% 0.63/1.03  Declaring ect:(fofType->((fofType->(fofType->Prop))->fofType))
% 0.63/1.03  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->fofType))) ect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1)))) of role definition named def_ect
% 0.63/1.03  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->fofType))) ect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))))
% 0.63/1.05  Defined: ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1)))
% 0.63/1.05  FOF formula (<kernel.Constant object at 0x2b88b3323908>, <kernel.DependentProduct object at 0x2b88b3323560>) of role type named typ_ectset
% 0.63/1.05  Using role type
% 0.63/1.05  Declaring ectset:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.05  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectset) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1)))) of role definition named def_ectset
% 0.63/1.05  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectset) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))))
% 0.63/1.05  Defined: ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1)))
% 0.63/1.05  FOF formula (<kernel.Constant object at 0x2b88b3323560>, <kernel.DependentProduct object at 0x2b88b33233b0>) of role type named typ_ectelt
% 0.63/1.05  Using role type
% 0.63/1.05  Declaring ectelt:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.05  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2)))) of role definition named def_ectelt
% 0.63/1.05  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ectelt) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))))
% 0.63/1.05  Defined: ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2)))
% 0.63/1.05  FOF formula (<kernel.Constant object at 0x2b88b33233b0>, <kernel.DependentProduct object at 0x2b88b3323b00>) of role type named typ_ecect
% 0.63/1.05  Using role type
% 0.63/1.05  Declaring ecect:(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 0.63/1.05  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1)))) of role definition named def_ecect
% 0.63/1.05  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->fofType)))) ecect) (fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))))
% 0.63/1.05  Defined: ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1)))
% 0.63/1.05  FOF formula (<kernel.Constant object at 0x2b88b3323b00>, <kernel.DependentProduct object at 0x2b88b3323320>) of role type named typ_fixfu
% 0.63/1.05  Using role type
% 0.63/1.05  Declaring fixfu:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 0.63/1.05  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5))))))))) of role definition named def_fixfu
% 0.63/1.05  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))))
% 0.63/1.05  Defined: fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5))))))))
% 0.63/1.05  FOF formula (<kernel.Constant object at 0x2b88b3323320>, <kernel.DependentProduct object at 0x2b88b3323998>) of role type named typ_d_10_prop1
% 0.63/1.05  Using role type
% 0.63/1.05  Declaring d_10_prop1:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))
% 0.63/1.05  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))) d_10_prop1) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5)))) of role definition named def_d_10_prop1
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))) d_10_prop1) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))))
% 0.63/1.07  Defined: d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5)))
% 0.63/1.07  FOF formula (<kernel.Constant object at 0x2b88b3323998>, <kernel.DependentProduct object at 0x2b88b3323bd8>) of role type named typ_prop2
% 0.63/1.07  Using role type
% 0.63/1.07  Declaring prop2:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))
% 0.63/1.07  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))) prop2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5)))) of role definition named def_prop2
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))) prop2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))))
% 0.63/1.07  Defined: prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5)))
% 0.63/1.07  FOF formula (<kernel.Constant object at 0x2b88b3323bd8>, <kernel.DependentProduct object at 0x2b88b3323e18>) of role type named typ_indeq
% 0.63/1.07  Using role type
% 0.63/1.07  Declaring indeq:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 0.63/1.07  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) indeq) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4)))) of role definition named def_indeq
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) indeq) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))))
% 0.63/1.07  Defined: indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4)))
% 0.63/1.07  FOF formula (<kernel.Constant object at 0x2b88b3323e18>, <kernel.DependentProduct object at 0x2b88b3323d88>) of role type named typ_fixfu2
% 0.63/1.07  Using role type
% 0.63/1.07  Declaring fixfu2:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 0.63/1.07  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7)))))))))))))) of role definition named def_fixfu2
% 0.63/1.07  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))) fixfu2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))))
% 0.63/1.07  Defined: fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7)))))))))))))
% 0.63/1.08  FOF formula (<kernel.Constant object at 0x2b88b3323d88>, <kernel.DependentProduct object at 0x2b88b33230e0>) of role type named typ_d_11_i
% 0.63/1.08  Using role type
% 0.63/1.08  Declaring d_11_i:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 0.63/1.08  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) d_11_i) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2))))) of role definition named def_d_11_i
% 0.63/1.08  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))) d_11_i) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))))
% 0.63/1.08  Defined: d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2))))
% 0.63/1.08  FOF formula (<kernel.Constant object at 0x2b88b33230e0>, <kernel.DependentProduct object at 0x2b88b33239e0>) of role type named typ_indeq2
% 0.63/1.08  Using role type
% 0.63/1.08  Declaring indeq2:(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))
% 0.63/1.08  FOF formula (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))) indeq2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4)))) of role definition named def_indeq2
% 0.63/1.08  A new definition: (((eq (fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))) indeq2) (fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))))
% 0.63/1.08  Defined: indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4)))
% 0.63/1.08  FOF formula (<kernel.Constant object at 0x2b88b33239e0>, <kernel.Single object at 0x2b88b33230e0>) of role type named typ_nat
% 0.63/1.08  Using role type
% 0.63/1.08  Declaring nat:fofType
% 0.63/1.08  FOF formula (((eq fofType) nat) ((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset))))) of role definition named def_nat
% 0.63/1.08  A new definition: (((eq fofType) nat) ((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))))
% 0.63/1.08  Defined: nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset))))
% 0.63/1.08  FOF formula (<kernel.Constant object at 0x2b88b33230e0>, <kernel.DependentProduct object at 0x2b88b3323b00>) of role type named typ_n_is
% 0.63/1.08  Using role type
% 0.63/1.08  Declaring n_is:(fofType->(fofType->Prop))
% 0.63/1.08  FOF formula (((eq (fofType->(fofType->Prop))) n_is) (e_is nat)) of role definition named def_n_is
% 0.63/1.08  A new definition: (((eq (fofType->(fofType->Prop))) n_is) (e_is nat))
% 0.63/1.08  Defined: n_is:=(e_is nat)
% 0.63/1.08  FOF formula (<kernel.Constant object at 0x2b88b3323998>, <kernel.DependentProduct object at 0x2b88b3323f38>) of role type named typ_nis
% 0.63/1.08  Using role type
% 0.63/1.08  Declaring nis:(fofType->(fofType->Prop))
% 0.63/1.08  FOF formula (((eq (fofType->(fofType->Prop))) nis) (fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1)))) of role definition named def_nis
% 0.63/1.08  A new definition: (((eq (fofType->(fofType->Prop))) nis) (fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))))
% 0.63/1.08  Defined: nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1)))
% 0.63/1.08  FOF formula (<kernel.Constant object at 0x2b88b3323f38>, <kernel.DependentProduct object at 0x2b88b3323b00>) of role type named typ_n_in
% 0.63/1.08  Using role type
% 0.63/1.08  Declaring n_in:(fofType->(fofType->Prop))
% 0.63/1.08  FOF formula (((eq (fofType->(fofType->Prop))) n_in) (esti nat)) of role definition named def_n_in
% 0.63/1.08  A new definition: (((eq (fofType->(fofType->Prop))) n_in) (esti nat))
% 0.69/1.09  Defined: n_in:=(esti nat)
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b3323d40>, <kernel.DependentProduct object at 0x2b88b3323b00>) of role type named typ_n_some
% 0.69/1.09  Using role type
% 0.69/1.09  Declaring n_some:((fofType->Prop)->Prop)
% 0.69/1.09  FOF formula (((eq ((fofType->Prop)->Prop)) n_some) (l_some nat)) of role definition named def_n_some
% 0.69/1.09  A new definition: (((eq ((fofType->Prop)->Prop)) n_some) (l_some nat))
% 0.69/1.09  Defined: n_some:=(l_some nat)
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b3323f80>, <kernel.DependentProduct object at 0x2b88b3323b00>) of role type named typ_n_all
% 0.69/1.09  Using role type
% 0.69/1.09  Declaring n_all:((fofType->Prop)->Prop)
% 0.69/1.09  FOF formula (((eq ((fofType->Prop)->Prop)) n_all) (all nat)) of role definition named def_n_all
% 0.69/1.09  A new definition: (((eq ((fofType->Prop)->Prop)) n_all) (all nat))
% 0.69/1.09  Defined: n_all:=(all nat)
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b3323d40>, <kernel.DependentProduct object at 0x2b88b3323e18>) of role type named typ_n_one
% 0.69/1.09  Using role type
% 0.69/1.09  Declaring n_one:((fofType->Prop)->Prop)
% 0.69/1.09  FOF formula (((eq ((fofType->Prop)->Prop)) n_one) (one nat)) of role definition named def_n_one
% 0.69/1.09  A new definition: (((eq ((fofType->Prop)->Prop)) n_one) (one nat))
% 0.69/1.09  Defined: n_one:=(one nat)
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b33238c0>, <kernel.Single object at 0x2b88b3323d40>) of role type named typ_n_1
% 0.69/1.09  Using role type
% 0.69/1.09  Declaring n_1:fofType
% 0.69/1.09  FOF formula (((eq fofType) n_1) (ordsucc emptyset)) of role definition named def_n_1
% 0.69/1.09  A new definition: (((eq fofType) n_1) (ordsucc emptyset))
% 0.69/1.09  Defined: n_1:=(ordsucc emptyset)
% 0.69/1.09  FOF formula ((is_of n_1) (fun (X0:fofType)=> ((in X0) nat))) of role axiom named n_1_p
% 0.69/1.09  A new axiom: ((is_of n_1) (fun (X0:fofType)=> ((in X0) nat)))
% 0.69/1.09  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat))))) of role axiom named suc_p
% 0.69/1.09  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat)))))
% 0.69/1.09  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1))) of role axiom named n_ax3
% 0.69/1.09  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1)))
% 0.69/1.09  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1)))))) of role axiom named n_ax4
% 0.69/1.09  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1))))))
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b3323d40>, <kernel.DependentProduct object at 0x2b88b3328290>) of role type named typ_cond1
% 0.69/1.09  Using role type
% 0.69/1.09  Declaring cond1:(fofType->Prop)
% 0.69/1.09  FOF formula (((eq (fofType->Prop)) cond1) (n_in n_1)) of role definition named def_cond1
% 0.69/1.09  A new definition: (((eq (fofType->Prop)) cond1) (n_in n_1))
% 0.69/1.09  Defined: cond1:=(n_in n_1)
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b3328998>, <kernel.DependentProduct object at 0x2b88b33284d0>) of role type named typ_cond2
% 0.69/1.09  Using role type
% 0.69/1.09  Declaring cond2:(fofType->Prop)
% 0.69/1.09  FOF formula (((eq (fofType->Prop)) cond2) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0)))))) of role definition named def_cond2
% 0.69/1.09  A new definition: (((eq (fofType->Prop)) cond2) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))))
% 0.69/1.09  Defined: cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0)))))
% 0.69/1.09  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0))))))) of role axiom named n_ax5
% 0.69/1.09  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0)))))))
% 0.69/1.09  FOF formula (<kernel.Constant object at 0x2b88b33282d8>, <kernel.DependentProduct object at 0x2b88b3328878>) of role type named typ_i1_s
% 0.69/1.11  Using role type
% 0.69/1.11  Declaring i1_s:((fofType->Prop)->fofType)
% 0.69/1.11  FOF formula (((eq ((fofType->Prop)->fofType)) i1_s) (d_Sep nat)) of role definition named def_i1_s
% 0.69/1.11  A new definition: (((eq ((fofType->Prop)->fofType)) i1_s) (d_Sep nat))
% 0.69/1.11  Defined: i1_s:=(d_Sep nat)
% 0.69/1.11  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1))))))) of role axiom named satz1
% 0.69/1.11  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1)))))))
% 0.69/1.11  FOF formula (<kernel.Constant object at 0x2b88b06ae2d8>, <kernel.DependentProduct object at 0x2b88b06ae4d0>) of role type named typ_d_22_prop1
% 0.69/1.11  Using role type
% 0.69/1.11  Declaring d_22_prop1:(fofType->Prop)
% 0.69/1.11  FOF formula (((eq (fofType->Prop)) d_22_prop1) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0))) of role definition named def_d_22_prop1
% 0.69/1.11  A new definition: (((eq (fofType->Prop)) d_22_prop1) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 0.69/1.11  Defined: d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0))
% 0.69/1.11  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0))) of role axiom named satz2
% 0.69/1.11  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 0.69/1.11  FOF formula (<kernel.Constant object at 0x2b88afff7fc8>, <kernel.DependentProduct object at 0x2b88b06aecf8>) of role type named typ_d_23_prop1
% 0.69/1.11  Using role type
% 0.69/1.11  Declaring d_23_prop1:(fofType->Prop)
% 0.69/1.11  FOF formula (((eq (fofType->Prop)) d_23_prop1) (fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))) of role definition named def_d_23_prop1
% 0.69/1.11  A new definition: (((eq (fofType->Prop)) d_23_prop1) (fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 0.69/1.11  Defined: d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))
% 0.69/1.11  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))) of role axiom named satz3
% 0.69/1.11  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 0.69/1.11  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))) of role axiom named satz3a
% 0.69/1.11  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 0.69/1.11  FOF formula (<kernel.Constant object at 0x2b88afc31ab8>, <kernel.DependentProduct object at 0x2b88b06ae2d8>) of role type named typ_d_24_prop1
% 0.69/1.11  Using role type
% 0.69/1.11  Declaring d_24_prop1:(fofType->Prop)
% 0.69/1.11  FOF formula (((eq (fofType->Prop)) d_24_prop1) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1))))))) of role definition named def_d_24_prop1
% 0.69/1.11  A new definition: (((eq (fofType->Prop)) d_24_prop1) (fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))))
% 0.69/1.11  Defined: d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1))))))
% 0.69/1.11  FOF formula (<kernel.Constant object at 0x2b88b0016b90>, <kernel.DependentProduct object at 0x2b88b06aeb90>) of role type named typ_d_24_prop2
% 0.69/1.11  Using role type
% 0.69/1.11  Declaring d_24_prop2:(fofType->(fofType->Prop))
% 0.69/1.11  FOF formula (((eq (fofType->(fofType->Prop))) d_24_prop2) (fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1)))) of role definition named def_d_24_prop2
% 0.69/1.11  A new definition: (((eq (fofType->(fofType->Prop))) d_24_prop2) (fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))))
% 0.69/1.11  Defined: d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1)))
% 0.69/1.13  FOF formula (<kernel.Constant object at 0x2b88afc38998>, <kernel.DependentProduct object at 0x2b88b06af5f0>) of role type named typ_prop3
% 0.69/1.13  Using role type
% 0.69/1.13  Declaring prop3:(fofType->(fofType->(fofType->Prop)))
% 0.69/1.13  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) prop3) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2)))) of role definition named def_prop3
% 0.69/1.13  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) prop3) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))))
% 0.69/1.13  Defined: prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2)))
% 0.69/1.13  FOF formula (<kernel.Constant object at 0x2b88b0688f38>, <kernel.DependentProduct object at 0x2b88b06aeb90>) of role type named typ_prop4
% 0.69/1.13  Using role type
% 0.69/1.13  Declaring prop4:(fofType->Prop)
% 0.69/1.13  FOF formula (((eq (fofType->Prop)) prop4) (fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))) of role definition named def_prop4
% 0.69/1.13  A new definition: (((eq (fofType->Prop)) prop4) (fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))))
% 0.69/1.13  Defined: prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))
% 0.69/1.13  FOF formula (<kernel.Constant object at 0x2b88b0688b48>, <kernel.DependentProduct object at 0x2b88b06ae488>) of role type named typ_d_24_g
% 0.69/1.13  Using role type
% 0.69/1.13  Declaring d_24_g:(fofType->fofType)
% 0.69/1.13  FOF formula (((eq (fofType->fofType)) d_24_g) (fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1)))))) of role definition named def_d_24_g
% 0.69/1.13  A new definition: (((eq (fofType->fofType)) d_24_g) (fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))))
% 0.69/1.13  Defined: d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1)))))
% 0.69/1.13  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2)))))))))) of role axiom named satz4
% 0.69/1.13  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2))))))))))
% 0.69/1.13  FOF formula (<kernel.Constant object at 0x2b88b06af7a0>, <kernel.DependentProduct object at 0x2b88b06ae248>) of role type named typ_plus
% 0.69/1.13  Using role type
% 0.69/1.13  Declaring plus:(fofType->fofType)
% 0.69/1.13  FOF formula (((eq (fofType->fofType)) plus) (fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))) of role definition named def_plus
% 0.69/1.13  A new definition: (((eq (fofType->fofType)) plus) (fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))))
% 0.69/1.13  Defined: plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0)))
% 0.69/1.13  FOF formula (<kernel.Constant object at 0x2b88b06af5f0>, <kernel.DependentProduct object at 0x2b88b06ae4d0>) of role type named typ_n_pl
% 0.69/1.13  Using role type
% 0.69/1.13  Declaring n_pl:(fofType->(fofType->fofType))
% 0.69/1.13  FOF formula (((eq (fofType->(fofType->fofType))) n_pl) (fun (X0:fofType)=> (ap (plus X0)))) of role definition named def_n_pl
% 0.69/1.13  A new definition: (((eq (fofType->(fofType->fofType))) n_pl) (fun (X0:fofType)=> (ap (plus X0))))
% 0.69/1.13  Defined: n_pl:=(fun (X0:fofType)=> (ap (plus X0)))
% 0.69/1.13  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0)))) of role axiom named satz4a
% 0.69/1.13  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0))))
% 0.69/1.13  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1))))))) of role axiom named satz4b
% 0.69/1.13  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1)))))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0)))) of role axiom named satz4c
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1))))))) of role axiom named satz4d
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1)))))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1)))) of role axiom named satz4e
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1))))))) of role axiom named satz4f
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1)))))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0)))) of role axiom named satz4g
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1)))))) of role axiom named satz4h
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1))))))
% 0.69/1.15  FOF formula (<kernel.Constant object at 0x2b88aff915a8>, <kernel.DependentProduct object at 0x2b88aff91f80>) of role type named typ_d_25_prop1
% 0.69/1.15  Using role type
% 0.69/1.15  Declaring d_25_prop1:(fofType->(fofType->(fofType->Prop)))
% 0.69/1.15  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) d_25_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))) of role definition named def_d_25_prop1
% 0.69/1.15  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) d_25_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))
% 0.69/1.15  Defined: d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))
% 0.69/1.15  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))))))) of role axiom named satz5
% 0.69/1.15  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))))))
% 0.69/1.15  FOF formula (<kernel.Constant object at 0x2b88aff91ef0>, <kernel.DependentProduct object at 0x2b88aff91d88>) of role type named typ_d_26_prop1
% 0.69/1.15  Using role type
% 0.69/1.15  Declaring d_26_prop1:(fofType->(fofType->Prop))
% 0.69/1.15  FOF formula (((eq (fofType->(fofType->Prop))) d_26_prop1) (fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))) of role definition named def_d_26_prop1
% 0.69/1.15  A new definition: (((eq (fofType->(fofType->Prop))) d_26_prop1) (fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))
% 0.69/1.15  Defined: d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))
% 0.77/1.17  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))))) of role axiom named satz6
% 0.77/1.17  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))))
% 0.77/1.17  FOF formula (<kernel.Constant object at 0x2b88aff91638>, <kernel.DependentProduct object at 0x2b88aff91320>) of role type named typ_d_27_prop1
% 0.77/1.17  Using role type
% 0.77/1.17  Declaring d_27_prop1:(fofType->(fofType->Prop))
% 0.77/1.17  FOF formula (((eq (fofType->(fofType->Prop))) d_27_prop1) (fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))) of role definition named def_d_27_prop1
% 0.77/1.17  A new definition: (((eq (fofType->(fofType->Prop))) d_27_prop1) (fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))
% 0.77/1.17  Defined: d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))
% 0.77/1.17  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))))) of role axiom named satz7
% 0.77/1.17  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))))
% 0.77/1.17  FOF formula (<kernel.Constant object at 0x2b88aff911b8>, <kernel.DependentProduct object at 0x2b88aff91f38>) of role type named typ_d_28_prop1
% 0.77/1.17  Using role type
% 0.77/1.17  Declaring d_28_prop1:(fofType->(fofType->(fofType->Prop)))
% 0.77/1.17  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) d_28_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2)))) of role definition named def_d_28_prop1
% 0.77/1.17  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) d_28_prop1) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))))
% 0.77/1.17  Defined: d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2)))
% 0.77/1.17  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2))))))))) of role axiom named satz8
% 0.77/1.17  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2)))))))))
% 0.77/1.17  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2)))))))) of role axiom named satz8a
% 0.77/1.17  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2))))))))
% 0.77/1.17  FOF formula (<kernel.Constant object at 0x2b88aff91d88>, <kernel.DependentProduct object at 0x2b88aff91bd8>) of role type named typ_diffprop
% 0.77/1.17  Using role type
% 0.77/1.17  Declaring diffprop:(fofType->(fofType->(fofType->Prop)))
% 0.77/1.17  FOF formula (((eq (fofType->(fofType->(fofType->Prop)))) diffprop) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))) of role definition named def_diffprop
% 0.77/1.17  A new definition: (((eq (fofType->(fofType->(fofType->Prop)))) diffprop) (fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))
% 0.77/1.17  Defined: diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))
% 0.77/1.17  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))))))) of role axiom named satz8b
% 0.79/1.19  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))))))
% 0.79/1.19  FOF formula (<kernel.Constant object at 0x2b88aff91320>, <kernel.DependentProduct object at 0x2b88aff911b8>) of role type named typ_d_29_ii
% 0.79/1.19  Using role type
% 0.79/1.19  Declaring d_29_ii:(fofType->(fofType->Prop))
% 0.79/1.19  FOF formula (((eq (fofType->(fofType->Prop))) d_29_ii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1)))) of role definition named def_d_29_ii
% 0.79/1.19  A new definition: (((eq (fofType->(fofType->Prop))) d_29_ii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))))
% 0.79/1.19  Defined: d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1)))
% 0.79/1.19  FOF formula (<kernel.Constant object at 0x2b88aff911b8>, <kernel.DependentProduct object at 0x2b88aff91bd8>) of role type named typ_iii
% 0.79/1.19  Using role type
% 0.79/1.19  Declaring iii:(fofType->(fofType->Prop))
% 0.79/1.19  FOF formula (((eq (fofType->(fofType->Prop))) iii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0)))) of role definition named def_iii
% 0.79/1.19  A new definition: (((eq (fofType->(fofType->Prop))) iii) (fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))))
% 0.79/1.19  Defined: iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0)))
% 0.79/1.19  FOF formula (<kernel.Constant object at 0x2b88aff91bd8>, <kernel.DependentProduct object at 0x2b88aff91f80>) of role type named typ_d_29_prop1
% 0.79/1.19  Using role type
% 0.79/1.19  Declaring d_29_prop1:(fofType->(fofType->Prop))
% 0.79/1.19  FOF formula (((eq (fofType->(fofType->Prop))) d_29_prop1) (fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))) of role definition named def_d_29_prop1
% 0.79/1.19  A new definition: (((eq (fofType->(fofType->Prop))) d_29_prop1) (fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))
% 0.79/1.19  Defined: d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))
% 0.79/1.19  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2))))))))) of role axiom named satz9
% 0.79/1.19  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2)))))))))
% 0.79/1.19  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))) of role axiom named satz9a
% 0.79/1.19  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 0.79/1.19  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))) of role axiom named satz9b
% 0.79/1.19  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 0.79/1.19  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))) of role axiom named satz10
% 0.79/1.19  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 0.79/1.19  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))) of role axiom named satz10a
% 0.79/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 0.79/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))) of role axiom named satz10b
% 0.79/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 0.79/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0)))))) of role axiom named satz11
% 0.79/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0))))))
% 0.79/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0)))))) of role axiom named satz12
% 0.79/1.20  A new axiom: ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0))))))
% 0.79/1.20  FOF formula (<kernel.Constant object at 0x2b88aff91560>, <kernel.DependentProduct object at 0x2b88b06b4050>) of role type named typ_moreis
% 0.79/1.20  Using role type
% 0.79/1.20  Declaring moreis:(fofType->(fofType->Prop))
% 0.79/1.20  FOF formula (((eq (fofType->(fofType->Prop))) moreis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1)))) of role definition named def_moreis
% 0.79/1.20  A new definition: (((eq (fofType->(fofType->Prop))) moreis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))))
% 0.79/1.20  Defined: moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1)))
% 0.79/1.20  FOF formula (<kernel.Constant object at 0x2b88aff91c20>, <kernel.DependentProduct object at 0x2b88b06b4128>) of role type named typ_lessis
% 0.79/1.20  Using role type
% 0.79/1.20  Declaring lessis:(fofType->(fofType->Prop))
% 0.79/1.20  FOF formula (((eq (fofType->(fofType->Prop))) lessis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1)))) of role definition named def_lessis
% 0.79/1.20  A new definition: (((eq (fofType->(fofType->Prop))) lessis) (fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))))
% 0.79/1.20  Defined: lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1)))
% 0.79/1.20  FOF formula ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0)))))) of role conjecture named satz13
% 0.79/1.20  Conjecture to prove = ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0)))))):Prop
% 0.79/1.20  We need to prove ['((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0))))))']
% 0.79/1.20  Parameter fofType:Type.
% 0.79/1.20  Definition is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)):(fofType->((fofType->Prop)->Prop)).
% 0.79/1.20  Definition all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))):((fofType->Prop)->((fofType->Prop)->Prop)).
% 0.79/1.20  Parameter eps:((fofType->Prop)->fofType).
% 0.79/1.20  Parameter in:(fofType->(fofType->Prop)).
% 0.79/1.20  Definition d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))):(fofType->(fofType->Prop)).
% 0.79/1.20  Axiom set_ext:(forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1)))).
% 0.79/1.20  Axiom k_In_ind:(forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1)))).
% 0.79/1.21  Parameter emptyset:fofType.
% 0.79/1.21  Axiom k_EmptyAx:(((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False).
% 0.79/1.21  Parameter union:(fofType->fofType).
% 0.79/1.21  Axiom k_UnionEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0)))))).
% 0.79/1.21  Parameter power:(fofType->fofType).
% 0.79/1.21  Axiom k_PowerEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0))).
% 0.79/1.21  Parameter repl:(fofType->((fofType->fofType)->fofType)).
% 0.79/1.21  Axiom k_ReplEq:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3))))))).
% 0.79/1.21  Definition d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))):(fofType->Prop).
% 0.79/1.21  Definition d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))):(fofType->Prop).
% 0.79/1.21  Definition d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))):(fofType->Prop).
% 0.79/1.21  Definition d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))):(fofType->Prop).
% 0.79/1.21  Parameter univof:(fofType->fofType).
% 0.79/1.21  Axiom k_UnivOf_In:(forall (X0:fofType), ((in X0) (univof X0))).
% 0.79/1.21  Axiom k_UnivOf_ZF_closed:(forall (X0:fofType), (d_ZF_closed (univof X0))).
% 0.79/1.21  Definition if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))):(Prop->(fofType->(fofType->fofType))).
% 0.79/1.21  Axiom if_i_correct:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2)))).
% 0.79/1.21  Axiom if_i_0:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2))).
% 0.79/1.21  Axiom if_i_1:(forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1))).
% 0.79/1.21  Axiom if_i_or:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2))).
% 0.79/1.21  Definition nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)):(fofType->(fofType->Prop)).
% 0.79/1.21  Axiom k_PowerE:(forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0))).
% 0.79/1.21  Axiom k_PowerI:(forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0)))).
% 0.79/1.21  Axiom k_Self_In_Power:(forall (X0:fofType), ((in X0) (power X0))).
% 0.79/1.21  Definition d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))):(fofType->(fofType->fofType)).
% 0.79/1.21  Definition d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0)):(fofType->fofType).
% 0.79/1.21  Definition binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))):(fofType->(fofType->fofType)).
% 0.79/1.21  Definition famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))):(fofType->((fofType->fofType)->fofType)).
% 0.79/1.21  Definition d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)):(fofType->((fofType->Prop)->fofType)).
% 0.79/1.21  Axiom k_SepI:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1))))).
% 0.79/1.21  Axiom k_SepE1:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0))).
% 0.79/1.21  Axiom k_SepE2:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2))).
% 0.79/1.21  Definition d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))):(fofType->((fofType->Prop)->((fofType->fofType)->fofType))).
% 0.79/1.21  Definition setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))):(fofType->(fofType->fofType)).
% 0.79/1.21  Definition d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))):((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop))).
% 0.79/1.21  Definition d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))):((fofType->((fofType->fofType)->fofType))->(fofType->fofType)).
% 0.79/1.21  Definition ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0))):(fofType->fofType).
% 0.79/1.21  Axiom neq_ordsucc_0:(forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset))).
% 0.79/1.21  Axiom ordsucc_inj:(forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1))).
% 0.79/1.21  Axiom k_In_0_1:((in emptyset) (ordsucc emptyset)).
% 0.79/1.21  Definition nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))):(fofType->Prop).
% 0.79/1.21  Axiom nat_ordsucc:(forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0)))).
% 0.79/1.21  Axiom nat_1:(nat_p (ordsucc emptyset)).
% 0.79/1.21  Axiom nat_ind:(forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1)))))).
% 0.79/1.21  Axiom nat_inv:(forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1)))))))).
% 0.79/1.21  Definition omega:=((d_Sep (univof emptyset)) nat_p):fofType.
% 0.79/1.21  Axiom omega_nat_p:(forall (X0:fofType), (((in X0) omega)->(nat_p X0))).
% 0.79/1.21  Axiom nat_p_omega:(forall (X0:fofType), ((nat_p X0)->((in X0) omega))).
% 0.79/1.21  Definition d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))):(fofType->fofType).
% 0.79/1.21  Definition d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1)):(fofType->fofType).
% 0.79/1.21  Definition d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))):(fofType->fofType).
% 0.79/1.21  Definition pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))):(fofType->(fofType->fofType)).
% 0.79/1.21  Definition proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)):(fofType->fofType).
% 0.79/1.21  Definition _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)):(fofType->fofType).
% 0.79/1.21  Axiom proj0_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0)).
% 0.79/1.21  Axiom proj1_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1)).
% 0.79/1.21  Definition d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))):(fofType->((fofType->fofType)->fofType)).
% 0.79/1.21  Axiom pair_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1)))))).
% 0.79/1.21  Axiom k_Sigma_eta_proj0_proj1:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))).
% 0.79/1.21  Axiom proj_Sigma_eta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2))).
% 0.79/1.21  Axiom proj0_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0))).
% 0.79/1.21  Axiom proj1_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))).
% 0.79/1.21  Definition setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))):(fofType->(fofType->fofType)).
% 0.79/1.21  Definition ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)):(fofType->(fofType->fofType)).
% 0.79/1.21  Axiom beta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2)))).
% 0.79/1.21  Definition pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)):(fofType->Prop).
% 0.79/1.21  Definition d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))):(fofType->((fofType->fofType)->fofType)).
% 0.79/1.21  Axiom lam_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1)))).
% 0.79/1.21  Axiom ap_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))).
% 0.79/1.21  Axiom k_Pi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3)))))).
% 0.79/1.21  Axiom xi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2)))).
% 0.79/1.21  Axiom k_If_In_01:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset))))).
% 0.79/1.21  Axiom k_If_In_then_E:(forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2)))).
% 0.79/1.21  Definition imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1)):(Prop->(Prop->Prop)).
% 0.79/1.21  Definition d_not:=(fun (X0:Prop)=> ((imp X0) False)):(Prop->Prop).
% 0.79/1.21  Definition wel:=(fun (X0:Prop)=> (d_not (d_not X0))):(Prop->Prop).
% 0.79/1.21  Axiom l_et:(forall (X0:Prop), ((wel X0)->X0)).
% 0.79/1.21  Definition obvious:=((imp False) False):Prop.
% 0.79/1.21  Definition l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))):(Prop->(Prop->Prop)).
% 0.79/1.21  Definition d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))):(Prop->(Prop->Prop)).
% 0.79/1.21  Definition l_or:=(fun (X0:Prop)=> (imp (d_not X0))):(Prop->(Prop->Prop)).
% 0.79/1.21  Definition orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))):(Prop->(Prop->Prop)).
% 0.79/1.21  Definition l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))):(Prop->(Prop->Prop)).
% 0.79/1.21  Definition all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))):(fofType->((fofType->Prop)->Prop)).
% 0.79/1.21  Definition non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))):(fofType->((fofType->Prop)->(fofType->Prop))).
% 0.79/1.21  Definition l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))):(fofType->((fofType->Prop)->Prop)).
% 0.79/1.21  Definition or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))):(Prop->(Prop->(Prop->Prop))).
% 0.79/1.21  Definition and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))):(Prop->(Prop->(Prop->Prop))).
% 0.79/1.21  Definition ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))):(Prop->(Prop->(Prop->Prop))).
% 0.79/1.21  Definition orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))):(Prop->(Prop->(Prop->Prop))).
% 0.79/1.21  Definition e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)):(fofType->(fofType->(fofType->Prop))).
% 0.79/1.21  Axiom refis:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1)))).
% 0.79/1.21  Axiom e_isp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3)))))))).
% 0.79/1.21  Definition amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))):(fofType->((fofType->Prop)->Prop)).
% 0.79/1.21  Definition one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))):(fofType->((fofType->Prop)->Prop)).
% 0.79/1.21  Definition ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))):(fofType->((fofType->Prop)->fofType)).
% 0.79/1.21  Axiom ind_p:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0))))).
% 0.79/1.21  Axiom oneax:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1)))).
% 0.79/1.21  Definition injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))):(fofType->(fofType->(fofType->Prop))).
% 0.79/1.21  Definition image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->Prop)))).
% 0.79/1.21  Definition tofs:=(fun (X0:fofType) (X1:fofType)=> ap):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.79/1.21  Definition soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.79/1.21  Definition inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))):(fofType->(fofType->(fofType->fofType))).
% 0.79/1.21  Definition surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.79/1.21  Definition bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.79/1.21  Definition invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))):(fofType->(fofType->(fofType->fofType))).
% 0.79/1.21  Definition inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType))))).
% 0.79/1.21  Axiom e_fisi:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3))))))).
% 0.79/1.21  Definition e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2):(fofType->((fofType->Prop)->(fofType->fofType))).
% 0.79/1.21  Axiom e_in_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))).
% 0.79/1.21  Axiom e_inp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2))))).
% 0.79/1.21  Axiom otax1:(forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))).
% 0.79/1.21  Axiom otax2:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2))))).
% 0.79/1.21  Definition out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))):(fofType->((fofType->Prop)->(fofType->fofType))).
% 0.79/1.21  Definition d_pair:=(fun (X0:fofType) (X1:fofType)=> pair):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.79/1.21  Axiom e_pair_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1))))))))).
% 0.79/1.21  Definition first:=(fun (X0:fofType) (X1:fofType)=> proj0):(fofType->(fofType->(fofType->fofType))).
% 0.79/1.21  Axiom first_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0)))))).
% 0.83/1.22  Definition second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1):(fofType->(fofType->(fofType->fofType))).
% 0.83/1.22  Axiom second_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1)))))).
% 0.83/1.22  Axiom pairis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2)))).
% 0.83/1.22  Axiom firstis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2)))))).
% 0.83/1.22  Axiom secondis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3)))))).
% 0.83/1.22  Definition prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))):(Prop->(fofType->(fofType->(fofType->(fofType->Prop))))).
% 0.83/1.22  Definition ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))):(Prop->(fofType->(fofType->(fofType->fofType)))).
% 0.83/1.22  Definition wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.83/1.22  Definition wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))):(fofType->(fofType->(fofType->(fofType->fofType)))).
% 0.83/1.22  Definition wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))):(fofType->(fofType->(fofType->fofType))).
% 0.83/1.22  Definition changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType))))).
% 0.83/1.22  Definition r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))):(Prop->(Prop->Prop)).
% 0.83/1.22  Definition esti:=(fun (X0:fofType)=> in):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Axiom setof_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0))))).
% 0.83/1.22  Axiom estii:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1)))))).
% 0.83/1.22  Axiom estie:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2))))).
% 0.83/1.22  Definition empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Definition st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Axiom isseti:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2)))))))).
% 0.83/1.22  Definition nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))):(fofType->(fofType->(fofType->(fofType->Prop)))).
% 0.83/1.22  Definition unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))):(fofType->(fofType->(fofType->fofType))).
% 0.83/1.22  Definition ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.83/1.22  Definition ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))).
% 0.83/1.22  Definition anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->Prop))).
% 0.83/1.22  Definition ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->fofType)).
% 0.83/1.22  Definition ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.83/1.22  Definition ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.83/1.22  Definition ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType))).
% 0.83/1.22  Definition fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))).
% 0.83/1.22  Definition d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop))))))).
% 0.83/1.22  Definition prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop)))))).
% 0.83/1.22  Definition indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType))))).
% 0.83/1.22  Definition fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop)))).
% 0.83/1.22  Definition d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType))))).
% 0.83/1.22  Definition indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType)))))).
% 0.83/1.22  Definition nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))):fofType.
% 0.83/1.22  Definition n_is:=(e_is nat):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition n_in:=(esti nat):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition n_some:=(l_some nat):((fofType->Prop)->Prop).
% 0.83/1.22  Definition n_all:=(all nat):((fofType->Prop)->Prop).
% 0.83/1.22  Definition n_one:=(one nat):((fofType->Prop)->Prop).
% 0.83/1.22  Definition n_1:=(ordsucc emptyset):fofType.
% 0.83/1.22  Axiom n_1_p:((is_of n_1) (fun (X0:fofType)=> ((in X0) nat))).
% 0.83/1.22  Axiom suc_p:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat))))).
% 0.83/1.22  Axiom n_ax3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1))).
% 0.83/1.22  Axiom n_ax4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1)))))).
% 0.83/1.22  Definition cond1:=(n_in n_1):(fofType->Prop).
% 0.83/1.22  Definition cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))):(fofType->Prop).
% 0.83/1.22  Axiom n_ax5:((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0))))))).
% 0.83/1.22  Definition i1_s:=(d_Sep nat):((fofType->Prop)->fofType).
% 0.83/1.22  Axiom satz1:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1))))))).
% 0.83/1.22  Definition d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0)):(fofType->Prop).
% 0.83/1.22  Axiom satz2:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0))).
% 0.83/1.22  Definition d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))):(fofType->Prop).
% 0.83/1.22  Axiom satz3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))).
% 0.83/1.22  Axiom satz3a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1))))))).
% 0.83/1.22  Definition d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))):(fofType->Prop).
% 0.83/1.22  Definition d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Definition prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->Prop).
% 0.83/1.22  Definition d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))):(fofType->fofType).
% 0.83/1.22  Axiom satz4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2)))))))))).
% 0.83/1.22  Definition plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->fofType).
% 0.83/1.22  Definition n_pl:=(fun (X0:fofType)=> (ap (plus X0))):(fofType->(fofType->fofType)).
% 0.83/1.22  Axiom satz4a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0)))).
% 0.83/1.22  Axiom satz4b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1))))))).
% 0.83/1.22  Axiom satz4c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0)))).
% 0.83/1.22  Axiom satz4d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1))))))).
% 0.83/1.22  Axiom satz4e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1)))).
% 0.83/1.22  Axiom satz4f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1))))))).
% 0.83/1.22  Axiom satz4g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0)))).
% 0.83/1.22  Axiom satz4h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1)))))).
% 0.83/1.22  Definition d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Axiom satz5:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2))))))))).
% 0.83/1.22  Definition d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))):(fofType->(fofType->Prop)).
% 0.83/1.22  Axiom satz6:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0)))))).
% 0.83/1.22  Definition d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))):(fofType->(fofType->Prop)).
% 0.83/1.22  Axiom satz7:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1)))))).
% 0.83/1.22  Definition d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Axiom satz8:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2))))))))).
% 0.83/1.22  Axiom satz8a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2)))))))).
% 0.83/1.22  Definition diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))):(fofType->(fofType->(fofType->Prop))).
% 0.83/1.22  Axiom satz8b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2)))))))).
% 0.83/1.22  Definition d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))):(fofType->(fofType->Prop)).
% 0.83/1.22  Definition d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))):(fofType->(fofType->Prop)).
% 0.83/1.22  Axiom satz9:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2))))))))).
% 0.83/1.22  Axiom satz9a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))).
% 0.83/1.22  Axiom satz9b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0))))))).
% 0.83/1.22  Axiom satz10:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))).
% 0.83/1.22  Axiom satz10a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))).
% 0.83/1.22  Axiom satz10b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1)))))).
% 0.83/1.22  Axiom satz11:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0)))))).
% 0.83/1.22  Axiom satz12:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0)))))).
% 13.46/13.86  Definition moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop)).
% 13.46/13.86  Definition lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop)).
% 13.46/13.86  Trying to prove ((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0))))))
% 13.46/13.86  --- does not match type in application fofType vs Prop in (((e_in X0) X1) ((all_of (fun X0:fofType=> ((in X0) nat))) (fun X0:fofType=> ((all_of (fun X1:fofType=> ((in X1) nat))) (fun X1:fofType=> (forall x:((moreis X0) X1), ((lessis X1) X0)))))))
% 13.46/13.86  ---context
% 13.46/13.86  False:Prop
% 13.46/13.86  False_rect:(forall (P:Type), (False->P))
% 13.46/13.86  I:True
% 13.46/13.86  NNPP:=(fun (P:Prop) (H:(not (not P)))=> ((fun (C:((or P) (not P)))=> ((((((or_ind P) (not P)) P) (fun (H0:P)=> H0)) (fun (N:(not P))=> ((False_rect P) (H N)))) C)) (classic P))):(forall (P:Prop), ((not (not P))->P))
% 13.46/13.86  True:Prop
% 13.46/13.86  _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.86  all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.86  all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))):((fofType->Prop)->((fofType->Prop)->Prop))
% 13.46/13.86  amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.86  and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.86  and:(Prop->(Prop->Prop))
% 13.46/13.86  and_comm_i:=(fun (A:Prop) (B:Prop) (H:((and A) B))=> ((((conj B) A) (((proj2 A) B) H)) (((proj1 A) B) H))):(forall (A:Prop) (B:Prop), (((and A) B)->((and B) A)))
% 13.46/13.86  and_rect:=(fun (A:Prop) (B:Prop) (P:Type) (X:(A->(B->P))) (H:((and A) B))=> ((X (((proj1 A) B) H)) (((proj2 A) B) H))):(forall (A:Prop) (B:Prop) (P:Type), ((A->(B->P))->(((and A) B)->P)))
% 13.46/13.86  anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->Prop)))
% 13.46/13.86  ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)):(fofType->(fofType->fofType))
% 13.46/13.86  ap_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))
% 13.46/13.86  beta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2))))
% 13.46/13.86  bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))):(fofType->(fofType->fofType))
% 13.46/13.86  changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.86  choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) (fun (y:B)=> ((R x) y)))))=> (((fun (P:Prop) (x0:(forall (x0:(A->(B->Prop))), (((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))->P)))=> (((((ex_ind (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x0:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x0) y)))))))) P) x0) ((((relational_choice A) B) R) x))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x0:(A->(B->Prop))) (x1:((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))))=> (((fun (P:Type) (x2:(((((subrelation A) B) x0) R)->((forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))->P)))=> (((((and_rect ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))) P) x2) x1)) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x2:((((subrelation A) B) x0) R)) (x3:(forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))=> (((fun (P:Prop) (x4:(forall (x1:(A->B)), ((forall (x10:A), ((x0 x10) (x1 x10)))->P)))=> (((((ex_ind (A->B)) (fun (f:(A->B))=> (forall (x1:A), ((x0 x1) (f x1))))) P) x4) ((((unique_choice A) B) x0) x3))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x4:(A->B)) (x5:(forall (x10:A), ((x0 x10) (x4 x10))))=> ((((ex_intro (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0))))) x4) (fun (x00:A)=> (((x2 x00) (x4 x00)) (x5 x00))))))))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.86  choice_operator:=(fun (A:Type) (a:A)=> ((((classical_choice (A->Prop)) A) (fun (x3:(A->Prop))=> x3)) a)):(forall (A:Type), (A->((ex ((A->Prop)->A)) (fun (co:((A->Prop)->A))=> (forall (P:(A->Prop)), (((ex A) (fun (x:A)=> (P x)))->(P (co P))))))))
% 13.46/13.86  classic:(forall (P:Prop), ((or P) (not P)))
% 13.46/13.86  classical_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (b:B)=> ((fun (C:((forall (x:A), ((ex B) (fun (y:B)=> (((fun (x0:A) (y0:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y0))) x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((fun (x0:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y))) x) (f x)))))))=> (C (fun (x:A)=> ((fun (C0:((or ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))))=> ((((((or_ind ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) ((((ex_ind B) (fun (z:B)=> ((R x) z))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) (fun (y:B) (H:((R x) y))=> ((((ex_intro B) (fun (y0:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y0)))) y) (fun (_:((ex B) (fun (z:B)=> ((R x) z))))=> H))))) (fun (N:(not ((ex B) (fun (z:B)=> ((R x) z)))))=> ((((ex_intro B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))) b) (fun (H:((ex B) (fun (z:B)=> ((R x) z))))=> ((False_rect ((R x) b)) (N H)))))) C0)) (classic ((ex B) (fun (z:B)=> ((R x) z)))))))) (((choice A) B) (fun (x:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), (B->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((ex B) (fun (y:B)=> ((R x) y)))->((R x) (f x))))))))
% 13.46/13.86  cond1:=(n_in n_1):(fofType->Prop)
% 13.46/13.86  cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))):(fofType->Prop)
% 13.46/13.86  conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% 13.46/13.86  d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))
% 13.46/13.86  d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.86  d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0)):(fofType->Prop)
% 13.46/13.86  d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))):(fofType->Prop)
% 13.46/13.86  d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))):(fofType->fofType)
% 13.46/13.86  d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))):(fofType->Prop)
% 13.46/13.86  d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))):(fofType->(fofType->Prop))
% 13.46/13.86  d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.86  d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.86  d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.86  d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.86  d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))):((fofType->((fofType->fofType)->fofType))->(fofType->fofType))
% 13.46/13.86  d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))):((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))
% 13.46/13.86  d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1)):(fofType->fofType)
% 13.46/13.86  d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))):(fofType->fofType)
% 13.46/13.86  d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.86  d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))):(fofType->Prop)
% 13.46/13.86  d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))):(fofType->((fofType->Prop)->((fofType->fofType)->fofType)))
% 13.46/13.86  d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))):(fofType->Prop)
% 13.46/13.86  d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)):(fofType->((fofType->Prop)->fofType))
% 13.46/13.86  d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.86  d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0)):(fofType->fofType)
% 13.46/13.86  d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.86  d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))):(fofType->(fofType->fofType))
% 13.46/13.86  d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))):(fofType->Prop)
% 13.46/13.86  d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))):(fofType->fofType)
% 13.46/13.86  d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))):(fofType->Prop)
% 13.46/13.86  d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.86  d_not:=(fun (X0:Prop)=> ((imp X0) False)):(Prop->Prop)
% 13.46/13.86  d_pair:=(fun (X0:fofType) (X1:fofType)=> pair):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.86  dependent_unique_choice:(forall (A:Type) (B:(A->Type)) (R:(forall (x:A), ((B x)->Prop))), ((forall (x:A), ((ex (B x)) ((unique (B x)) (fun (y:(B x))=> ((R x) y)))))->((ex (forall (x:A), (B x))) (fun (f:(forall (x:A), (B x)))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.86  diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  e_fisi:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3)))))))
% 13.46/13.86  e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.86  e_in_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.86  e_inp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2)))))
% 13.46/13.86  e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  e_isp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3))))))))
% 13.46/13.86  e_pair_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1)))))))))
% 13.46/13.86  ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.86  ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.86  ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.86  ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.86  ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->fofType))
% 13.46/13.86  ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.86  ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.86  empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))):(fofType->(fofType->Prop))
% 13.46/13.86  emptyset:fofType
% 13.46/13.86  eps:((fofType->Prop)->fofType)
% 13.46/13.86  eq:=(fun (T:Type) (a:T) (b:T)=> (forall (P:(T->Prop)), ((P a)->(P b)))):(forall (T:Type), (T->(T->Prop)))
% 13.46/13.86  eq_ref:=(fun (T:Type) (a:T) (P:(T->Prop)) (x:(P a))=> x):(forall (T:Type) (a:T), (((eq T) a) a))
% 13.46/13.86  eq_stepl:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) a) c))=> ((((((eq_trans T) c) a) b) ((((eq_sym T) a) c) Y)) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) a) c)->(((eq T) c) b))))
% 13.46/13.86  eq_substitution:=(fun (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq U) (f a)) (f x)))) ((eq_ref U) (f a)))):(forall (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)), ((((eq T) a) b)->(((eq U) (f a)) (f b))))
% 13.46/13.86  eq_sym:=(fun (T:Type) (a:T) (b:T) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq T) x) a))) ((eq_ref T) a))):(forall (T:Type) (a:T) (b:T), ((((eq T) a) b)->(((eq T) b) a)))
% 13.46/13.86  eq_trans:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) b) c))=> ((Y (fun (t:T)=> (((eq T) a) t))) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) b) c)->(((eq T) a) c))))
% 13.46/13.86  esti:=(fun (X0:fofType)=> in):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  estie:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2)))))
% 13.46/13.86  estii:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1))))))
% 13.46/13.86  eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% 13.46/13.86  eta_expansion_dep:=(fun (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x)))=> (((((functional_extensionality_dep A) (fun (x1:A)=> (B x1))) f) (fun (x:A)=> (f x))) (fun (x:A) (P:((B x)->Prop)) (x0:(P (f x)))=> x0))):(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))), (((eq (forall (x:A), (B x))) f) (fun (x:A)=> (f x))))
% 13.46/13.86  ex:(forall (A:Type), ((A->Prop)->Prop))
% 13.46/13.86  ex_ind:(forall (A:Type) (F:(A->Prop)) (P:Prop), ((forall (x:A), ((F x)->P))->(((ex A) F)->P)))
% 13.46/13.86  ex_intro:(forall (A:Type) (P:(A->Prop)) (x:A), ((P x)->((ex A) P)))
% 13.46/13.86  famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.86  first:=(fun (X0:fofType) (X1:fofType)=> proj0):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.86  first_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.86  firstis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2))))))
% 13.46/13.86  fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.86  fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.86  fofType:Type
% 13.46/13.86  functional_extensionality:=(fun (A:Type) (B:Type)=> ((functional_extensionality_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)) (g:(A->B)), ((forall (x:A), (((eq B) (f x)) (g x)))->(((eq (A->B)) f) g)))
% 13.46/13.86  functional_extensionality_dep:(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))) (g:(forall (x:A), (B x))), ((forall (x:A), (((eq (B x)) (f x)) (g x)))->(((eq (forall (x:A), (B x))) f) g)))
% 13.46/13.86  functional_extensionality_double:=(fun (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))) (x:(forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y))))=> (((((functional_extensionality_dep A) (fun (x2:A)=> (B->C))) f) g) (fun (x0:A)=> (((((functional_extensionality_dep B) (fun (x3:B)=> C)) (f x0)) (g x0)) (x x0))))):(forall (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))), ((forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y)))->(((eq (A->(B->C))) f) g)))
% 13.46/13.86  i1_s:=(d_Sep nat):((fofType->Prop)->fofType)
% 13.46/13.86  if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))):(Prop->(fofType->(fofType->fofType)))
% 13.46/13.86  if_i_0:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.86  if_i_1:(forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1)))
% 13.46/13.86  if_i_correct:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2))))
% 13.46/13.86  if_i_or:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.86  iff:=(fun (A:Prop) (B:Prop)=> ((and (A->B)) (B->A))):(Prop->(Prop->Prop))
% 13.46/13.86  iff_refl:=(fun (A:Prop)=> ((((conj (A->A)) (A->A)) (fun (H:A)=> H)) (fun (H:A)=> H))):(forall (P:Prop), ((iff P) P))
% 13.46/13.86  iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% 13.46/13.86  iff_trans:=(fun (A:Prop) (B:Prop) (C:Prop) (AB:((iff A) B)) (BC:((iff B) C))=> ((((conj (A->C)) (C->A)) (fun (x:A)=> ((((proj1 (B->C)) (C->B)) BC) ((((proj1 (A->B)) (B->A)) AB) x)))) (fun (x:C)=> ((((proj2 (A->B)) (B->A)) AB) ((((proj2 (B->C)) (C->B)) BC) x))))):(forall (A:Prop) (B:Prop) (C:Prop), (((iff A) B)->(((iff B) C)->((iff A) C))))
% 13.46/13.86  iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.86  image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.86  imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1)):(Prop->(Prop->Prop))
% 13.46/13.86  in:(fofType->(fofType->Prop))
% 13.46/13.86  incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))):(fofType->((fofType->Prop)->fofType))
% 13.46/13.86  ind_p:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0)))))
% 13.46/13.86  indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))
% 13.46/13.86  indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.86  inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.86  injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.86  invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.86  is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)):(fofType->((fofType->Prop)->Prop))
% 13.46/13.86  isseti:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2))))))))
% 13.46/13.86  ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))):(Prop->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.86  k_EmptyAx:(((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False)
% 13.46/13.86  k_If_In_01:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset)))))
% 13.46/13.86  k_If_In_then_E:(forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2))))
% 13.46/13.86  k_In_0_1:((in emptyset) (ordsucc emptyset))
% 13.46/13.86  k_In_ind:(forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1))))
% 13.46/13.86  k_Pi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3))))))
% 13.46/13.86  k_PowerE:(forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0)))
% 13.46/13.86  k_PowerEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0)))
% 13.46/13.86  k_PowerI:(forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0))))
% 13.46/13.86  k_ReplEq:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3)))))))
% 13.46/13.86  k_Self_In_Power:(forall (X0:fofType), ((in X0) (power X0)))
% 13.46/13.86  k_SepE1:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0)))
% 13.46/13.86  k_SepE2:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2)))
% 13.46/13.86  k_SepI:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1)))))
% 13.46/13.86  k_Sigma_eta_proj0_proj1:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))))
% 13.46/13.86  k_UnionEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0))))))
% 13.46/13.86  k_UnivOf_In:(forall (X0:fofType), ((in X0) (univof X0)))
% 13.46/13.86  k_UnivOf_ZF_closed:(forall (X0:fofType), (d_ZF_closed (univof X0)))
% 13.46/13.86  l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.86  l_et:(forall (X0:Prop), ((wel X0)->X0))
% 13.46/13.86  l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))):(Prop->(Prop->Prop))
% 13.46/13.86  l_or:=(fun (X0:Prop)=> (imp (d_not X0))):(Prop->(Prop->Prop))
% 13.46/13.86  l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.86  lam_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1))))
% 13.46/13.86  lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.86  moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.86  nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)):(fofType->(fofType->Prop))
% 13.46/13.86  n_1:=(ordsucc emptyset):fofType
% 13.46/13.86  n_1_p:((is_of n_1) (fun (X0:fofType)=> ((in X0) nat)))
% 13.46/13.86  n_all:=(all nat):((fofType->Prop)->Prop)
% 13.46/13.86  n_ax3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1)))
% 13.46/13.86  n_ax4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1))))))
% 13.46/13.86  n_ax5:((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0)))))))
% 13.46/13.86  n_in:=(esti nat):(fofType->(fofType->Prop))
% 13.46/13.86  n_is:=(e_is nat):(fofType->(fofType->Prop))
% 13.46/13.86  n_one:=(one nat):((fofType->Prop)->Prop)
% 13.46/13.86  n_pl:=(fun (X0:fofType)=> (ap (plus X0))):(fofType->(fofType->fofType))
% 13.46/13.86  n_some:=(l_some nat):((fofType->Prop)->Prop)
% 13.46/13.86  nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))):fofType
% 13.46/13.86  nat_1:(nat_p (ordsucc emptyset))
% 13.46/13.86  nat_ind:(forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1))))))
% 13.46/13.86  nat_inv:(forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1))))))))
% 13.46/13.86  nat_ordsucc:(forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0))))
% 13.46/13.86  nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))):(fofType->Prop)
% 13.46/13.86  nat_p_omega:(forall (X0:fofType), ((nat_p X0)->((in X0) omega)))
% 13.46/13.86  neq_ordsucc_0:(forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset)))
% 13.46/13.86  nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.86  nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.86  non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))):(fofType->((fofType->Prop)->(fofType->Prop)))
% 13.46/13.86  nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.86  not:=(fun (P:Prop)=> (P->False)):(Prop->Prop)
% 13.46/13.86  obvious:=((imp False) False):Prop
% 13.46/13.86  omega:=((d_Sep (univof emptyset)) nat_p):fofType
% 13.46/13.86  omega_nat_p:(forall (X0:fofType), (((in X0) omega)->(nat_p X0)))
% 13.46/13.86  one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.86  oneax:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1))))
% 13.46/13.86  or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.86  or:(Prop->(Prop->Prop))
% 13.46/13.86  or_comm_i:=(fun (A:Prop) (B:Prop) (H:((or A) B))=> ((((((or_ind A) B) ((or B) A)) ((or_intror B) A)) ((or_introl B) A)) H)):(forall (A:Prop) (B:Prop), (((or A) B)->((or B) A)))
% 13.46/13.86  or_first:=(fun (A:Prop) (B:Prop)=> (((((or_ind A) B) ((B->A)->A)) (fun (x:A) (x0:(B->A))=> x)) (fun (x:B) (x0:(B->A))=> (x0 x)))):(forall (A:Prop) (B:Prop), (((or A) B)->((B->A)->A)))
% 13.46/13.86  or_ind:(forall (A:Prop) (B:Prop) (P:Prop), ((A->P)->((B->P)->(((or A) B)->P))))
% 13.46/13.86  or_introl:(forall (A:Prop) (B:Prop), (A->((or A) B)))
% 13.46/13.86  or_intror:(forall (A:Prop) (B:Prop), (B->((or A) B)))
% 13.46/13.86  or_second:=(fun (A:Prop) (B:Prop) (x:((or A) B))=> (((or_first B) A) (((or_comm_i A) B) x))):(forall (A:Prop) (B:Prop), (((or A) B)->((A->B)->B)))
% 13.46/13.86  ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0))):(fofType->fofType)
% 13.46/13.86  ordsucc_inj:(forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1)))
% 13.46/13.86  orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.86  orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.86  otax1:(forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 13.46/13.86  otax2:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2)))))
% 13.46/13.86  out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.86  pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))):(fofType->(fofType->fofType))
% 13.46/13.86  pair_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1))))))
% 13.46/13.86  pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)):(fofType->Prop)
% 13.46/13.86  pairis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2))))
% 13.46/13.86  plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->fofType)
% 13.46/13.86  power:(fofType->fofType)
% 13.46/13.86  proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.86  proj0_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0)))
% 13.46/13.86  proj0_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0))
% 13.46/13.86  proj1:(forall (A:Prop) (B:Prop), (((and A) B)->A))
% 13.46/13.86  proj1_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))
% 13.46/13.86  proj1_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1))
% 13.46/13.86  proj2:(forall (A:Prop) (B:Prop), (((and A) B)->B))
% 13.46/13.86  proj_Sigma_eta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)))
% 13.46/13.86  prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))):(Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))
% 13.46/13.86  prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))
% 13.46/13.86  prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->Prop)
% 13.46/13.86  r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.86  refis:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1))))
% 13.46/13.86  relational_choice:(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x) y))))))))))
% 13.46/13.86  repl:(fofType->((fofType->fofType)->fofType))
% 13.46/13.86  satz10:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.86  satz10a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.86  satz10b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.86  satz11:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0))))))
% 13.46/13.86  satz12:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0))))))
% 13.46/13.86  satz1:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1)))))))
% 13.46/13.86  satz2:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 13.46/13.86  satz3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.86  satz3a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.86  satz4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2))))))))))
% 13.46/13.86  satz4a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0))))
% 13.46/13.86  satz4b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.86  satz4c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0))))
% 13.46/13.86  satz4d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.86  satz4e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1))))
% 13.46/13.86  satz4f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1)))))))
% 13.46/13.86  satz4g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0))))
% 13.46/13.86  satz4h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1))))))
% 13.46/13.86  satz5:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))))))
% 13.46/13.86  satz6:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))))
% 13.46/13.86  satz7:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))))
% 13.46/13.86  satz8:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2)))))))))
% 13.46/13.86  satz8a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2))))))))
% 13.46/13.86  satz8b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))))))
% 13.46/13.86  satz9:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2)))))))))
% 13.46/13.86  satz9a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.86  satz9b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.86  second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.86  second_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1))))))
% 13.46/13.86  secondis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3))))))
% 13.46/13.86  set_ext:(forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1))))
% 13.46/13.86  setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))):(fofType->(fofType->fofType))
% 13.46/13.86  setof_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0)))))
% 13.46/13.86  setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))):(fofType->(fofType->fofType))
% 13.46/13.86  soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.86  st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  subrelation:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (R':(A->(B->Prop)))=> (forall (x:A) (y:B), (((R x) y)->((R' x) y)))):(forall (A:Type) (B:Type), ((A->(B->Prop))->((A->(B->Prop))->Prop)))
% 13.46/13.86  suc_p:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat)))))
% 13.46/13.86  surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.86  tofs:=(fun (X0:fofType) (X1:fofType)=> ap):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.86  union:(fofType->fofType)
% 13.46/13.86  unique:=(fun (A:Type) (P:(A->Prop)) (x:A)=> ((and (P x)) (forall (x':A), ((P x')->(((eq A) x) x'))))):(forall (A:Type), ((A->Prop)->(A->Prop)))
% 13.46/13.86  unique_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y))))))=> ((((dependent_unique_choice A) (fun (x2:A)=> B)) R) x)):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y)))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.88  univof:(fofType->fofType)
% 13.46/13.88  unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.88  wel:=(fun (X0:Prop)=> (d_not (d_not X0))):(Prop->Prop)
% 13.46/13.88  wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.88  wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.88  wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.88  xi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2))))
% 13.46/13.88  ---termcontext
% 13.46/13.88  [[[False:Prop
% 13.46/13.88  False_rect:(forall (P:Type), (False->P))
% 13.46/13.88  I:True
% 13.46/13.88  NNPP:=(fun (P:Prop) (H:(not (not P)))=> ((fun (C:((or P) (not P)))=> ((((((or_ind P) (not P)) P) (fun (H0:P)=> H0)) (fun (N:(not P))=> ((False_rect P) (H N)))) C)) (classic P))):(forall (P:Prop), ((not (not P))->P))
% 13.46/13.88  True:Prop
% 13.46/13.88  _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.88  all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.88  all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))):((fofType->Prop)->((fofType->Prop)->Prop))
% 13.46/13.88  amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.88  and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.88  and:(Prop->(Prop->Prop))
% 13.46/13.88  and_comm_i:=(fun (A:Prop) (B:Prop) (H:((and A) B))=> ((((conj B) A) (((proj2 A) B) H)) (((proj1 A) B) H))):(forall (A:Prop) (B:Prop), (((and A) B)->((and B) A)))
% 13.46/13.88  and_rect:=(fun (A:Prop) (B:Prop) (P:Type) (X:(A->(B->P))) (H:((and A) B))=> ((X (((proj1 A) B) H)) (((proj2 A) B) H))):(forall (A:Prop) (B:Prop) (P:Type), ((A->(B->P))->(((and A) B)->P)))
% 13.46/13.88  anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->Prop)))
% 13.46/13.88  ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)):(fofType->(fofType->fofType))
% 13.46/13.88  ap_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))
% 13.46/13.88  beta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2))))
% 13.46/13.88  bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))):(fofType->(fofType->fofType))
% 13.46/13.88  changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.88  choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) (fun (y:B)=> ((R x) y)))))=> (((fun (P:Prop) (x0:(forall (x0:(A->(B->Prop))), (((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))->P)))=> (((((ex_ind (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x0:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x0) y)))))))) P) x0) ((((relational_choice A) B) R) x))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x0:(A->(B->Prop))) (x1:((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))))=> (((fun (P:Type) (x2:(((((subrelation A) B) x0) R)->((forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))->P)))=> (((((and_rect ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))) P) x2) x1)) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x2:((((subrelation A) B) x0) R)) (x3:(forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))=> (((fun (P:Prop) (x4:(forall (x1:(A->B)), ((forall (x10:A), ((x0 x10) (x1 x10)))->P)))=> (((((ex_ind (A->B)) (fun (f:(A->B))=> (forall (x1:A), ((x0 x1) (f x1))))) P) x4) ((((unique_choice A) B) x0) x3))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x4:(A->B)) (x5:(forall (x10:A), ((x0 x10) (x4 x10))))=> ((((ex_intro (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0))))) x4) (fun (x00:A)=> (((x2 x00) (x4 x00)) (x5 x00))))))))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.88  choice_operator:=(fun (A:Type) (a:A)=> ((((classical_choice (A->Prop)) A) (fun (x3:(A->Prop))=> x3)) a)):(forall (A:Type), (A->((ex ((A->Prop)->A)) (fun (co:((A->Prop)->A))=> (forall (P:(A->Prop)), (((ex A) (fun (x:A)=> (P x)))->(P (co P))))))))
% 13.46/13.88  classic:(forall (P:Prop), ((or P) (not P)))
% 13.46/13.88  classical_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (b:B)=> ((fun (C:((forall (x:A), ((ex B) (fun (y:B)=> (((fun (x0:A) (y0:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y0))) x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((fun (x0:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y))) x) (f x)))))))=> (C (fun (x:A)=> ((fun (C0:((or ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))))=> ((((((or_ind ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) ((((ex_ind B) (fun (z:B)=> ((R x) z))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) (fun (y:B) (H:((R x) y))=> ((((ex_intro B) (fun (y0:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y0)))) y) (fun (_:((ex B) (fun (z:B)=> ((R x) z))))=> H))))) (fun (N:(not ((ex B) (fun (z:B)=> ((R x) z)))))=> ((((ex_intro B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))) b) (fun (H:((ex B) (fun (z:B)=> ((R x) z))))=> ((False_rect ((R x) b)) (N H)))))) C0)) (classic ((ex B) (fun (z:B)=> ((R x) z)))))))) (((choice A) B) (fun (x:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), (B->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((ex B) (fun (y:B)=> ((R x) y)))->((R x) (f x))))))))
% 13.46/13.88  cond1:=(n_in n_1):(fofType->Prop)
% 13.46/13.88  cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))):(fofType->Prop)
% 13.46/13.88  conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% 13.46/13.88  d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))
% 13.46/13.88  d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.88  d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0)):(fofType->Prop)
% 13.46/13.88  d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))):(fofType->Prop)
% 13.46/13.88  d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))):(fofType->fofType)
% 13.46/13.88  d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))):(fofType->Prop)
% 13.46/13.88  d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))):(fofType->(fofType->Prop))
% 13.46/13.88  d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.88  d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.88  d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.88  d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.88  d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))):((fofType->((fofType->fofType)->fofType))->(fofType->fofType))
% 13.46/13.88  d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))):((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))
% 13.46/13.88  d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1)):(fofType->fofType)
% 13.46/13.88  d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))):(fofType->fofType)
% 13.46/13.88  d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.88  d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))):(fofType->Prop)
% 13.46/13.88  d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))):(fofType->((fofType->Prop)->((fofType->fofType)->fofType)))
% 13.46/13.88  d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))):(fofType->Prop)
% 13.46/13.88  d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)):(fofType->((fofType->Prop)->fofType))
% 13.46/13.88  d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.88  d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0)):(fofType->fofType)
% 13.46/13.88  d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.88  d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))):(fofType->(fofType->fofType))
% 13.46/13.88  d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))):(fofType->Prop)
% 13.46/13.88  d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))):(fofType->fofType)
% 13.46/13.88  d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))):(fofType->Prop)
% 13.46/13.88  d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.88  d_not:=(fun (X0:Prop)=> ((imp X0) False)):(Prop->Prop)
% 13.46/13.88  d_pair:=(fun (X0:fofType) (X1:fofType)=> pair):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.88  dependent_unique_choice:(forall (A:Type) (B:(A->Type)) (R:(forall (x:A), ((B x)->Prop))), ((forall (x:A), ((ex (B x)) ((unique (B x)) (fun (y:(B x))=> ((R x) y)))))->((ex (forall (x:A), (B x))) (fun (f:(forall (x:A), (B x)))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.88  diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  e_fisi:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3)))))))
% 13.46/13.88  e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.88  e_in_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.88  e_inp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2)))))
% 13.46/13.88  e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  e_isp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3))))))))
% 13.46/13.88  e_pair_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1)))))))))
% 13.46/13.88  ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.88  ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.88  ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.88  ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.88  ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->fofType))
% 13.46/13.88  ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.88  ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.88  empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))):(fofType->(fofType->Prop))
% 13.46/13.88  emptyset:fofType
% 13.46/13.88  eps:((fofType->Prop)->fofType)
% 13.46/13.88  eq:=(fun (T:Type) (a:T) (b:T)=> (forall (P:(T->Prop)), ((P a)->(P b)))):(forall (T:Type), (T->(T->Prop)))
% 13.46/13.88  eq_ref:=(fun (T:Type) (a:T) (P:(T->Prop)) (x:(P a))=> x):(forall (T:Type) (a:T), (((eq T) a) a))
% 13.46/13.88  eq_stepl:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) a) c))=> ((((((eq_trans T) c) a) b) ((((eq_sym T) a) c) Y)) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) a) c)->(((eq T) c) b))))
% 13.46/13.88  eq_substitution:=(fun (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq U) (f a)) (f x)))) ((eq_ref U) (f a)))):(forall (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)), ((((eq T) a) b)->(((eq U) (f a)) (f b))))
% 13.46/13.88  eq_sym:=(fun (T:Type) (a:T) (b:T) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq T) x) a))) ((eq_ref T) a))):(forall (T:Type) (a:T) (b:T), ((((eq T) a) b)->(((eq T) b) a)))
% 13.46/13.88  eq_trans:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) b) c))=> ((Y (fun (t:T)=> (((eq T) a) t))) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) b) c)->(((eq T) a) c))))
% 13.46/13.88  esti:=(fun (X0:fofType)=> in):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  estie:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2)))))
% 13.46/13.88  estii:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1))))))
% 13.46/13.88  eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% 13.46/13.88  eta_expansion_dep:=(fun (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x)))=> (((((functional_extensionality_dep A) (fun (x1:A)=> (B x1))) f) (fun (x:A)=> (f x))) (fun (x:A) (P:((B x)->Prop)) (x0:(P (f x)))=> x0))):(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))), (((eq (forall (x:A), (B x))) f) (fun (x:A)=> (f x))))
% 13.46/13.88  ex:(forall (A:Type), ((A->Prop)->Prop))
% 13.46/13.88  ex_ind:(forall (A:Type) (F:(A->Prop)) (P:Prop), ((forall (x:A), ((F x)->P))->(((ex A) F)->P)))
% 13.46/13.88  ex_intro:(forall (A:Type) (P:(A->Prop)) (x:A), ((P x)->((ex A) P)))
% 13.46/13.88  famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.88  first:=(fun (X0:fofType) (X1:fofType)=> proj0):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.88  first_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.88  firstis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2))))))
% 13.46/13.88  fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.88  fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.88  fofType:Type
% 13.46/13.88  functional_extensionality:=(fun (A:Type) (B:Type)=> ((functional_extensionality_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)) (g:(A->B)), ((forall (x:A), (((eq B) (f x)) (g x)))->(((eq (A->B)) f) g)))
% 13.46/13.88  functional_extensionality_dep:(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))) (g:(forall (x:A), (B x))), ((forall (x:A), (((eq (B x)) (f x)) (g x)))->(((eq (forall (x:A), (B x))) f) g)))
% 13.46/13.88  functional_extensionality_double:=(fun (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))) (x:(forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y))))=> (((((functional_extensionality_dep A) (fun (x2:A)=> (B->C))) f) g) (fun (x0:A)=> (((((functional_extensionality_dep B) (fun (x3:B)=> C)) (f x0)) (g x0)) (x x0))))):(forall (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))), ((forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y)))->(((eq (A->(B->C))) f) g)))
% 13.46/13.88  i1_s:=(d_Sep nat):((fofType->Prop)->fofType)
% 13.46/13.88  if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))):(Prop->(fofType->(fofType->fofType)))
% 13.46/13.88  if_i_0:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.88  if_i_1:(forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1)))
% 13.46/13.88  if_i_correct:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2))))
% 13.46/13.88  if_i_or:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.88  iff:=(fun (A:Prop) (B:Prop)=> ((and (A->B)) (B->A))):(Prop->(Prop->Prop))
% 13.46/13.88  iff_refl:=(fun (A:Prop)=> ((((conj (A->A)) (A->A)) (fun (H:A)=> H)) (fun (H:A)=> H))):(forall (P:Prop), ((iff P) P))
% 13.46/13.88  iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% 13.46/13.88  iff_trans:=(fun (A:Prop) (B:Prop) (C:Prop) (AB:((iff A) B)) (BC:((iff B) C))=> ((((conj (A->C)) (C->A)) (fun (x:A)=> ((((proj1 (B->C)) (C->B)) BC) ((((proj1 (A->B)) (B->A)) AB) x)))) (fun (x:C)=> ((((proj2 (A->B)) (B->A)) AB) ((((proj2 (B->C)) (C->B)) BC) x))))):(forall (A:Prop) (B:Prop) (C:Prop), (((iff A) B)->(((iff B) C)->((iff A) C))))
% 13.46/13.88  iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.88  image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.88  imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1)):(Prop->(Prop->Prop))
% 13.46/13.88  in:(fofType->(fofType->Prop))
% 13.46/13.88  incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))):(fofType->((fofType->Prop)->fofType))
% 13.46/13.88  ind_p:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0)))))
% 13.46/13.88  indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))
% 13.46/13.88  indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.88  inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.88  injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.88  invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.88  is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)):(fofType->((fofType->Prop)->Prop))
% 13.46/13.88  isseti:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2))))))))
% 13.46/13.88  ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))):(Prop->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.88  k_EmptyAx:(((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False)
% 13.46/13.88  k_If_In_01:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset)))))
% 13.46/13.88  k_If_In_then_E:(forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2))))
% 13.46/13.88  k_In_0_1:((in emptyset) (ordsucc emptyset))
% 13.46/13.88  k_In_ind:(forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1))))
% 13.46/13.88  k_Pi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3))))))
% 13.46/13.88  k_PowerE:(forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0)))
% 13.46/13.88  k_PowerEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0)))
% 13.46/13.88  k_PowerI:(forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0))))
% 13.46/13.88  k_ReplEq:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3)))))))
% 13.46/13.88  k_Self_In_Power:(forall (X0:fofType), ((in X0) (power X0)))
% 13.46/13.88  k_SepE1:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0)))
% 13.46/13.88  k_SepE2:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2)))
% 13.46/13.88  k_SepI:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1)))))
% 13.46/13.88  k_Sigma_eta_proj0_proj1:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))))
% 13.46/13.88  k_UnionEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0))))))
% 13.46/13.88  k_UnivOf_In:(forall (X0:fofType), ((in X0) (univof X0)))
% 13.46/13.88  k_UnivOf_ZF_closed:(forall (X0:fofType), (d_ZF_closed (univof X0)))
% 13.46/13.88  l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.88  l_et:(forall (X0:Prop), ((wel X0)->X0))
% 13.46/13.88  l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))):(Prop->(Prop->Prop))
% 13.46/13.88  l_or:=(fun (X0:Prop)=> (imp (d_not X0))):(Prop->(Prop->Prop))
% 13.46/13.88  l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.88  lam_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1))))
% 13.46/13.88  lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.88  moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.88  nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)):(fofType->(fofType->Prop))
% 13.46/13.88  n_1:=(ordsucc emptyset):fofType
% 13.46/13.88  n_1_p:((is_of n_1) (fun (X0:fofType)=> ((in X0) nat)))
% 13.46/13.88  n_all:=(all nat):((fofType->Prop)->Prop)
% 13.46/13.88  n_ax3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1)))
% 13.46/13.88  n_ax4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1))))))
% 13.46/13.88  n_ax5:((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0)))))))
% 13.46/13.88  n_in:=(esti nat):(fofType->(fofType->Prop))
% 13.46/13.88  n_is:=(e_is nat):(fofType->(fofType->Prop))
% 13.46/13.88  n_one:=(one nat):((fofType->Prop)->Prop)
% 13.46/13.88  n_pl:=(fun (X0:fofType)=> (ap (plus X0))):(fofType->(fofType->fofType))
% 13.46/13.88  n_some:=(l_some nat):((fofType->Prop)->Prop)
% 13.46/13.88  nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))):fofType
% 13.46/13.88  nat_1:(nat_p (ordsucc emptyset))
% 13.46/13.88  nat_ind:(forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1))))))
% 13.46/13.88  nat_inv:(forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1))))))))
% 13.46/13.88  nat_ordsucc:(forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0))))
% 13.46/13.88  nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))):(fofType->Prop)
% 13.46/13.88  nat_p_omega:(forall (X0:fofType), ((nat_p X0)->((in X0) omega)))
% 13.46/13.88  neq_ordsucc_0:(forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset)))
% 13.46/13.88  nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.88  nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.88  non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))):(fofType->((fofType->Prop)->(fofType->Prop)))
% 13.46/13.88  nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.88  not:=(fun (P:Prop)=> (P->False)):(Prop->Prop)
% 13.46/13.88  obvious:=((imp False) False):Prop
% 13.46/13.88  omega:=((d_Sep (univof emptyset)) nat_p):fofType
% 13.46/13.88  omega_nat_p:(forall (X0:fofType), (((in X0) omega)->(nat_p X0)))
% 13.46/13.88  one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.88  oneax:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1))))
% 13.46/13.88  or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.88  or:(Prop->(Prop->Prop))
% 13.46/13.88  or_comm_i:=(fun (A:Prop) (B:Prop) (H:((or A) B))=> ((((((or_ind A) B) ((or B) A)) ((or_intror B) A)) ((or_introl B) A)) H)):(forall (A:Prop) (B:Prop), (((or A) B)->((or B) A)))
% 13.46/13.88  or_first:=(fun (A:Prop) (B:Prop)=> (((((or_ind A) B) ((B->A)->A)) (fun (x:A) (x0:(B->A))=> x)) (fun (x:B) (x0:(B->A))=> (x0 x)))):(forall (A:Prop) (B:Prop), (((or A) B)->((B->A)->A)))
% 13.46/13.88  or_ind:(forall (A:Prop) (B:Prop) (P:Prop), ((A->P)->((B->P)->(((or A) B)->P))))
% 13.46/13.88  or_introl:(forall (A:Prop) (B:Prop), (A->((or A) B)))
% 13.46/13.88  or_intror:(forall (A:Prop) (B:Prop), (B->((or A) B)))
% 13.46/13.88  or_second:=(fun (A:Prop) (B:Prop) (x:((or A) B))=> (((or_first B) A) (((or_comm_i A) B) x))):(forall (A:Prop) (B:Prop), (((or A) B)->((A->B)->B)))
% 13.46/13.88  ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0))):(fofType->fofType)
% 13.46/13.88  ordsucc_inj:(forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1)))
% 13.46/13.88  orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.88  orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.88  otax1:(forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 13.46/13.88  otax2:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2)))))
% 13.46/13.88  out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.88  pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))):(fofType->(fofType->fofType))
% 13.46/13.88  pair_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1))))))
% 13.46/13.88  pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)):(fofType->Prop)
% 13.46/13.88  pairis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2))))
% 13.46/13.88  plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->fofType)
% 13.46/13.88  power:(fofType->fofType)
% 13.46/13.88  proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.88  proj0_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0)))
% 13.46/13.88  proj0_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0))
% 13.46/13.88  proj1:(forall (A:Prop) (B:Prop), (((and A) B)->A))
% 13.46/13.88  proj1_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))
% 13.46/13.88  proj1_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1))
% 13.46/13.88  proj2:(forall (A:Prop) (B:Prop), (((and A) B)->B))
% 13.46/13.88  proj_Sigma_eta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)))
% 13.46/13.88  prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))):(Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))
% 13.46/13.88  prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))
% 13.46/13.88  prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->Prop)
% 13.46/13.88  r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.88  refis:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1))))
% 13.46/13.88  relational_choice:(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x) y))))))))))
% 13.46/13.88  repl:(fofType->((fofType->fofType)->fofType))
% 13.46/13.88  satz10:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.88  satz10a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.88  satz10b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.88  satz11:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0))))))
% 13.46/13.88  satz12:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0))))))
% 13.46/13.88  satz1:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1)))))))
% 13.46/13.88  satz2:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 13.46/13.88  satz3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.88  satz3a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.88  satz4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2))))))))))
% 13.46/13.88  satz4a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0))))
% 13.46/13.88  satz4b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.88  satz4c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0))))
% 13.46/13.88  satz4d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.88  satz4e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1))))
% 13.46/13.88  satz4f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1)))))))
% 13.46/13.88  satz4g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0))))
% 13.46/13.88  satz4h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1))))))
% 13.46/13.88  satz5:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))))))
% 13.46/13.88  satz6:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))))
% 13.46/13.88  satz7:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))))
% 13.46/13.88  satz8:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2)))))))))
% 13.46/13.88  satz8a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2))))))))
% 13.46/13.88  satz8b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))))))
% 13.46/13.88  satz9:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2)))))))))
% 13.46/13.88  satz9a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.88  satz9b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.88  second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.88  second_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1))))))
% 13.46/13.88  secondis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3))))))
% 13.46/13.88  set_ext:(forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1))))
% 13.46/13.88  setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))):(fofType->(fofType->fofType))
% 13.46/13.88  setof_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0)))))
% 13.46/13.88  setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))):(fofType->(fofType->fofType))
% 13.46/13.88  soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.88  st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  subrelation:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (R':(A->(B->Prop)))=> (forall (x:A) (y:B), (((R x) y)->((R' x) y)))):(forall (A:Type) (B:Type), ((A->(B->Prop))->((A->(B->Prop))->Prop)))
% 13.46/13.88  suc_p:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat)))))
% 13.46/13.88  surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.88  tofs:=(fun (X0:fofType) (X1:fofType)=> ap):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.88  union:(fofType->fofType)
% 13.46/13.88  unique:=(fun (A:Type) (P:(A->Prop)) (x:A)=> ((and (P x)) (forall (x':A), ((P x')->(((eq A) x) x'))))):(forall (A:Type), ((A->Prop)->(A->Prop)))
% 13.46/13.90  unique_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y))))))=> ((((dependent_unique_choice A) (fun (x2:A)=> B)) R) x)):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y)))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.90  univof:(fofType->fofType)
% 13.46/13.90  unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.90  wel:=(fun (X0:Prop)=> (d_not (d_not X0))):(Prop->Prop)
% 13.46/13.90  wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.90  wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.90  wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.90  xi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2))))]X0:fofType
% 13.46/13.90  X1:(fofType->Prop)
% 13.46/13.90  X2:fofType]x:((is_of X2) (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1))))]x0:fofType
% 13.46/13.90  ---subcontext
% 13.46/13.90  [False:Prop
% 13.46/13.90  False_rect:(forall (P:Type), (False->P))
% 13.46/13.90  I:True
% 13.46/13.90  NNPP:=(fun (P:Prop) (H:(not (not P)))=> ((fun (C:((or P) (not P)))=> ((((((or_ind P) (not P)) P) (fun (H0:P)=> H0)) (fun (N:(not P))=> ((False_rect P) (H N)))) C)) (classic P))):(forall (P:Prop), ((not (not P))->P))
% 13.46/13.90  True:Prop
% 13.46/13.90  _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.90  all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.90  all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))):((fofType->Prop)->((fofType->Prop)->Prop))
% 13.46/13.90  amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.90  and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.90  and:(Prop->(Prop->Prop))
% 13.46/13.90  and_comm_i:=(fun (A:Prop) (B:Prop) (H:((and A) B))=> ((((conj B) A) (((proj2 A) B) H)) (((proj1 A) B) H))):(forall (A:Prop) (B:Prop), (((and A) B)->((and B) A)))
% 13.46/13.90  and_rect:=(fun (A:Prop) (B:Prop) (P:Type) (X:(A->(B->P))) (H:((and A) B))=> ((X (((proj1 A) B) H)) (((proj2 A) B) H))):(forall (A:Prop) (B:Prop) (P:Type), ((A->(B->P))->(((and A) B)->P)))
% 13.46/13.90  anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->Prop)))
% 13.46/13.90  ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)):(fofType->(fofType->fofType))
% 13.46/13.90  ap_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))
% 13.46/13.90  beta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2))))
% 13.46/13.90  bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))):(fofType->(fofType->fofType))
% 13.46/13.90  changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.90  choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) (fun (y:B)=> ((R x) y)))))=> (((fun (P:Prop) (x0:(forall (x0:(A->(B->Prop))), (((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))->P)))=> (((((ex_ind (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x0:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x0) y)))))))) P) x0) ((((relational_choice A) B) R) x))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x0:(A->(B->Prop))) (x1:((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))))=> (((fun (P:Type) (x2:(((((subrelation A) B) x0) R)->((forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))->P)))=> (((((and_rect ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))) P) x2) x1)) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x2:((((subrelation A) B) x0) R)) (x3:(forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))=> (((fun (P:Prop) (x4:(forall (x1:(A->B)), ((forall (x10:A), ((x0 x10) (x1 x10)))->P)))=> (((((ex_ind (A->B)) (fun (f:(A->B))=> (forall (x1:A), ((x0 x1) (f x1))))) P) x4) ((((unique_choice A) B) x0) x3))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x4:(A->B)) (x5:(forall (x10:A), ((x0 x10) (x4 x10))))=> ((((ex_intro (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0))))) x4) (fun (x00:A)=> (((x2 x00) (x4 x00)) (x5 x00))))))))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.90  choice_operator:=(fun (A:Type) (a:A)=> ((((classical_choice (A->Prop)) A) (fun (x3:(A->Prop))=> x3)) a)):(forall (A:Type), (A->((ex ((A->Prop)->A)) (fun (co:((A->Prop)->A))=> (forall (P:(A->Prop)), (((ex A) (fun (x:A)=> (P x)))->(P (co P))))))))
% 13.46/13.90  classic:(forall (P:Prop), ((or P) (not P)))
% 13.46/13.90  classical_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (b:B)=> ((fun (C:((forall (x:A), ((ex B) (fun (y:B)=> (((fun (x0:A) (y0:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y0))) x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((fun (x0:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y))) x) (f x)))))))=> (C (fun (x:A)=> ((fun (C0:((or ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))))=> ((((((or_ind ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) ((((ex_ind B) (fun (z:B)=> ((R x) z))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) (fun (y:B) (H:((R x) y))=> ((((ex_intro B) (fun (y0:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y0)))) y) (fun (_:((ex B) (fun (z:B)=> ((R x) z))))=> H))))) (fun (N:(not ((ex B) (fun (z:B)=> ((R x) z)))))=> ((((ex_intro B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))) b) (fun (H:((ex B) (fun (z:B)=> ((R x) z))))=> ((False_rect ((R x) b)) (N H)))))) C0)) (classic ((ex B) (fun (z:B)=> ((R x) z)))))))) (((choice A) B) (fun (x:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), (B->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((ex B) (fun (y:B)=> ((R x) y)))->((R x) (f x))))))))
% 13.46/13.90  cond1:=(n_in n_1):(fofType->Prop)
% 13.46/13.90  cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))):(fofType->Prop)
% 13.46/13.90  conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% 13.46/13.90  d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))
% 13.46/13.90  d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.90  d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0)):(fofType->Prop)
% 13.46/13.90  d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))):(fofType->Prop)
% 13.46/13.90  d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))):(fofType->fofType)
% 13.46/13.90  d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))):(fofType->Prop)
% 13.46/13.90  d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))):(fofType->(fofType->Prop))
% 13.46/13.90  d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.90  d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.90  d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.90  d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.90  d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))):((fofType->((fofType->fofType)->fofType))->(fofType->fofType))
% 13.46/13.90  d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))):((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))
% 13.46/13.90  d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1)):(fofType->fofType)
% 13.46/13.90  d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))):(fofType->fofType)
% 13.46/13.90  d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.90  d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))):(fofType->Prop)
% 13.46/13.90  d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))):(fofType->((fofType->Prop)->((fofType->fofType)->fofType)))
% 13.46/13.90  d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))):(fofType->Prop)
% 13.46/13.90  d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)):(fofType->((fofType->Prop)->fofType))
% 13.46/13.90  d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.90  d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0)):(fofType->fofType)
% 13.46/13.90  d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.90  d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))):(fofType->(fofType->fofType))
% 13.46/13.90  d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))):(fofType->Prop)
% 13.46/13.90  d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))):(fofType->fofType)
% 13.46/13.90  d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))):(fofType->Prop)
% 13.46/13.90  d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.90  d_not:=(fun (X0:Prop)=> ((imp X0) False)):(Prop->Prop)
% 13.46/13.90  d_pair:=(fun (X0:fofType) (X1:fofType)=> pair):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.90  dependent_unique_choice:(forall (A:Type) (B:(A->Type)) (R:(forall (x:A), ((B x)->Prop))), ((forall (x:A), ((ex (B x)) ((unique (B x)) (fun (y:(B x))=> ((R x) y)))))->((ex (forall (x:A), (B x))) (fun (f:(forall (x:A), (B x)))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.90  diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  e_fisi:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3)))))))
% 13.46/13.90  e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.90  e_in_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.90  e_inp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2)))))
% 13.46/13.90  e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  e_isp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3))))))))
% 13.46/13.90  e_pair_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1)))))))))
% 13.46/13.90  ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.90  ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.90  ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.90  ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.90  ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->fofType))
% 13.46/13.90  ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.90  ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.90  empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))):(fofType->(fofType->Prop))
% 13.46/13.90  emptyset:fofType
% 13.46/13.90  eps:((fofType->Prop)->fofType)
% 13.46/13.90  eq:=(fun (T:Type) (a:T) (b:T)=> (forall (P:(T->Prop)), ((P a)->(P b)))):(forall (T:Type), (T->(T->Prop)))
% 13.46/13.90  eq_ref:=(fun (T:Type) (a:T) (P:(T->Prop)) (x:(P a))=> x):(forall (T:Type) (a:T), (((eq T) a) a))
% 13.46/13.90  eq_stepl:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) a) c))=> ((((((eq_trans T) c) a) b) ((((eq_sym T) a) c) Y)) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) a) c)->(((eq T) c) b))))
% 13.46/13.90  eq_substitution:=(fun (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq U) (f a)) (f x)))) ((eq_ref U) (f a)))):(forall (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)), ((((eq T) a) b)->(((eq U) (f a)) (f b))))
% 13.46/13.90  eq_sym:=(fun (T:Type) (a:T) (b:T) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq T) x) a))) ((eq_ref T) a))):(forall (T:Type) (a:T) (b:T), ((((eq T) a) b)->(((eq T) b) a)))
% 13.46/13.90  eq_trans:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) b) c))=> ((Y (fun (t:T)=> (((eq T) a) t))) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) b) c)->(((eq T) a) c))))
% 13.46/13.90  esti:=(fun (X0:fofType)=> in):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  estie:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2)))))
% 13.46/13.90  estii:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1))))))
% 13.46/13.90  eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% 13.46/13.90  eta_expansion_dep:=(fun (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x)))=> (((((functional_extensionality_dep A) (fun (x1:A)=> (B x1))) f) (fun (x:A)=> (f x))) (fun (x:A) (P:((B x)->Prop)) (x0:(P (f x)))=> x0))):(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))), (((eq (forall (x:A), (B x))) f) (fun (x:A)=> (f x))))
% 13.46/13.90  ex:(forall (A:Type), ((A->Prop)->Prop))
% 13.46/13.90  ex_ind:(forall (A:Type) (F:(A->Prop)) (P:Prop), ((forall (x:A), ((F x)->P))->(((ex A) F)->P)))
% 13.46/13.90  ex_intro:(forall (A:Type) (P:(A->Prop)) (x:A), ((P x)->((ex A) P)))
% 13.46/13.90  famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.90  first:=(fun (X0:fofType) (X1:fofType)=> proj0):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.90  first_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.90  firstis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2))))))
% 13.46/13.90  fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.90  fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.90  fofType:Type
% 13.46/13.90  functional_extensionality:=(fun (A:Type) (B:Type)=> ((functional_extensionality_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)) (g:(A->B)), ((forall (x:A), (((eq B) (f x)) (g x)))->(((eq (A->B)) f) g)))
% 13.46/13.90  functional_extensionality_dep:(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))) (g:(forall (x:A), (B x))), ((forall (x:A), (((eq (B x)) (f x)) (g x)))->(((eq (forall (x:A), (B x))) f) g)))
% 13.46/13.90  functional_extensionality_double:=(fun (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))) (x:(forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y))))=> (((((functional_extensionality_dep A) (fun (x2:A)=> (B->C))) f) g) (fun (x0:A)=> (((((functional_extensionality_dep B) (fun (x3:B)=> C)) (f x0)) (g x0)) (x x0))))):(forall (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))), ((forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y)))->(((eq (A->(B->C))) f) g)))
% 13.46/13.90  i1_s:=(d_Sep nat):((fofType->Prop)->fofType)
% 13.46/13.90  if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))):(Prop->(fofType->(fofType->fofType)))
% 13.46/13.90  if_i_0:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.90  if_i_1:(forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1)))
% 13.46/13.90  if_i_correct:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2))))
% 13.46/13.90  if_i_or:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.90  iff:=(fun (A:Prop) (B:Prop)=> ((and (A->B)) (B->A))):(Prop->(Prop->Prop))
% 13.46/13.90  iff_refl:=(fun (A:Prop)=> ((((conj (A->A)) (A->A)) (fun (H:A)=> H)) (fun (H:A)=> H))):(forall (P:Prop), ((iff P) P))
% 13.46/13.90  iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% 13.46/13.90  iff_trans:=(fun (A:Prop) (B:Prop) (C:Prop) (AB:((iff A) B)) (BC:((iff B) C))=> ((((conj (A->C)) (C->A)) (fun (x:A)=> ((((proj1 (B->C)) (C->B)) BC) ((((proj1 (A->B)) (B->A)) AB) x)))) (fun (x:C)=> ((((proj2 (A->B)) (B->A)) AB) ((((proj2 (B->C)) (C->B)) BC) x))))):(forall (A:Prop) (B:Prop) (C:Prop), (((iff A) B)->(((iff B) C)->((iff A) C))))
% 13.46/13.90  iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.90  image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.90  imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1)):(Prop->(Prop->Prop))
% 13.46/13.90  in:(fofType->(fofType->Prop))
% 13.46/13.90  incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))):(fofType->((fofType->Prop)->fofType))
% 13.46/13.90  ind_p:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0)))))
% 13.46/13.90  indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))
% 13.46/13.90  indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.90  inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.90  injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.90  invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.90  is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)):(fofType->((fofType->Prop)->Prop))
% 13.46/13.90  isseti:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2))))))))
% 13.46/13.90  ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))):(Prop->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.90  k_EmptyAx:(((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False)
% 13.46/13.90  k_If_In_01:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset)))))
% 13.46/13.90  k_If_In_then_E:(forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2))))
% 13.46/13.90  k_In_0_1:((in emptyset) (ordsucc emptyset))
% 13.46/13.90  k_In_ind:(forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1))))
% 13.46/13.90  k_Pi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3))))))
% 13.46/13.90  k_PowerE:(forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0)))
% 13.46/13.90  k_PowerEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0)))
% 13.46/13.90  k_PowerI:(forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0))))
% 13.46/13.90  k_ReplEq:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3)))))))
% 13.46/13.90  k_Self_In_Power:(forall (X0:fofType), ((in X0) (power X0)))
% 13.46/13.90  k_SepE1:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0)))
% 13.46/13.90  k_SepE2:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2)))
% 13.46/13.90  k_SepI:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1)))))
% 13.46/13.90  k_Sigma_eta_proj0_proj1:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))))
% 13.46/13.90  k_UnionEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0))))))
% 13.46/13.90  k_UnivOf_In:(forall (X0:fofType), ((in X0) (univof X0)))
% 13.46/13.90  k_UnivOf_ZF_closed:(forall (X0:fofType), (d_ZF_closed (univof X0)))
% 13.46/13.90  l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.90  l_et:(forall (X0:Prop), ((wel X0)->X0))
% 13.46/13.90  l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))):(Prop->(Prop->Prop))
% 13.46/13.90  l_or:=(fun (X0:Prop)=> (imp (d_not X0))):(Prop->(Prop->Prop))
% 13.46/13.90  l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.90  lam_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1))))
% 13.46/13.90  lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.90  moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.90  nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)):(fofType->(fofType->Prop))
% 13.46/13.90  n_1:=(ordsucc emptyset):fofType
% 13.46/13.90  n_1_p:((is_of n_1) (fun (X0:fofType)=> ((in X0) nat)))
% 13.46/13.90  n_all:=(all nat):((fofType->Prop)->Prop)
% 13.46/13.90  n_ax3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1)))
% 13.46/13.90  n_ax4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1))))))
% 13.46/13.90  n_ax5:((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0)))))))
% 13.46/13.90  n_in:=(esti nat):(fofType->(fofType->Prop))
% 13.46/13.90  n_is:=(e_is nat):(fofType->(fofType->Prop))
% 13.46/13.90  n_one:=(one nat):((fofType->Prop)->Prop)
% 13.46/13.90  n_pl:=(fun (X0:fofType)=> (ap (plus X0))):(fofType->(fofType->fofType))
% 13.46/13.90  n_some:=(l_some nat):((fofType->Prop)->Prop)
% 13.46/13.90  nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))):fofType
% 13.46/13.90  nat_1:(nat_p (ordsucc emptyset))
% 13.46/13.90  nat_ind:(forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1))))))
% 13.46/13.90  nat_inv:(forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1))))))))
% 13.46/13.90  nat_ordsucc:(forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0))))
% 13.46/13.90  nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))):(fofType->Prop)
% 13.46/13.90  nat_p_omega:(forall (X0:fofType), ((nat_p X0)->((in X0) omega)))
% 13.46/13.90  neq_ordsucc_0:(forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset)))
% 13.46/13.90  nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.90  nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.90  non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))):(fofType->((fofType->Prop)->(fofType->Prop)))
% 13.46/13.90  nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.90  not:=(fun (P:Prop)=> (P->False)):(Prop->Prop)
% 13.46/13.90  obvious:=((imp False) False):Prop
% 13.46/13.90  omega:=((d_Sep (univof emptyset)) nat_p):fofType
% 13.46/13.90  omega_nat_p:(forall (X0:fofType), (((in X0) omega)->(nat_p X0)))
% 13.46/13.90  one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.90  oneax:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1))))
% 13.46/13.90  or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.90  or:(Prop->(Prop->Prop))
% 13.46/13.90  or_comm_i:=(fun (A:Prop) (B:Prop) (H:((or A) B))=> ((((((or_ind A) B) ((or B) A)) ((or_intror B) A)) ((or_introl B) A)) H)):(forall (A:Prop) (B:Prop), (((or A) B)->((or B) A)))
% 13.46/13.90  or_first:=(fun (A:Prop) (B:Prop)=> (((((or_ind A) B) ((B->A)->A)) (fun (x:A) (x0:(B->A))=> x)) (fun (x:B) (x0:(B->A))=> (x0 x)))):(forall (A:Prop) (B:Prop), (((or A) B)->((B->A)->A)))
% 13.46/13.90  or_ind:(forall (A:Prop) (B:Prop) (P:Prop), ((A->P)->((B->P)->(((or A) B)->P))))
% 13.46/13.90  or_introl:(forall (A:Prop) (B:Prop), (A->((or A) B)))
% 13.46/13.90  or_intror:(forall (A:Prop) (B:Prop), (B->((or A) B)))
% 13.46/13.90  or_second:=(fun (A:Prop) (B:Prop) (x:((or A) B))=> (((or_first B) A) (((or_comm_i A) B) x))):(forall (A:Prop) (B:Prop), (((or A) B)->((A->B)->B)))
% 13.46/13.90  ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0))):(fofType->fofType)
% 13.46/13.90  ordsucc_inj:(forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1)))
% 13.46/13.90  orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.90  orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.90  otax1:(forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 13.46/13.90  otax2:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2)))))
% 13.46/13.90  out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.90  pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))):(fofType->(fofType->fofType))
% 13.46/13.90  pair_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1))))))
% 13.46/13.90  pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)):(fofType->Prop)
% 13.46/13.90  pairis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2))))
% 13.46/13.90  plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->fofType)
% 13.46/13.90  power:(fofType->fofType)
% 13.46/13.90  proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.90  proj0_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0)))
% 13.46/13.90  proj0_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0))
% 13.46/13.90  proj1:(forall (A:Prop) (B:Prop), (((and A) B)->A))
% 13.46/13.90  proj1_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))
% 13.46/13.90  proj1_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1))
% 13.46/13.90  proj2:(forall (A:Prop) (B:Prop), (((and A) B)->B))
% 13.46/13.90  proj_Sigma_eta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)))
% 13.46/13.90  prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))):(Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))
% 13.46/13.90  prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))
% 13.46/13.90  prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->Prop)
% 13.46/13.90  r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.90  refis:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1))))
% 13.46/13.90  relational_choice:(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x) y))))))))))
% 13.46/13.90  repl:(fofType->((fofType->fofType)->fofType))
% 13.46/13.90  satz10:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.90  satz10a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.90  satz10b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.90  satz11:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0))))))
% 13.46/13.90  satz12:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0))))))
% 13.46/13.90  satz1:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1)))))))
% 13.46/13.90  satz2:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 13.46/13.90  satz3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.90  satz3a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.90  satz4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2))))))))))
% 13.46/13.90  satz4a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0))))
% 13.46/13.90  satz4b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.90  satz4c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0))))
% 13.46/13.90  satz4d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.90  satz4e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1))))
% 13.46/13.90  satz4f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1)))))))
% 13.46/13.90  satz4g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0))))
% 13.46/13.90  satz4h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1))))))
% 13.46/13.90  satz5:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))))))
% 13.46/13.90  satz6:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))))
% 13.46/13.90  satz7:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))))
% 13.46/13.90  satz8:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2)))))))))
% 13.46/13.90  satz8a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2))))))))
% 13.46/13.90  satz8b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))))))
% 13.46/13.90  satz9:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2)))))))))
% 13.46/13.90  satz9a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.90  satz9b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.90  second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.90  second_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1))))))
% 13.46/13.90  secondis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3))))))
% 13.46/13.90  set_ext:(forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1))))
% 13.46/13.90  setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))):(fofType->(fofType->fofType))
% 13.46/13.90  setof_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0)))))
% 13.46/13.90  setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))):(fofType->(fofType->fofType))
% 13.46/13.90  soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.90  st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.90  subrelation:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (R':(A->(B->Prop)))=> (forall (x:A) (y:B), (((R x) y)->((R' x) y)))):(forall (A:Type) (B:Type), ((A->(B->Prop))->((A->(B->Prop))->Prop)))
% 13.46/13.90  suc_p:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat)))))
% 13.46/13.92  surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  tofs:=(fun (X0:fofType) (X1:fofType)=> ap):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  union:(fofType->fofType)
% 13.46/13.92  unique:=(fun (A:Type) (P:(A->Prop)) (x:A)=> ((and (P x)) (forall (x':A), ((P x')->(((eq A) x) x'))))):(forall (A:Type), ((A->Prop)->(A->Prop)))
% 13.46/13.92  unique_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y))))))=> ((((dependent_unique_choice A) (fun (x2:A)=> B)) R) x)):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y)))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.92  univof:(fofType->fofType)
% 13.46/13.92  unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  wel:=(fun (X0:Prop)=> (d_not (d_not X0))):(Prop->Prop)
% 13.46/13.92  wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  xi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2))))]
% 13.46/13.92  ---termsubcontext
% 13.46/13.92  [[[[False:Prop
% 13.46/13.92  False_rect:(forall (P:Type), (False->P))
% 13.46/13.92  I:True
% 13.46/13.92  NNPP:=(fun (P:Prop) (H:(not (not P)))=> ((fun (C:((or P) (not P)))=> ((((((or_ind P) (not P)) P) (fun (H0:P)=> H0)) (fun (N:(not P))=> ((False_rect P) (H N)))) C)) (classic P))):(forall (P:Prop), ((not (not P))->P))
% 13.46/13.92  True:Prop
% 13.46/13.92  _TPTP_proj1:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj1 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.92  all:=(fun (X0:fofType)=> (all_of (fun (X1:fofType)=> ((in X1) X0)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.92  all_of:=(fun (X0:(fofType->Prop)) (X1:(fofType->Prop))=> (forall (X2:fofType), (((is_of X2) X0)->(X1 X2)))):((fofType->Prop)->((fofType->Prop)->Prop))
% 13.46/13.92  amone:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((X1 X3)->(((e_is X0) X2) X3)))))))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.92  and3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and X0) ((d_and X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.92  and:(Prop->(Prop->Prop))
% 13.46/13.92  and_comm_i:=(fun (A:Prop) (B:Prop) (H:((and A) B))=> ((((conj B) A) (((proj2 A) B) H)) (((proj1 A) B) H))):(forall (A:Prop) (B:Prop), (((and A) B)->((and B) A)))
% 13.46/13.92  and_rect:=(fun (A:Prop) (B:Prop) (P:Type) (X:(A->(B->P))) (H:((and A) B))=> ((X (((proj1 A) B) H)) (((proj2 A) B) H))):(forall (A:Prop) (B:Prop) (P:Type), ((A->(B->P))->(((and A) B)->P)))
% 13.46/13.92  anec:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((l_some X0) (((ecp X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->Prop)))
% 13.46/13.92  ap:=(fun (X0:fofType) (X1:fofType)=> (((d_ReplSep X0) (fun (X2:fofType)=> ((ex fofType) (fun (X3:fofType)=> (((eq fofType) X2) ((pair X1) X3)))))) _TPTP_proj1)):(fofType->(fofType->fofType))
% 13.46/13.92  ap_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType) (X3:fofType), (((in X2) ((d_Pi X0) X1))->(((in X3) X0)->((in ((ap X2) X3)) (X1 X3)))))
% 13.46/13.92  beta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(((eq fofType) ((ap ((d_Sigma X0) X1)) X2)) (X1 X2))))
% 13.46/13.92  bijective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_and (((injective X0) X1) X2)) (((surjective X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  binunion:=(fun (X0:fofType) (X1:fofType)=> (union ((d_UPair X0) X1))):(fofType->(fofType->fofType))
% 13.46/13.92  changef:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X2) ((ap (((wissel X0) X3) X4)) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.92  choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) (fun (y:B)=> ((R x) y)))))=> (((fun (P:Prop) (x0:(forall (x0:(A->(B->Prop))), (((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))->P)))=> (((((ex_ind (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x0:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x0) y)))))))) P) x0) ((((relational_choice A) B) R) x))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x0:(A->(B->Prop))) (x1:((and ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))))=> (((fun (P:Type) (x2:(((((subrelation A) B) x0) R)->((forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))->P)))=> (((((and_rect ((((subrelation A) B) x0) R)) (forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y)))))) P) x2) x1)) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x2:((((subrelation A) B) x0) R)) (x3:(forall (x00:A), ((ex B) ((unique B) (fun (y:B)=> ((x0 x00) y))))))=> (((fun (P:Prop) (x4:(forall (x1:(A->B)), ((forall (x10:A), ((x0 x10) (x1 x10)))->P)))=> (((((ex_ind (A->B)) (fun (f:(A->B))=> (forall (x1:A), ((x0 x1) (f x1))))) P) x4) ((((unique_choice A) B) x0) x3))) ((ex (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0)))))) (fun (x4:(A->B)) (x5:(forall (x10:A), ((x0 x10) (x4 x10))))=> ((((ex_intro (A->B)) (fun (f:(A->B))=> (forall (x0:A), ((R x0) (f x0))))) x4) (fun (x00:A)=> (((x2 x00) (x4 x00)) (x5 x00))))))))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.92  choice_operator:=(fun (A:Type) (a:A)=> ((((classical_choice (A->Prop)) A) (fun (x3:(A->Prop))=> x3)) a)):(forall (A:Type), (A->((ex ((A->Prop)->A)) (fun (co:((A->Prop)->A))=> (forall (P:(A->Prop)), (((ex A) (fun (x:A)=> (P x)))->(P (co P))))))))
% 13.46/13.92  classic:(forall (P:Prop), ((or P) (not P)))
% 13.46/13.92  classical_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (b:B)=> ((fun (C:((forall (x:A), ((ex B) (fun (y:B)=> (((fun (x0:A) (y0:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y0))) x) y))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((fun (x0:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x0) z)))->((R x0) y))) x) (f x)))))))=> (C (fun (x:A)=> ((fun (C0:((or ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))))=> ((((((or_ind ((ex B) (fun (z:B)=> ((R x) z)))) (not ((ex B) (fun (z:B)=> ((R x) z))))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) ((((ex_ind B) (fun (z:B)=> ((R x) z))) ((ex B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y))))) (fun (y:B) (H:((R x) y))=> ((((ex_intro B) (fun (y0:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y0)))) y) (fun (_:((ex B) (fun (z:B)=> ((R x) z))))=> H))))) (fun (N:(not ((ex B) (fun (z:B)=> ((R x) z)))))=> ((((ex_intro B) (fun (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))) b) (fun (H:((ex B) (fun (z:B)=> ((R x) z))))=> ((False_rect ((R x) b)) (N H)))))) C0)) (classic ((ex B) (fun (z:B)=> ((R x) z)))))))) (((choice A) B) (fun (x:A) (y:B)=> (((ex B) (fun (z:B)=> ((R x) z)))->((R x) y)))))):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), (B->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), (((ex B) (fun (y:B)=> ((R x) y)))->((R x) (f x))))))))
% 13.46/13.92  cond1:=(n_in n_1):(fofType->Prop)
% 13.46/13.92  cond2:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((imp ((n_in X1) X0)) ((n_in (ordsucc X1)) X0))))):(fofType->Prop)
% 13.46/13.92  conj:(forall (A:Prop) (B:Prop), (A->(B->((and A) B))))
% 13.46/13.92  d_10_prop1:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType) (X6:fofType)=> ((d_and (((esti X0) X6) (((ecect X0) X1) X4))) (((e_is X2) ((ap X3) X6)) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->(fofType->Prop)))))))
% 13.46/13.92  d_11_i:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((indeq X0) X1) ((d_Pi X0) (fun (X3:fofType)=> X2)))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.92  d_22_prop1:=(fun (X0:fofType)=> ((nis (ordsucc X0)) X0)):(fofType->Prop)
% 13.46/13.92  d_23_prop1:=(fun (X0:fofType)=> ((l_or ((n_is X0) n_1)) (n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))):(fofType->Prop)
% 13.46/13.92  d_24_g:=(fun (X0:fofType)=> ((d_Sigma nat) (fun (X1:fofType)=> (ordsucc ((ap X0) X1))))):(fofType->fofType)
% 13.46/13.92  d_24_prop1:=(fun (X0:fofType)=> (n_all (fun (X1:fofType)=> ((n_is ((ap X0) (ordsucc X1))) (ordsucc ((ap X0) X1)))))):(fofType->Prop)
% 13.46/13.92  d_24_prop2:=(fun (X0:fofType) (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (d_24_prop1 X1))):(fofType->(fofType->Prop))
% 13.46/13.92  d_25_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  d_26_prop1:=(fun (X0:fofType) (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.92  d_27_prop1:=(fun (X0:fofType) (X1:fofType)=> ((nis X1) ((n_pl X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.92  d_28_prop1:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((nis ((n_pl X0) X1)) ((n_pl X0) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  d_29_ii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.92  d_29_prop1:=(fun (X0:fofType) (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.92  d_In_rec:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType)=> (eps ((d_In_rec_G X0) X1))):((fofType->((fofType->fofType)->fofType))->(fofType->fofType))
% 13.46/13.92  d_In_rec_G:=(fun (X0:(fofType->((fofType->fofType)->fofType))) (X1:fofType) (X2:fofType)=> (forall (X3:(fofType->(fofType->Prop))), ((forall (X4:fofType) (X5:(fofType->fofType)), ((forall (X6:fofType), (((in X6) X4)->((X3 X6) (X5 X6))))->((X3 X4) ((X0 X4) X5))))->((X3 X1) X2)))):((fofType->((fofType->fofType)->fofType))->(fofType->(fofType->Prop)))
% 13.46/13.92  d_Inj0:=(fun (X0:fofType)=> ((repl X0) d_Inj1)):(fofType->fofType)
% 13.46/13.92  d_Inj1:=(d_In_rec (fun (X0:fofType) (X1:(fofType->fofType))=> ((binunion (d_Sing emptyset)) ((repl X0) X1)))):(fofType->fofType)
% 13.46/13.92  d_Pi:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((d_Sep (power ((d_Sigma X0) (fun (X2:fofType)=> (union (X1 X2)))))) (fun (X2:fofType)=> (forall (X3:fofType), (((in X3) X0)->((in ((ap X2) X3)) (X1 X3))))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.92  d_Power_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (power X1)) X0)))):(fofType->Prop)
% 13.46/13.92  d_ReplSep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (repl ((d_Sep X0) X1))):(fofType->((fofType->Prop)->((fofType->fofType)->fofType)))
% 13.46/13.92  d_Repl_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->(forall (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X1)->((in (X2 X3)) X0)))->((in ((repl X1) X2)) X0)))))):(fofType->Prop)
% 13.46/13.92  d_Sep:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((if ((ex fofType) (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))) ((repl X0) (fun (X2:fofType)=> (((if (X1 X2)) X2) (eps (fun (X3:fofType)=> ((and ((in X3) X0)) (X1 X3)))))))) emptyset)):(fofType->((fofType->Prop)->fofType))
% 13.46/13.92  d_Sigma:=(fun (X0:fofType) (X1:(fofType->fofType))=> ((famunion X0) (fun (X2:fofType)=> ((repl (X1 X2)) (pair X2))))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.92  d_Sing:=(fun (X0:fofType)=> ((d_UPair X0) X0)):(fofType->fofType)
% 13.46/13.92  d_Subq:=(fun (X0:fofType) (X1:fofType)=> (forall (X2:fofType), (((in X2) X0)->((in X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.92  d_UPair:=(fun (X0:fofType) (X1:fofType)=> ((repl (power (power emptyset))) (fun (X2:fofType)=> (((if ((in emptyset) X2)) X0) X1)))):(fofType->(fofType->fofType))
% 13.46/13.92  d_Union_closed:=(fun (X0:fofType)=> (forall (X1:fofType), (((in X1) X0)->((in (union X1)) X0)))):(fofType->Prop)
% 13.46/13.92  d_Unj:=(d_In_rec (fun (X0:fofType)=> (repl ((setminus X0) (d_Sing emptyset))))):(fofType->fofType)
% 13.46/13.92  d_ZF_closed:=(fun (X0:fofType)=> ((and ((and (d_Union_closed X0)) (d_Power_closed X0))) (d_Repl_closed X0))):(fofType->Prop)
% 13.46/13.92  d_and:=(fun (X0:Prop) (X1:Prop)=> (d_not ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.92  d_not:=(fun (X0:Prop)=> ((imp X0) False)):(Prop->Prop)
% 13.46/13.92  d_pair:=(fun (X0:fofType) (X1:fofType)=> pair):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  dependent_unique_choice:(forall (A:Type) (B:(A->Type)) (R:(forall (x:A), ((B x)->Prop))), ((forall (x:A), ((ex (B x)) ((unique (B x)) (fun (y:(B x))=> ((R x) y)))))->((ex (forall (x:A), (B x))) (fun (f:(forall (x:A), (B x)))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.92  diffprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  e_fisi:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Pi X0) (fun (X3:fofType)=> X1))))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) ((d_Pi X0) (fun (X4:fofType)=> X1))))) (fun (X3:fofType)=> (((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> (((e_is X1) ((ap X2) X4)) ((ap X3) X4))))->(((e_is ((d_Pi X0) (fun (X4:fofType)=> X1))) X2) X3)))))))
% 13.46/13.92  e_in:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> X2):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.92  e_in_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> ((is_of (((e_in X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.92  e_inp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1)))) (fun (X2:fofType)=> (X1 (((e_in X0) X1) X2)))))
% 13.46/13.92  e_is:=(fun (X0:fofType) (X:fofType) (Y:fofType)=> (((eq fofType) X) Y)):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  e_isp:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X0))) (fun (X3:fofType)=> ((X1 X2)->((((e_is X0) X2) X3)->(X1 X3))))))))
% 13.46/13.92  e_pair_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> ((is_of ((((d_pair X0) X1) X2) X3)) (fun (X4:fofType)=> ((in X4) ((setprod X0) X1)))))))))
% 13.46/13.92  ec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> (((and3 ((l_ec X0) X1)) ((l_ec X1) X2)) ((l_ec X2) X0))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.92  ecect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((e_in (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.92  ecelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> ((d_Sep X0) (X1 X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.92  ecp:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> (((e_is (power X0)) X2) (((ecelt X0) X1) X3))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.92  ect:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((d_Sep (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->fofType))
% 13.46/13.92  ectelt:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType)=> (((ectset X0) X1) (((ecelt X0) X1) X2))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.92  ectset:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop)))=> ((out (power X0)) ((anec X0) X1))):(fofType->((fofType->(fofType->Prop))->(fofType->fofType)))
% 13.46/13.92  empty:=(fun (X0:fofType) (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) (fun (X2:fofType)=> (((esti X0) X2) X1))))):(fofType->(fofType->Prop))
% 13.46/13.92  emptyset:fofType
% 13.46/13.92  eps:((fofType->Prop)->fofType)
% 13.46/13.92  eq:=(fun (T:Type) (a:T) (b:T)=> (forall (P:(T->Prop)), ((P a)->(P b)))):(forall (T:Type), (T->(T->Prop)))
% 13.46/13.92  eq_ref:=(fun (T:Type) (a:T) (P:(T->Prop)) (x:(P a))=> x):(forall (T:Type) (a:T), (((eq T) a) a))
% 13.46/13.92  eq_stepl:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) a) c))=> ((((((eq_trans T) c) a) b) ((((eq_sym T) a) c) Y)) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) a) c)->(((eq T) c) b))))
% 13.46/13.92  eq_substitution:=(fun (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq U) (f a)) (f x)))) ((eq_ref U) (f a)))):(forall (T:Type) (U:Type) (a:T) (b:T) (f:(T->U)), ((((eq T) a) b)->(((eq U) (f a)) (f b))))
% 13.46/13.92  eq_sym:=(fun (T:Type) (a:T) (b:T) (H:(((eq T) a) b))=> ((H (fun (x:T)=> (((eq T) x) a))) ((eq_ref T) a))):(forall (T:Type) (a:T) (b:T), ((((eq T) a) b)->(((eq T) b) a)))
% 13.46/13.92  eq_trans:=(fun (T:Type) (a:T) (b:T) (c:T) (X:(((eq T) a) b)) (Y:(((eq T) b) c))=> ((Y (fun (t:T)=> (((eq T) a) t))) X)):(forall (T:Type) (a:T) (b:T) (c:T), ((((eq T) a) b)->((((eq T) b) c)->(((eq T) a) c))))
% 13.46/13.92  esti:=(fun (X0:fofType)=> in):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  estie:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((((esti X0) X2) ((d_Sep X0) X1))->(X1 X2)))))
% 13.46/13.92  estii:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->(((esti X0) X2) ((d_Sep X0) X1))))))
% 13.46/13.92  eta_expansion:=(fun (A:Type) (B:Type)=> ((eta_expansion_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)), (((eq (A->B)) f) (fun (x:A)=> (f x))))
% 13.46/13.92  eta_expansion_dep:=(fun (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x)))=> (((((functional_extensionality_dep A) (fun (x1:A)=> (B x1))) f) (fun (x:A)=> (f x))) (fun (x:A) (P:((B x)->Prop)) (x0:(P (f x)))=> x0))):(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))), (((eq (forall (x:A), (B x))) f) (fun (x:A)=> (f x))))
% 13.46/13.92  ex:(forall (A:Type), ((A->Prop)->Prop))
% 13.46/13.92  ex_ind:(forall (A:Type) (F:(A->Prop)) (P:Prop), ((forall (x:A), ((F x)->P))->(((ex A) F)->P)))
% 13.46/13.92  ex_intro:(forall (A:Type) (P:(A->Prop)) (x:A), ((P x)->((ex A) P)))
% 13.46/13.92  famunion:=(fun (X0:fofType) (X1:(fofType->fofType))=> (union ((repl X0) X1))):(fofType->((fofType->fofType)->fofType))
% 13.46/13.92  first:=(fun (X0:fofType) (X1:fofType)=> proj0):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  first_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((first X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X0))))))
% 13.46/13.92  firstis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X0) (((first X0) X1) ((((d_pair X0) X1) X2) X3))) X2))))))
% 13.46/13.92  fixfu2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> ((all_of (fun (X6:fofType)=> ((in X6) X0))) (fun (X6:fofType)=> ((all_of (fun (X7:fofType)=> ((in X7) X0))) (fun (X7:fofType)=> (((X1 X4) X5)->(((X1 X6) X7)->(((e_is X2) ((ap ((ap X3) X4)) X6)) ((ap ((ap X3) X5)) X7))))))))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.92  fixfu:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType)=> ((all_of (fun (X4:fofType)=> ((in X4) X0))) (fun (X4:fofType)=> ((all_of (fun (X5:fofType)=> ((in X5) X0))) (fun (X5:fofType)=> (((X1 X4) X5)->(((e_is X2) ((ap X3) X4)) ((ap X3) X5)))))))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->Prop))))
% 13.46/13.92  fofType:Type
% 13.46/13.92  functional_extensionality:=(fun (A:Type) (B:Type)=> ((functional_extensionality_dep A) (fun (x1:A)=> B))):(forall (A:Type) (B:Type) (f:(A->B)) (g:(A->B)), ((forall (x:A), (((eq B) (f x)) (g x)))->(((eq (A->B)) f) g)))
% 13.46/13.92  functional_extensionality_dep:(forall (A:Type) (B:(A->Type)) (f:(forall (x:A), (B x))) (g:(forall (x:A), (B x))), ((forall (x:A), (((eq (B x)) (f x)) (g x)))->(((eq (forall (x:A), (B x))) f) g)))
% 13.46/13.92  functional_extensionality_double:=(fun (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))) (x:(forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y))))=> (((((functional_extensionality_dep A) (fun (x2:A)=> (B->C))) f) g) (fun (x0:A)=> (((((functional_extensionality_dep B) (fun (x3:B)=> C)) (f x0)) (g x0)) (x x0))))):(forall (A:Type) (B:Type) (C:Type) (f:(A->(B->C))) (g:(A->(B->C))), ((forall (x:A) (y:B), (((eq C) ((f x) y)) ((g x) y)))->(((eq (A->(B->C))) f) g)))
% 13.46/13.92  i1_s:=(d_Sep nat):((fofType->Prop)->fofType)
% 13.46/13.92  if:=(fun (X0:Prop) (X1:fofType) (X2:fofType)=> (eps (fun (X3:fofType)=> ((or ((and X0) (((eq fofType) X3) X1))) ((and (X0->False)) (((eq fofType) X3) X2)))))):(Prop->(fofType->(fofType->fofType)))
% 13.46/13.92  if_i_0:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->False)->(((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.92  if_i_1:(forall (X0:Prop) (X1:fofType) (X2:fofType), (X0->(((eq fofType) (((if X0) X1) X2)) X1)))
% 13.46/13.92  if_i_correct:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or ((and X0) (((eq fofType) (((if X0) X1) X2)) X1))) ((and (X0->False)) (((eq fofType) (((if X0) X1) X2)) X2))))
% 13.46/13.92  if_i_or:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((or (((eq fofType) (((if X0) X1) X2)) X1)) (((eq fofType) (((if X0) X1) X2)) X2)))
% 13.46/13.92  iff:=(fun (A:Prop) (B:Prop)=> ((and (A->B)) (B->A))):(Prop->(Prop->Prop))
% 13.46/13.92  iff_refl:=(fun (A:Prop)=> ((((conj (A->A)) (A->A)) (fun (H:A)=> H)) (fun (H:A)=> H))):(forall (P:Prop), ((iff P) P))
% 13.46/13.92  iff_sym:=(fun (A:Prop) (B:Prop) (H:((iff A) B))=> ((((conj (B->A)) (A->B)) (((proj2 (A->B)) (B->A)) H)) (((proj1 (A->B)) (B->A)) H))):(forall (A:Prop) (B:Prop), (((iff A) B)->((iff B) A)))
% 13.46/13.92  iff_trans:=(fun (A:Prop) (B:Prop) (C:Prop) (AB:((iff A) B)) (BC:((iff B) C))=> ((((conj (A->C)) (C->A)) (fun (x:A)=> ((((proj1 (B->C)) (C->B)) BC) ((((proj1 (A->B)) (B->A)) AB) x)))) (fun (x:C)=> ((((proj2 (A->B)) (B->A)) AB) ((((proj2 (B->C)) (C->B)) BC) x))))):(forall (A:Prop) (B:Prop) (C:Prop), (((iff A) B)->(((iff B) C)->((iff A) C))))
% 13.46/13.92  iii:=(fun (X0:fofType) (X1:fofType)=> (n_some ((diffprop X1) X0))):(fofType->(fofType->Prop))
% 13.46/13.92  image:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((l_some X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.92  imp:=(fun (X0:Prop) (X1:Prop)=> (X0->X1)):(Prop->(Prop->Prop))
% 13.46/13.92  in:(fofType->(fofType->Prop))
% 13.46/13.92  incl:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((imp (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  ind:=(fun (X0:fofType) (X1:(fofType->Prop))=> (eps (fun (X2:fofType)=> ((and ((in X2) X0)) (X1 X2))))):(fofType->((fofType->Prop)->fofType))
% 13.46/13.92  ind_p:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->((is_of ((ind X0) X1)) (fun (X2:fofType)=> ((in X2) X0)))))
% 13.46/13.92  indeq2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((((indeq X0) X1) X2) (((((d_11_i X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->fofType))))))
% 13.46/13.92  indeq:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType)=> ((ind X2) (((((prop2 X0) X1) X2) X3) X4))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.92  inj_h:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_Sigma X0) (fun (X5:fofType)=> ((ap X4) ((ap X3) X5))))):(fofType->(fofType->(fofType->(fofType->(fofType->fofType)))))
% 13.46/13.92  injective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((all X0) (fun (X4:fofType)=> ((imp (((e_is X1) ((ap X2) X3)) ((ap X2) X4))) (((e_is X0) X3) X4))))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  inverse:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (fun (X3:fofType)=> (((if ((((image X0) X1) X2) X3)) ((((soft X0) X1) X2) X3)) emptyset)))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  invf:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X1) (((soft X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  is_of:=(fun (X0:fofType) (X1:(fofType->Prop))=> (X1 X0)):(fofType->((fofType->Prop)->Prop))
% 13.46/13.92  isseti:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) (power X0)))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) (power X0)))) (fun (X2:fofType)=> ((((incl X0) X1) X2)->((((incl X0) X2) X1)->(((e_is (power X0)) X1) X2))))))))
% 13.46/13.92  ite:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X1) ((((prop1 X0) X1) X2) X3))):(Prop->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  k_EmptyAx:(((ex fofType) (fun (X0:fofType)=> ((in X0) emptyset)))->False)
% 13.46/13.92  k_If_In_01:(forall (X0:Prop) (X1:fofType) (X2:fofType), ((X0->((in X1) X2))->((in (((if X0) X1) emptyset)) (((if X0) X2) (ordsucc emptyset)))))
% 13.46/13.92  k_If_In_then_E:(forall (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType), (X0->(((in X1) (((if X0) X2) X3))->((in X1) X2))))
% 13.46/13.92  k_In_0_1:((in emptyset) (ordsucc emptyset))
% 13.46/13.92  k_In_ind:(forall (X0:(fofType->Prop)), ((forall (X1:fofType), ((forall (X2:fofType), (((in X2) X1)->(X0 X2)))->(X0 X1)))->(forall (X1:fofType), (X0 X1))))
% 13.46/13.92  k_Pi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Pi X0) X1))->(forall (X3:fofType), (((in X3) ((d_Pi X0) X1))->((forall (X4:fofType), (((in X4) X0)->(((eq fofType) ((ap X2) X4)) ((ap X3) X4))))->(((eq fofType) X2) X3))))))
% 13.46/13.92  k_PowerE:(forall (X0:fofType) (X1:fofType), (((in X1) (power X0))->((d_Subq X1) X0)))
% 13.46/13.92  k_PowerEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (power X0))) ((d_Subq X1) X0)))
% 13.46/13.92  k_PowerI:(forall (X0:fofType) (X1:fofType), (((d_Subq X1) X0)->((in X1) (power X0))))
% 13.46/13.92  k_ReplEq:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), ((iff ((in X2) ((repl X0) X1))) ((ex fofType) (fun (X3:fofType)=> ((and ((in X3) X0)) (((eq fofType) X2) (X1 X3)))))))
% 13.46/13.92  k_Self_In_Power:(forall (X0:fofType), ((in X0) (power X0)))
% 13.46/13.92  k_SepE1:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->((in X2) X0)))
% 13.46/13.92  k_SepE2:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) ((d_Sep X0) X1))->(X1 X2)))
% 13.46/13.92  k_SepI:(forall (X0:fofType) (X1:(fofType->Prop)) (X2:fofType), (((in X2) X0)->((X1 X2)->((in X2) ((d_Sep X0) X1)))))
% 13.46/13.92  k_Sigma_eta_proj0_proj1:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((and ((and (((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)) ((in (proj0 X2)) X0))) ((in (_TPTP_proj1 X2)) (X1 (proj0 X2))))))
% 13.46/13.92  k_UnionEq:(forall (X0:fofType) (X1:fofType), ((iff ((in X1) (union X0))) ((ex fofType) (fun (X2:fofType)=> ((and ((in X1) X2)) ((in X2) X0))))))
% 13.46/13.92  k_UnivOf_In:(forall (X0:fofType), ((in X0) (univof X0)))
% 13.46/13.92  k_UnivOf_ZF_closed:(forall (X0:fofType), (d_ZF_closed (univof X0)))
% 13.46/13.92  l_ec:=(fun (X0:Prop) (X1:Prop)=> ((imp X0) (d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.92  l_et:(forall (X0:Prop), ((wel X0)->X0))
% 13.46/13.92  l_iff:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((imp X0) X1)) ((imp X1) X0))):(Prop->(Prop->Prop))
% 13.46/13.92  l_or:=(fun (X0:Prop)=> (imp (d_not X0))):(Prop->(Prop->Prop))
% 13.46/13.92  l_some:=(fun (X0:fofType) (X1:(fofType->Prop))=> (d_not ((all_of (fun (X2:fofType)=> ((in X2) X0))) ((non X0) X1)))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.92  lam_Pi:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->((in (X2 X3)) (X1 X3))))->((in ((d_Sigma X0) X2)) ((d_Pi X0) X1))))
% 13.46/13.92  lessis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((iii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.92  moreis:=(fun (X0:fofType) (X1:fofType)=> ((l_or ((d_29_ii X0) X1)) ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.92  nIn:=(fun (X0:fofType) (X1:fofType)=> (((in X0) X1)->False)):(fofType->(fofType->Prop))
% 13.46/13.92  n_1:=(ordsucc emptyset):fofType
% 13.46/13.92  n_1_p:((is_of n_1) (fun (X0:fofType)=> ((in X0) nat)))
% 13.46/13.92  n_all:=(all nat):((fofType->Prop)->Prop)
% 13.46/13.92  n_ax3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) n_1)))
% 13.46/13.92  n_ax4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((n_is (ordsucc X0)) (ordsucc X1))->((n_is X0) X1))))))
% 13.46/13.92  n_ax5:((all_of (fun (X0:fofType)=> ((in X0) (power nat)))) (fun (X0:fofType)=> ((cond1 X0)->((cond2 X0)->((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_in X1) X0)))))))
% 13.46/13.92  n_in:=(esti nat):(fofType->(fofType->Prop))
% 13.46/13.92  n_is:=(e_is nat):(fofType->(fofType->Prop))
% 13.46/13.92  n_one:=(one nat):((fofType->Prop)->Prop)
% 13.46/13.92  n_pl:=(fun (X0:fofType)=> (ap (plus X0))):(fofType->(fofType->fofType))
% 13.46/13.92  n_some:=(l_some nat):((fofType->Prop)->Prop)
% 13.46/13.92  nat:=((d_Sep omega) (fun (X0:fofType)=> (not (((eq fofType) X0) emptyset)))):fofType
% 13.46/13.92  nat_1:(nat_p (ordsucc emptyset))
% 13.46/13.92  nat_ind:(forall (X0:(fofType->Prop)), ((X0 emptyset)->((forall (X1:fofType), ((nat_p X1)->((X0 X1)->(X0 (ordsucc X1)))))->(forall (X1:fofType), ((nat_p X1)->(X0 X1))))))
% 13.46/13.92  nat_inv:(forall (X0:fofType), ((nat_p X0)->((or (((eq fofType) X0) emptyset)) ((ex fofType) (fun (X1:fofType)=> ((and (nat_p X1)) (((eq fofType) X0) (ordsucc X1))))))))
% 13.46/13.92  nat_ordsucc:(forall (X0:fofType), ((nat_p X0)->(nat_p (ordsucc X0))))
% 13.46/13.92  nat_p:=(fun (X0:fofType)=> (forall (X1:(fofType->Prop)), ((X1 emptyset)->((forall (X2:fofType), ((X1 X2)->(X1 (ordsucc X2))))->(X1 X0))))):(fofType->Prop)
% 13.46/13.92  nat_p_omega:(forall (X0:fofType), ((nat_p X0)->((in X0) omega)))
% 13.46/13.92  neq_ordsucc_0:(forall (X0:fofType), (not (((eq fofType) (ordsucc X0)) emptyset)))
% 13.46/13.92  nis:=(fun (X0:fofType) (X1:fofType)=> (d_not ((n_is X0) X1))):(fofType->(fofType->Prop))
% 13.46/13.92  nissetprop:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((d_and (((esti X0) X3) X1)) (d_not (((esti X0) X3) X2)))):(fofType->(fofType->(fofType->(fofType->Prop))))
% 13.46/13.92  non:=(fun (X0:fofType) (X1:(fofType->Prop)) (X2:fofType)=> (d_not (X1 X2))):(fofType->((fofType->Prop)->(fofType->Prop)))
% 13.46/13.92  nonempty:=(fun (X0:fofType) (X1:fofType)=> ((l_some X0) (fun (X2:fofType)=> (((esti X0) X2) X1)))):(fofType->(fofType->Prop))
% 13.46/13.92  not:=(fun (P:Prop)=> (P->False)):(Prop->Prop)
% 13.46/13.92  obvious:=((imp False) False):Prop
% 13.46/13.92  omega:=((d_Sep (univof emptyset)) nat_p):fofType
% 13.46/13.92  omega_nat_p:(forall (X0:fofType), (((in X0) omega)->(nat_p X0)))
% 13.46/13.92  one:=(fun (X0:fofType) (X1:(fofType->Prop))=> ((d_and ((amone X0) X1)) ((l_some X0) X1))):(fofType->((fofType->Prop)->Prop))
% 13.46/13.92  oneax:(forall (X0:fofType) (X1:(fofType->Prop)), (((one X0) X1)->(X1 ((ind X0) X1))))
% 13.46/13.92  or3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((l_or X0) ((l_or X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.92  or:(Prop->(Prop->Prop))
% 13.46/13.92  or_comm_i:=(fun (A:Prop) (B:Prop) (H:((or A) B))=> ((((((or_ind A) B) ((or B) A)) ((or_intror B) A)) ((or_introl B) A)) H)):(forall (A:Prop) (B:Prop), (((or A) B)->((or B) A)))
% 13.46/13.92  or_first:=(fun (A:Prop) (B:Prop)=> (((((or_ind A) B) ((B->A)->A)) (fun (x:A) (x0:(B->A))=> x)) (fun (x:B) (x0:(B->A))=> (x0 x)))):(forall (A:Prop) (B:Prop), (((or A) B)->((B->A)->A)))
% 13.46/13.92  or_ind:(forall (A:Prop) (B:Prop) (P:Prop), ((A->P)->((B->P)->(((or A) B)->P))))
% 13.46/13.92  or_introl:(forall (A:Prop) (B:Prop), (A->((or A) B)))
% 13.46/13.92  or_intror:(forall (A:Prop) (B:Prop), (B->((or A) B)))
% 13.46/13.92  or_second:=(fun (A:Prop) (B:Prop) (x:((or A) B))=> (((or_first B) A) (((or_comm_i A) B) x))):(forall (A:Prop) (B:Prop), (((or A) B)->((A->B)->B)))
% 13.46/13.92  ordsucc:=(fun (X0:fofType)=> ((binunion X0) (d_Sing X0))):(fofType->fofType)
% 13.46/13.92  ordsucc_inj:(forall (X0:fofType) (X1:fofType), ((((eq fofType) (ordsucc X0)) (ordsucc X1))->(((eq fofType) X0) X1)))
% 13.46/13.92  orec3:=(fun (X0:Prop) (X1:Prop) (X2:Prop)=> ((d_and (((or3 X0) X1) X2)) (((ec3 X0) X1) X2))):(Prop->(Prop->(Prop->Prop)))
% 13.46/13.92  orec:=(fun (X0:Prop) (X1:Prop)=> ((d_and ((l_or X0) X1)) ((l_ec X0) X1))):(Prop->(Prop->Prop))
% 13.46/13.92  otax1:(forall (X0:fofType) (X1:(fofType->Prop)), (((injective ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))))
% 13.46/13.92  otax2:(forall (X0:fofType) (X1:(fofType->Prop)), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((X1 X2)->((((image ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1))) X2)))))
% 13.46/13.92  out:=(fun (X0:fofType) (X1:(fofType->Prop))=> (((soft ((d_Sep X0) X1)) X0) ((d_Sigma ((d_Sep X0) X1)) ((e_in X0) X1)))):(fofType->((fofType->Prop)->(fofType->fofType)))
% 13.46/13.92  pair:=(fun (X0:fofType) (X1:fofType)=> ((binunion ((repl X0) d_Inj0)) ((repl X1) d_Inj1))):(fofType->(fofType->fofType))
% 13.46/13.92  pair_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) X0)->(forall (X3:fofType), (((in X3) (X1 X2))->((in ((pair X2) X3)) ((d_Sigma X0) X1))))))
% 13.46/13.92  pair_p:=(fun (X0:fofType)=> (((eq fofType) ((pair ((ap X0) emptyset)) ((ap X0) (ordsucc emptyset)))) X0)):(fofType->Prop)
% 13.46/13.92  pairis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> (((e_is ((setprod X0) X1)) ((((d_pair X0) X1) (((first X0) X1) X2)) (((second X0) X1) X2))) X2))))
% 13.46/13.92  plus:=(fun (X0:fofType)=> ((ind ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->fofType)
% 13.46/13.92  power:(fofType->fofType)
% 13.46/13.92  proj0:=(fun (X0:fofType)=> (((d_ReplSep X0) (fun (X1:fofType)=> ((ex fofType) (fun (X2:fofType)=> (((eq fofType) (d_Inj0 X2)) X1))))) d_Unj)):(fofType->fofType)
% 13.46/13.92  proj0_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (proj0 X2)) X0)))
% 13.46/13.92  proj0_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (proj0 ((pair X0) X1))) X0))
% 13.46/13.92  proj1:(forall (A:Prop) (B:Prop), (((and A) B)->A))
% 13.46/13.92  proj1_Sigma:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->((in (_TPTP_proj1 X2)) (X1 (proj0 X2)))))
% 13.46/13.92  proj1_pair_eq:(forall (X0:fofType) (X1:fofType), (((eq fofType) (_TPTP_proj1 ((pair X0) X1))) X1))
% 13.46/13.92  proj2:(forall (A:Prop) (B:Prop), (((and A) B)->B))
% 13.46/13.92  proj_Sigma_eta:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:fofType), (((in X2) ((d_Sigma X0) X1))->(((eq fofType) ((pair (proj0 X2)) (_TPTP_proj1 X2))) X2)))
% 13.46/13.92  prop1:=(fun (X0:Prop) (X1:fofType) (X2:fofType) (X3:fofType) (X4:fofType)=> ((d_and ((imp X0) (((e_is X1) X4) X2))) ((imp (d_not X0)) (((e_is X1) X4) X3)))):(Prop->(fofType->(fofType->(fofType->(fofType->Prop)))))
% 13.46/13.92  prop2:=(fun (X0:fofType) (X1:(fofType->(fofType->Prop))) (X2:fofType) (X3:fofType) (X4:fofType) (X5:fofType)=> ((l_some X0) ((((((d_10_prop1 X0) X1) X2) X3) X4) X5))):(fofType->((fofType->(fofType->Prop))->(fofType->(fofType->(fofType->(fofType->Prop))))))
% 13.46/13.92  prop3:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((n_is ((ap X0) X2)) ((ap X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  prop4:=(fun (X0:fofType)=> ((l_some ((d_Pi nat) (fun (X1:fofType)=> nat))) (d_24_prop2 X0))):(fofType->Prop)
% 13.46/13.92  r_ec:=(fun (X0:Prop) (X1:Prop)=> (X0->(d_not X1))):(Prop->(Prop->Prop))
% 13.46/13.92  refis:(forall (X0:fofType), ((all_of (fun (X1:fofType)=> ((in X1) X0))) (fun (X1:fofType)=> (((e_is X0) X1) X1))))
% 13.46/13.92  relational_choice:(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) (fun (y:B)=> ((R x) y))))->((ex (A->(B->Prop))) (fun (R':(A->(B->Prop)))=> ((and ((((subrelation A) B) R') R)) (forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R' x) y))))))))))
% 13.46/13.92  repl:(fofType->((fofType->fofType)->fofType))
% 13.46/13.92  satz10:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.92  satz10a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.92  satz10b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) ((d_29_ii X0) X1)) ((iii X0) X1))))))
% 13.46/13.92  satz11:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((d_29_ii X0) X1)->((iii X1) X0))))))
% 13.46/13.92  satz12:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((iii X0) X1)->((d_29_ii X1) X0))))))
% 13.46/13.92  satz1:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((nis X0) X1)->((nis (ordsucc X0)) (ordsucc X1)))))))
% 13.46/13.92  satz2:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((nis (ordsucc X0)) X0)))
% 13.46/13.92  satz3:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_some (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.92  satz3a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> (((nis X0) n_1)->(n_one (fun (X1:fofType)=> ((n_is X0) (ordsucc X1)))))))
% 13.46/13.92  satz4:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((one ((d_Pi nat) (fun (X1:fofType)=> nat))) (fun (X1:fofType)=> ((d_and ((n_is ((ap X1) n_1)) (ordsucc X0))) (n_all (fun (X2:fofType)=> ((n_is ((ap X1) (ordsucc X2))) (ordsucc ((ap X1) X2))))))))))
% 13.46/13.92  satz4a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl X0) n_1)) (ordsucc X0))))
% 13.46/13.92  satz4b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) (ordsucc X1))) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.92  satz4c:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is ((n_pl n_1) X0)) (ordsucc X0))))
% 13.46/13.92  satz4d:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl (ordsucc X0)) X1)) (ordsucc ((n_pl X0) X1)))))))
% 13.46/13.92  satz4e:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl X0) n_1))))
% 13.46/13.92  satz4f:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl X0) (ordsucc X1)))))))
% 13.46/13.92  satz4g:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((n_is (ordsucc X0)) ((n_pl n_1) X0))))
% 13.46/13.92  satz4h:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is (ordsucc ((n_pl X0) X1))) ((n_pl (ordsucc X0)) X1))))))
% 13.46/13.92  satz5:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> ((n_is ((n_pl ((n_pl X0) X1)) X2)) ((n_pl X0) ((n_pl X1) X2)))))))))
% 13.46/13.92  satz6:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((n_is ((n_pl X0) X1)) ((n_pl X1) X0))))))
% 13.46/13.92  satz7:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((nis X1) ((n_pl X0) X1))))))
% 13.46/13.92  satz8:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((nis X1) X2)->((nis ((n_pl X0) X1)) ((n_pl X0) X2)))))))))
% 13.46/13.92  satz8a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((all_of (fun (X2:fofType)=> ((in X2) nat))) (fun (X2:fofType)=> (((n_is ((n_pl X0) X1)) ((n_pl X0) X2))->((n_is X1) X2))))))))
% 13.46/13.92  satz8b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> ((amone nat) (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))))))
% 13.46/13.92  satz9:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((orec3 ((n_is X0) X1)) (n_some (fun (X2:fofType)=> ((n_is X0) ((n_pl X1) X2))))) (n_some (fun (X2:fofType)=> ((n_is X1) ((n_pl X0) X2)))))))))
% 13.46/13.92  satz9a:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((or3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.92  satz9b:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((ec3 ((n_is X0) X1)) (n_some ((diffprop X0) X1))) (n_some ((diffprop X1) X0)))))))
% 13.46/13.92  second:=(fun (X0:fofType) (X1:fofType)=> _TPTP_proj1):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  second_p:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) ((setprod X0) X1)))) (fun (X2:fofType)=> ((is_of (((second X0) X1) X2)) (fun (X3:fofType)=> ((in X3) X1))))))
% 13.46/13.92  secondis1:(forall (X0:fofType) (X1:fofType), ((all_of (fun (X2:fofType)=> ((in X2) X0))) (fun (X2:fofType)=> ((all_of (fun (X3:fofType)=> ((in X3) X1))) (fun (X3:fofType)=> (((e_is X1) (((second X0) X1) ((((d_pair X0) X1) X2) X3))) X3))))))
% 13.46/13.92  set_ext:(forall (X0:fofType) (X1:fofType), (((d_Subq X0) X1)->(((d_Subq X1) X0)->(((eq fofType) X0) X1))))
% 13.46/13.92  setminus:=(fun (X0:fofType) (X1:fofType)=> ((d_Sep X0) (fun (X2:fofType)=> ((nIn X2) X1)))):(fofType->(fofType->fofType))
% 13.46/13.92  setof_p:(forall (X0:fofType) (X1:(fofType->Prop)), ((is_of ((d_Sep X0) X1)) (fun (X2:fofType)=> ((in X2) (power X0)))))
% 13.46/13.92  setprod:=(fun (X0:fofType) (X1:fofType)=> ((d_Sigma X0) (fun (X2:fofType)=> X1))):(fofType->(fofType->fofType))
% 13.46/13.92  soft:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((ind X0) (fun (X4:fofType)=> (((e_is X1) X3) ((ap X2) X4))))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  st_disj:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X0) (fun (X3:fofType)=> ((l_ec (((esti X0) X3) X1)) (((esti X0) X3) X2))))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  subrelation:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (R':(A->(B->Prop)))=> (forall (x:A) (y:B), (((R x) y)->((R' x) y)))):(forall (A:Type) (B:Type), ((A->(B->Prop))->((A->(B->Prop))->Prop)))
% 13.46/13.92  suc_p:((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((is_of (ordsucc X0)) (fun (X1:fofType)=> ((in X1) nat)))))
% 13.46/13.92  surjective:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((all X1) (((image X0) X1) X2))):(fofType->(fofType->(fofType->Prop)))
% 13.46/13.92  tofs:=(fun (X0:fofType) (X1:fofType)=> ap):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  union:(fofType->fofType)
% 13.46/13.92  unique:=(fun (A:Type) (P:(A->Prop)) (x:A)=> ((and (P x)) (forall (x':A), ((P x')->(((eq A) x) x'))))):(forall (A:Type), ((A->Prop)->(A->Prop)))
% 13.46/13.92  unique_choice:=(fun (A:Type) (B:Type) (R:(A->(B->Prop))) (x:(forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y))))))=> ((((dependent_unique_choice A) (fun (x2:A)=> B)) R) x)):(forall (A:Type) (B:Type) (R:(A->(B->Prop))), ((forall (x:A), ((ex B) ((unique B) (fun (y:B)=> ((R x) y)))))->((ex (A->B)) (fun (f:(A->B))=> (forall (x:A), ((R x) (f x)))))))
% 13.46/13.92  univof:(fofType->fofType)
% 13.46/13.92  unmore:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sep X0) (fun (X3:fofType)=> ((l_some X1) (fun (X4:fofType)=> (((esti X0) X3) ((ap X2) X4))))))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  wel:=(fun (X0:Prop)=> (d_not (d_not X0))):(Prop->Prop)
% 13.46/13.92  wissel:=(fun (X0:fofType) (X1:fofType) (X2:fofType)=> ((d_Sigma X0) (((wissel_wb X0) X1) X2))):(fofType->(fofType->(fofType->fofType)))
% 13.46/13.92  wissel_wa:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X1)) X0) X2) X3)):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  wissel_wb:=(fun (X0:fofType) (X1:fofType) (X2:fofType) (X3:fofType)=> ((((ite (((e_is X0) X3) X2)) X0) X1) ((((wissel_wa X0) X1) X2) X3))):(fofType->(fofType->(fofType->(fofType->fofType))))
% 13.46/13.92  xi_ext:(forall (X0:fofType) (X1:(fofType->fofType)) (X2:(fofType->fofType)), ((forall (X3:fofType), (((in X3) X0)->(((eq fofType) (X1 X3)) (X2 X3))))->(((eq fofType) ((d_Sigma X0) X1)) ((d_Sigma X0) X2))))]X0:fofType
% 13.46/13.92  X1:(fofType->Prop)
% 13.46/13.92  X2:fofType]x:((is_of X2) (fun (X2:fofType)=> ((in X2) ((d_Sep X0) X1))))]x0:fofType] (rdef{??}) X2:=((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0)))))):Prop
% 13.46/13.92  ---
% 13.46/13.92  self=((all_of (fun (X0:fofType)=> ((in X0) nat))) (fun (X0:fofType)=> ((all_of (fun (X1:fofType)=> ((in X1) nat))) (fun (X1:fofType)=> (((moreis X0) X1)->((lessis X1) X0)))))):Prop
% 13.46/13.92  term=(((e_in X0) X1) X2):fofType
% 13.46/13.92  --- does not match type in application fofType vs Prop in (((e_in X0) X1) ((all_of (fun X0:fofType=> ((in X0) nat))) (fun X0:fofType=> ((all_of (fun X1:fofType=> ((in X1) nat))) (fun X1:fofType=> (forall x:((moreis X0) X1), ((lessis X1) X0)))))))
% 13.46/13.92  Unexpected exception Does not match type in application fofType vs Prop in (((e_in X0) X1) ((all_of (fun X0:fofType=> ((in X0) nat))) (fun X0:fofType=> ((all_of (fun X1:fofType=> ((in X1) nat))) (fun X1:fofType=> (forall x:((moreis X0) X1), ((lessis X1) X0)))))))
% 13.46/13.92  
% 13.46/13.92  Traceback (most recent call last):
% 13.46/13.92    File "CASC.py", line 80, in <module>
% 13.46/13.92      proof=problem.solve()
% 13.46/13.92    File "/export/starexec/sandbox/solver/bin/TPTP.py", line 95, in solve
% 13.46/13.92      for x in self.solveyielding():
% 13.46/13.92    File "/export/starexec/sandbox/solver/bin/TPTP.py", line 83, in solveyielding
% 13.46/13.92      for proof in proofgen: yield proof
% 13.46/13.92    File "/export/starexec/sandbox/solver/bin/prover.py", line 422, in proveyielding
% 13.46/13.92      results=node.look() #Can add nodes
% 13.46/13.92    File "/export/starexec/sandbox/solver/bin/prover.py", line 1221, in look
% 13.46/13.92      matching=target.match(term.body,self.context,termbodycontext,instantiate=True)
% 13.46/13.92    File "/export/starexec/sandbox/solver/bin/kernel.py", line 576, in match
% 13.46/13.92      atermmatch=s.abstracttermmatch(params,context,termcontext,instantiate=instantiate)
% 13.46/13.92    File "/export/starexec/sandbox/solver/bin/kernel.py", line 1192, in abstracttermmatch
% 13.46/13.92      print "t=%s:%s" % (t,t.gettype(termsubcontext))
% 13.46/13.92  kernel.TypecheckError: Does not match type in application fofType vs Prop in (((e_in X0) X1) ((all_of (fun X0:fofType=> ((in X0) nat))) (fun X0:fofType=> ((all_of (fun X1:fofType=> ((in X1) nat))) (fun X1:fofType=> (forall x:((moreis X0) X1), ((lessis X1) X0)))))))
% 13.46/13.92  
%------------------------------------------------------------------------------