TSTP Solution File: NUM594+1 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : NUM594+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n001.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 11:57:10 EDT 2023

% Result   : Theorem 143.96s 18.99s
% Output   : Proof 144.82s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : NUM594+1 : TPTP v8.1.2. Released v4.0.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.13/0.34  % Computer : n001.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 300
% 0.13/0.34  % DateTime : Fri Aug 25 16:17:14 EDT 2023
% 0.13/0.34  % CPUTime  : 
% 143.96/18.99  Command-line arguments: --set-join --lhs-weight 1 --no-flatten-goal --complete-subsets --goal-heuristic
% 143.96/18.99  
% 143.96/18.99  % SZS status Theorem
% 143.96/18.99  
% 143.96/19.00  % SZS output start Proof
% 143.96/19.00  Take the following subset of the input axioms:
% 143.96/19.00    fof(mCountNFin, axiom, ![W0]: ((aSet0(W0) & isCountable0(W0)) => ~isFinite0(W0))).
% 143.96/19.00    fof(mCountNFin_01, axiom, ![W0_2]: ((aSet0(W0_2) & isCountable0(W0_2)) => W0_2!=slcrc0)).
% 143.96/19.00    fof(mDefDiff, definition, ![W1, W0_2]: ((aSet0(W0_2) & aElement0(W1)) => ![W2]: (W2=sdtmndt0(W0_2, W1) <=> (aSet0(W2) & ![W3]: (aElementOf0(W3, W2) <=> (aElement0(W3) & (aElementOf0(W3, W0_2) & W3!=W1))))))).
% 143.96/19.00    fof(mDefEmp, definition, ![W0_2]: (W0_2=slcrc0 <=> (aSet0(W0_2) & ~?[W1_2]: aElementOf0(W1_2, W0_2)))).
% 143.96/19.00    fof(mDefSImg, definition, ![W0_2]: (aFunction0(W0_2) => ![W1_2]: (aSubsetOf0(W1_2, szDzozmdt0(W0_2)) => ![W2_2]: (W2_2=sdtlcdtrc0(W0_2, W1_2) <=> (aSet0(W2_2) & ![W3_2]: (aElementOf0(W3_2, W2_2) <=> ?[W4]: (aElementOf0(W4, W1_2) & sdtlpdtrp0(W0_2, W4)=W3_2))))))).
% 143.96/19.00    fof(mNATSet, axiom, aSet0(szNzAzT0) & isCountable0(szNzAzT0)).
% 143.96/19.00    fof(mNatNSucc, axiom, ![W0_2]: (aElementOf0(W0_2, szNzAzT0) => W0_2!=szszuzczcdt0(W0_2))).
% 143.96/19.00    fof(mNoScLessZr, axiom, ![W0_2]: (aElementOf0(W0_2, szNzAzT0) => ~sdtlseqdt0(szszuzczcdt0(W0_2), sz00))).
% 143.96/19.01    fof(mSubRefl, axiom, ![W0_2]: (aSet0(W0_2) => aSubsetOf0(W0_2, W0_2))).
% 143.96/19.01    fof(mSuccNum, axiom, ![W0_2]: (aElementOf0(W0_2, szNzAzT0) => (aElementOf0(szszuzczcdt0(W0_2), szNzAzT0) & szszuzczcdt0(W0_2)!=sz00))).
% 143.96/19.01    fof(m__, conjecture, ?[W0_2]: (aElementOf0(W0_2, szNzAzT0) & sdtlpdtrp0(xd, W0_2)=xx)).
% 143.96/19.01    fof(m__4730, hypothesis, aFunction0(xd) & (szDzozmdt0(xd)=szNzAzT0 & ![W0_2]: (aElementOf0(W0_2, szNzAzT0) => ![W1_2]: ((aSet0(W1_2) & aElementOf0(W1_2, slbdtsldtrb0(sdtlpdtrp0(xN, szszuzczcdt0(W0_2)), xk))) => sdtlpdtrp0(xd, W0_2)=sdtlpdtrp0(sdtlpdtrp0(xC, W0_2), W1_2))))).
% 143.96/19.01    fof(m__4781, hypothesis, aElementOf0(xx, sdtlcdtrc0(xd, szDzozmdt0(xd)))).
% 143.96/19.01  
% 143.96/19.01  Now clausify the problem and encode Horn clauses using encoding 3 of
% 143.96/19.01  http://www.cse.chalmers.se/~nicsma/papers/horn.pdf.
% 143.96/19.01  We repeatedly replace C & s=t => u=v by the two clauses:
% 143.96/19.01    fresh(y, y, x1...xn) = u
% 143.96/19.01    C => fresh(s, t, x1...xn) = v
% 143.96/19.01  where fresh is a fresh function symbol and x1..xn are the free
% 143.96/19.01  variables of u and v.
% 143.96/19.01  A predicate p(X) is encoded as p(X)=true (this is sound, because the
% 143.96/19.01  input problem has no model of domain size 1).
% 143.96/19.01  
% 143.96/19.01  The encoding turns the above axioms into the following unit equations and goals:
% 143.96/19.01  
% 143.96/19.01  Axiom 1 (m__4730_1): aFunction0(xd) = true2.
% 143.96/19.01  Axiom 2 (m__4730): szDzozmdt0(xd) = szNzAzT0.
% 143.96/19.01  Axiom 3 (mNATSet): aSet0(szNzAzT0) = true2.
% 143.96/19.01  Axiom 4 (mSubRefl): fresh28(X, X, Y) = true2.
% 143.96/19.01  Axiom 5 (mSubRefl): fresh28(aSet0(X), true2, X) = aSubsetOf0(X, X).
% 144.82/19.01  Axiom 6 (mDefSImg): fresh190(X, X, Y, Z, W) = true2.
% 144.82/19.01  Axiom 7 (mDefSImg_7): fresh75(X, X, Y, Z, W) = true2.
% 144.82/19.01  Axiom 8 (mDefSImg_6): fresh2(X, X, Y, Z, W) = W.
% 144.82/19.01  Axiom 9 (m__4781): aElementOf0(xx, sdtlcdtrc0(xd, szDzozmdt0(xd))) = true2.
% 144.82/19.01  Axiom 10 (mDefSImg): fresh188(X, X, Y, Z, W, V) = equiv(Y, Z, V).
% 144.82/19.01  Axiom 11 (mDefSImg): fresh189(X, X, Y, Z, W, V) = fresh190(W, sdtlcdtrc0(Y, Z), Y, Z, V).
% 144.82/19.01  Axiom 12 (mDefSImg): fresh187(X, X, Y, Z, W, V) = fresh188(aElementOf0(V, W), true2, Y, Z, W, V).
% 144.82/19.01  Axiom 13 (mDefSImg_7): fresh75(equiv(X, Y, Z), true2, X, Y, Z) = aElementOf0(w4_2(X, Y, Z), Y).
% 144.82/19.01  Axiom 14 (mDefSImg_6): fresh2(equiv(X, Y, Z), true2, X, Y, Z) = sdtlpdtrp0(X, w4_2(X, Y, Z)).
% 144.82/19.01  Axiom 15 (mDefSImg): fresh187(aFunction0(X), true2, X, Y, Z, W) = fresh189(aSubsetOf0(Y, szDzozmdt0(X)), true2, X, Y, Z, W).
% 144.82/19.01  
% 144.82/19.01  Lemma 16: equiv(xd, szNzAzT0, xx) = true2.
% 144.82/19.01  Proof:
% 144.82/19.01    equiv(xd, szNzAzT0, xx)
% 144.82/19.01  = { by axiom 10 (mDefSImg) R->L }
% 144.82/19.01    fresh188(true2, true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 9 (m__4781) R->L }
% 144.82/19.01    fresh188(aElementOf0(xx, sdtlcdtrc0(xd, szDzozmdt0(xd))), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 2 (m__4730) }
% 144.82/19.01    fresh188(aElementOf0(xx, sdtlcdtrc0(xd, szNzAzT0)), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 12 (mDefSImg) R->L }
% 144.82/19.01    fresh187(true2, true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 1 (m__4730_1) R->L }
% 144.82/19.01    fresh187(aFunction0(xd), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 15 (mDefSImg) }
% 144.82/19.01    fresh189(aSubsetOf0(szNzAzT0, szDzozmdt0(xd)), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 2 (m__4730) }
% 144.82/19.01    fresh189(aSubsetOf0(szNzAzT0, szNzAzT0), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 5 (mSubRefl) R->L }
% 144.82/19.01    fresh189(fresh28(aSet0(szNzAzT0), true2, szNzAzT0), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 3 (mNATSet) }
% 144.82/19.01    fresh189(fresh28(true2, true2, szNzAzT0), true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 4 (mSubRefl) }
% 144.82/19.01    fresh189(true2, true2, xd, szNzAzT0, sdtlcdtrc0(xd, szNzAzT0), xx)
% 144.82/19.01  = { by axiom 11 (mDefSImg) }
% 144.82/19.01    fresh190(sdtlcdtrc0(xd, szNzAzT0), sdtlcdtrc0(xd, szNzAzT0), xd, szNzAzT0, xx)
% 144.82/19.01  = { by axiom 6 (mDefSImg) }
% 144.82/19.01    true2
% 144.82/19.01  
% 144.82/19.01  Goal 1 (m__): tuple4(sdtlpdtrp0(xd, X), aElementOf0(X, szNzAzT0)) = tuple4(xx, true2).
% 144.82/19.01  The goal is true when:
% 144.82/19.01    X = w4_2(xd, szNzAzT0, xx)
% 144.82/19.01  
% 144.82/19.01  Proof:
% 144.82/19.01    tuple4(sdtlpdtrp0(xd, w4_2(xd, szNzAzT0, xx)), aElementOf0(w4_2(xd, szNzAzT0, xx), szNzAzT0))
% 144.82/19.01  = { by axiom 14 (mDefSImg_6) R->L }
% 144.82/19.01    tuple4(fresh2(equiv(xd, szNzAzT0, xx), true2, xd, szNzAzT0, xx), aElementOf0(w4_2(xd, szNzAzT0, xx), szNzAzT0))
% 144.82/19.01  = { by lemma 16 }
% 144.82/19.01    tuple4(fresh2(true2, true2, xd, szNzAzT0, xx), aElementOf0(w4_2(xd, szNzAzT0, xx), szNzAzT0))
% 144.82/19.01  = { by axiom 8 (mDefSImg_6) }
% 144.82/19.01    tuple4(xx, aElementOf0(w4_2(xd, szNzAzT0, xx), szNzAzT0))
% 144.82/19.01  = { by axiom 13 (mDefSImg_7) R->L }
% 144.82/19.01    tuple4(xx, fresh75(equiv(xd, szNzAzT0, xx), true2, xd, szNzAzT0, xx))
% 144.82/19.01  = { by lemma 16 }
% 144.82/19.01    tuple4(xx, fresh75(true2, true2, xd, szNzAzT0, xx))
% 144.82/19.01  = { by axiom 7 (mDefSImg_7) }
% 144.82/19.01    tuple4(xx, true2)
% 144.82/19.01  % SZS output end Proof
% 144.82/19.01  
% 144.82/19.01  RESULT: Theorem (the conjecture is true).
%------------------------------------------------------------------------------