TSTP Solution File: NUM023-1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : NUM023-1 : TPTP v8.2.0. Bugfixed v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : do_cvc5 %s %d

% Computer : n011.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed May 29 17:32:38 EDT 2024

% Result   : Unsatisfiable 0.21s 0.53s
% Output   : Proof 0.21s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.13  % Problem    : NUM023-1 : TPTP v8.2.0. Bugfixed v4.0.0.
% 0.13/0.14  % Command    : do_cvc5 %s %d
% 0.15/0.35  % Computer : n011.cluster.edu
% 0.15/0.35  % Model    : x86_64 x86_64
% 0.15/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.15/0.35  % Memory   : 8042.1875MB
% 0.15/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.15/0.35  % CPULimit   : 300
% 0.15/0.35  % WCLimit    : 300
% 0.15/0.35  % DateTime   : Tue May 28 00:59:24 EDT 2024
% 0.15/0.35  % CPUTime    : 
% 0.21/0.49  %----Proving TF0_NAR, FOF, or CNF
% 0.21/0.50  --- Run --decision=internal --simplification=none --no-inst-no-entail --no-cbqi --full-saturate-quant at 10...
% 0.21/0.53  % SZS status Unsatisfiable for /export/starexec/sandbox/tmp/tmp.eLFMzCm3Vz/cvc5---1.0.5_6725.smt2
% 0.21/0.53  % SZS output start Proof for /export/starexec/sandbox/tmp/tmp.eLFMzCm3Vz/cvc5---1.0.5_6725.smt2
% 0.21/0.53  (assume a0 (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)))
% 0.21/0.53  (assume a1 (forall ((A $$unsorted) (B $$unsorted)) (tptp.equalish (tptp.add A (tptp.successor B)) (tptp.successor (tptp.add A B)))))
% 0.21/0.53  (assume a2 (forall ((A $$unsorted)) (tptp.equalish (tptp.multiply A tptp.n0) tptp.n0)))
% 0.21/0.53  (assume a3 (forall ((A $$unsorted) (B $$unsorted)) (tptp.equalish (tptp.multiply A (tptp.successor B)) (tptp.add (tptp.multiply A B) A))))
% 0.21/0.53  (assume a4 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.equalish (tptp.successor A) (tptp.successor B))) (tptp.equalish A B))))
% 0.21/0.53  (assume a5 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.equalish A B)) (tptp.equalish (tptp.successor A) (tptp.successor B)))))
% 0.21/0.53  (assume a6 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.less A B)) (not (tptp.less C A)) (tptp.less C B))))
% 0.21/0.53  (assume a7 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))))
% 0.21/0.53  (assume a8 (forall ((A $$unsorted) (B $$unsorted)) (or (not (tptp.less A B)) (tptp.equalish (tptp.add (tptp.successor (tptp.predecessor_of_1st_minus_2nd B A)) A) B))))
% 0.21/0.53  (assume a9 (forall ((X $$unsorted)) (tptp.equalish X X)))
% 0.21/0.53  (assume a10 (forall ((X $$unsorted) (Y $$unsorted)) (or (not (tptp.equalish X Y)) (tptp.equalish Y X))))
% 0.21/0.53  (assume a11 (forall ((X $$unsorted) (Y $$unsorted) (Z $$unsorted)) (or (not (tptp.equalish X Y)) (not (tptp.equalish Y Z)) (tptp.equalish X Z))))
% 0.21/0.53  (assume a12 (forall ((A $$unsorted)) (not (tptp.equalish (tptp.successor A) tptp.n0))))
% 0.21/0.53  (assume a13 (forall ((A $$unsorted)) (tptp.less A (tptp.successor A))))
% 0.21/0.53  (assume a14 (not (tptp.less tptp.n0 (tptp.successor tptp.a))))
% 0.21/0.53  (step t1 (cl (=> (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A))) :rule implies_neg1)
% 0.21/0.53  (anchor :step t2)
% 0.21/0.53  (assume t2.a0 (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)))
% 0.21/0.53  (step t2.t1 (cl (or (not (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A))) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a)))) :rule forall_inst :args ((:= A (tptp.successor tptp.a))))
% 0.21/0.53  (step t2.t2 (cl (not (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A))) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) :rule or :premises (t2.t1))
% 0.21/0.53  (step t2.t3 (cl (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) :rule resolution :premises (t2.t2 t2.a0))
% 0.21/0.53  (step t2 (cl (not (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A))) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) :rule subproof :discharge (t2.a0))
% 0.21/0.53  (step t3 (cl (=> (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) :rule resolution :premises (t1 t2))
% 0.21/0.53  (step t4 (cl (=> (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a)))) :rule implies_neg2)
% 0.21/0.53  (step t5 (cl (=> (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (=> (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a)))) :rule resolution :premises (t3 t4))
% 0.21/0.53  (step t6 (cl (=> (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A)) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a)))) :rule contraction :premises (t5))
% 0.21/0.53  (step t7 (cl (not (forall ((A $$unsorted)) (tptp.equalish (tptp.add A tptp.n0) A))) (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) :rule implies :premises (t6))
% 0.21/0.53  (step t8 (cl (not (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a))) :rule or_pos)
% 0.21/0.53  (step t9 (cl (tptp.less tptp.n0 (tptp.successor tptp.a)) (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (not (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a))))) :rule reordering :premises (t8))
% 0.21/0.53  (step t10 (cl (=> (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C)))) :rule implies_neg1)
% 0.21/0.53  (anchor :step t11)
% 0.21/0.53  (assume t11.a0 (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))))
% 0.21/0.53  (step t11.t1 (cl (or (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C)))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a))))) :rule forall_inst :args ((:= A tptp.a) (:= B tptp.n0) (:= C (tptp.successor tptp.a))))
% 0.21/0.53  (step t11.t2 (cl (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C)))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) :rule or :premises (t11.t1))
% 0.21/0.53  (step t11.t3 (cl (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) :rule resolution :premises (t11.t2 t11.a0))
% 0.21/0.53  (step t11 (cl (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C)))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) :rule subproof :discharge (t11.a0))
% 0.21/0.53  (step t12 (cl (=> (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) :rule resolution :premises (t10 t11))
% 0.21/0.53  (step t13 (cl (=> (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) (not (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a))))) :rule implies_neg2)
% 0.21/0.53  (step t14 (cl (=> (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) (=> (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a))))) :rule resolution :premises (t12 t13))
% 0.21/0.53  (step t15 (cl (=> (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a))))) :rule contraction :premises (t14))
% 0.21/0.53  (step t16 (cl (not (forall ((A $$unsorted) (B $$unsorted) (C $$unsorted)) (or (not (tptp.equalish (tptp.add (tptp.successor A) B) C)) (tptp.less B C)))) (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) :rule implies :premises (t15))
% 0.21/0.53  (step t17 (cl (or (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a))) (tptp.less tptp.n0 (tptp.successor tptp.a)))) :rule resolution :premises (t16 a7))
% 0.21/0.53  (step t18 (cl (not (tptp.equalish (tptp.add (tptp.successor tptp.a) tptp.n0) (tptp.successor tptp.a)))) :rule resolution :premises (t9 a14 t17))
% 0.21/0.53  (step t19 (cl) :rule resolution :premises (t7 t18 a0))
% 0.21/0.53  
% 0.21/0.53  % SZS output end Proof for /export/starexec/sandbox/tmp/tmp.eLFMzCm3Vz/cvc5---1.0.5_6725.smt2
% 0.21/0.54  % cvc5---1.0.5 exiting
% 0.21/0.54  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------