TSTP Solution File: NUM489+1 by Zipperpin---2.1.9999

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Zipperpin---2.1.9999
% Problem  : NUM489+1 : TPTP v8.1.2. Released v4.0.0.
% Transfm  : NO INFORMATION
% Format   : NO INFORMATION
% Command  : python3 /export/starexec/sandbox2/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox2/tmp/tmp.qXeCYdGQ93 true

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 12:41:49 EDT 2023

% Result   : Theorem 1.95s 0.89s
% Output   : Refutation 1.95s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    5
%            Number of leaves      :   13
% Syntax   : Number of formulae    :   24 (  10 unt;   8 typ;   0 def)
%            Number of atoms       :   33 (  15 equ;   0 cnn)
%            Maximal formula atoms :    6 (   2 avg)
%            Number of connectives :   74 (  13   ~;  10   |;   4   &;  44   @)
%                                         (   1 <=>;   2  =>;   0  <=;   0 <~>)
%            Maximal formula depth :   11 (   4 avg)
%            Number of types       :    2 (   0 usr)
%            Number of type conns  :    7 (   7   >;   0   *;   0   +;   0  <<)
%            Number of symbols     :   10 (   8 usr;   5 con; 0-2 aty)
%            Number of variables   :    8 (   0   ^;   8   !;   0   ?;   8   :)

% Comments : 
%------------------------------------------------------------------------------
thf(aNaturalNumber0_type,type,
    aNaturalNumber0: $i > $o ).

thf(xp_type,type,
    xp: $i ).

thf(sdtpldt0_type,type,
    sdtpldt0: $i > $i > $i ).

thf(xr_type,type,
    xr: $i ).

thf(sdtmndt0_type,type,
    sdtmndt0: $i > $i > $i ).

thf(xn_type,type,
    xn: $i ).

thf(sdtlseqdt0_type,type,
    sdtlseqdt0: $i > $i > $o ).

thf(xm_type,type,
    xm: $i ).

thf(m__1883,axiom,
    ( xr
    = ( sdtmndt0 @ xn @ xp ) ) ).

thf(zip_derived_cl77,plain,
    ( xr
    = ( sdtmndt0 @ xn @ xp ) ),
    inference(cnf,[status(esa)],[m__1883]) ).

thf(mDefDiff,axiom,
    ! [W0: $i,W1: $i] :
      ( ( ( aNaturalNumber0 @ W0 )
        & ( aNaturalNumber0 @ W1 ) )
     => ( ( sdtlseqdt0 @ W0 @ W1 )
       => ! [W2: $i] :
            ( ( W2
              = ( sdtmndt0 @ W1 @ W0 ) )
          <=> ( ( aNaturalNumber0 @ W2 )
              & ( ( sdtpldt0 @ W0 @ W2 )
                = W1 ) ) ) ) ) ).

thf(zip_derived_cl29,plain,
    ! [X0: $i,X1: $i,X2: $i] :
      ( ~ ( aNaturalNumber0 @ X0 )
      | ~ ( aNaturalNumber0 @ X1 )
      | ( X2
       != ( sdtmndt0 @ X1 @ X0 ) )
      | ( ( sdtpldt0 @ X0 @ X2 )
        = X1 )
      | ~ ( sdtlseqdt0 @ X0 @ X1 ) ),
    inference(cnf,[status(esa)],[mDefDiff]) ).

thf(zip_derived_cl1069,plain,
    ! [X0: $i] :
      ( ( X0 != xr )
      | ~ ( sdtlseqdt0 @ xp @ xn )
      | ( ( sdtpldt0 @ xp @ X0 )
        = xn )
      | ~ ( aNaturalNumber0 @ xn )
      | ~ ( aNaturalNumber0 @ xp ) ),
    inference('sup-',[status(thm)],[zip_derived_cl77,zip_derived_cl29]) ).

thf(m__1870,axiom,
    sdtlseqdt0 @ xp @ xn ).

thf(zip_derived_cl76,plain,
    sdtlseqdt0 @ xp @ xn,
    inference(cnf,[status(esa)],[m__1870]) ).

thf(m__1837,axiom,
    ( ( aNaturalNumber0 @ xp )
    & ( aNaturalNumber0 @ xm )
    & ( aNaturalNumber0 @ xn ) ) ).

thf(zip_derived_cl72,plain,
    aNaturalNumber0 @ xn,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl70,plain,
    aNaturalNumber0 @ xp,
    inference(cnf,[status(esa)],[m__1837]) ).

thf(zip_derived_cl1071,plain,
    ! [X0: $i] :
      ( ( X0 != xr )
      | ( ( sdtpldt0 @ xp @ X0 )
        = xn ) ),
    inference(demod,[status(thm)],[zip_derived_cl1069,zip_derived_cl76,zip_derived_cl72,zip_derived_cl70]) ).

thf(m__,conjecture,
    ( xn
    = ( sdtpldt0 @ xp @ xr ) ) ).

thf(zf_stmt_0,negated_conjecture,
    ( xn
   != ( sdtpldt0 @ xp @ xr ) ),
    inference('cnf.neg',[status(esa)],[m__]) ).

thf(zip_derived_cl80,plain,
    ( xn
   != ( sdtpldt0 @ xp @ xr ) ),
    inference(cnf,[status(esa)],[zf_stmt_0]) ).

thf(zip_derived_cl1126,plain,
    ( ( xn != xn )
    | ( xr != xr ) ),
    inference('sup-',[status(thm)],[zip_derived_cl1071,zip_derived_cl80]) ).

thf(zip_derived_cl1143,plain,
    $false,
    inference(simplify,[status(thm)],[zip_derived_cl1126]) ).


%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : NUM489+1 : TPTP v8.1.2. Released v4.0.0.
% 0.06/0.13  % Command  : python3 /export/starexec/sandbox2/solver/bin/portfolio.lams.parallel.py %s %d /export/starexec/sandbox2/tmp/tmp.qXeCYdGQ93 true
% 0.12/0.33  % Computer : n005.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Fri Aug 25 16:22:53 EDT 2023
% 0.12/0.33  % CPUTime  : 
% 0.12/0.33  % Running portfolio for 300 s
% 0.12/0.33  % File         : /export/starexec/sandbox2/benchmark/theBenchmark.p
% 0.12/0.33  % Number of cores: 8
% 0.18/0.34  % Python version: Python 3.6.8
% 0.18/0.34  % Running in FO mode
% 0.18/0.61  % Total configuration time : 435
% 0.18/0.61  % Estimated wc time : 1092
% 0.18/0.61  % Estimated cpu time (7 cpus) : 156.0
% 0.18/0.72  % /export/starexec/sandbox2/solver/bin/fo/fo3_bce.sh running for 75s
% 0.18/0.72  % /export/starexec/sandbox2/solver/bin/fo/fo6_bce.sh running for 75s
% 0.18/0.72  % /export/starexec/sandbox2/solver/bin/fo/fo7.sh running for 63s
% 0.18/0.72  % /export/starexec/sandbox2/solver/bin/fo/fo1_av.sh running for 75s
% 0.18/0.72  % /export/starexec/sandbox2/solver/bin/fo/fo13.sh running for 50s
% 0.18/0.72  % /export/starexec/sandbox2/solver/bin/fo/fo5.sh running for 50s
% 0.18/0.73  % /export/starexec/sandbox2/solver/bin/fo/fo4.sh running for 50s
% 1.95/0.89  % Solved by fo/fo3_bce.sh.
% 1.95/0.89  % BCE start: 81
% 1.95/0.89  % BCE eliminated: 1
% 1.95/0.89  % PE start: 80
% 1.95/0.89  logic: eq
% 1.95/0.89  % PE eliminated: -5
% 1.95/0.89  % done 78 iterations in 0.147s
% 1.95/0.89  % SZS status Theorem for '/export/starexec/sandbox2/benchmark/theBenchmark.p'
% 1.95/0.89  % SZS output start Refutation
% See solution above
% 1.95/0.89  
% 1.95/0.89  
% 1.95/0.89  % Terminating...
% 1.95/0.93  % Runner terminated.
% 1.95/0.96  % Zipperpin 1.5 exiting
%------------------------------------------------------------------------------