TSTP Solution File: MGT029+1 by Princess---230619

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Princess---230619
% Problem  : MGT029+1 : TPTP v8.1.2. Released v2.0.0.
% Transfm  : none
% Format   : tptp
% Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s

% Computer : n019.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 09:16:17 EDT 2023

% Result   : Theorem 32.48s 5.14s
% Output   : Proof 40.65s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : MGT029+1 : TPTP v8.1.2. Released v2.0.0.
% 0.00/0.13  % Command  : princess -inputFormat=tptp +threads -portfolio=casc +printProof -timeoutSec=%d %s
% 0.13/0.35  % Computer : n019.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit : 300
% 0.13/0.35  % WCLimit  : 300
% 0.13/0.35  % DateTime : Mon Aug 28 06:38:43 EDT 2023
% 0.13/0.35  % CPUTime  : 
% 0.20/0.61  ________       _____
% 0.20/0.61  ___  __ \_________(_)________________________________
% 0.20/0.61  __  /_/ /_  ___/_  /__  __ \  ___/  _ \_  ___/_  ___/
% 0.20/0.61  _  ____/_  /   _  / _  / / / /__ /  __/(__  )_(__  )
% 0.20/0.61  /_/     /_/    /_/  /_/ /_/\___/ \___//____/ /____/
% 0.20/0.61  
% 0.20/0.61  A Theorem Prover for First-Order Logic modulo Linear Integer Arithmetic
% 0.20/0.61  (2023-06-19)
% 0.20/0.61  
% 0.20/0.61  (c) Philipp Rümmer, 2009-2023
% 0.20/0.61  Contributors: Peter Backeman, Peter Baumgartner, Angelo Brillout, Zafer Esen,
% 0.20/0.61                Amanda Stjerna.
% 0.20/0.61  Free software under BSD-3-Clause.
% 0.20/0.61  
% 0.20/0.61  For more information, visit http://www.philipp.ruemmer.org/princess.shtml
% 0.20/0.61  
% 0.20/0.61  Loading /export/starexec/sandbox2/benchmark/theBenchmark.p ...
% 0.20/0.62  Running up to 7 provers in parallel.
% 0.20/0.64  Prover 0: Options:  +triggersInConjecture +genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1042961893
% 0.20/0.64  Prover 2: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMinimalAndEmpty -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1065072994
% 0.20/0.64  Prover 3: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1922548996
% 0.20/0.64  Prover 1: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1571432423
% 0.20/0.64  Prover 5: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allMaximal -realRatSaturationRounds=1 -ignoreQuantifiers -constructProofs=never -generateTriggers=complete -randomSeed=1259561288
% 0.20/0.64  Prover 4: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=1868514696
% 0.20/0.64  Prover 6: Options:  -triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=none +reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximalOutermost -realRatSaturationRounds=0 -ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=-1399714365
% 2.44/1.03  Prover 1: Preprocessing ...
% 2.44/1.03  Prover 4: Preprocessing ...
% 2.70/1.08  Prover 5: Preprocessing ...
% 2.70/1.08  Prover 6: Preprocessing ...
% 2.70/1.08  Prover 2: Preprocessing ...
% 2.70/1.09  Prover 3: Preprocessing ...
% 2.70/1.09  Prover 0: Preprocessing ...
% 4.45/1.36  Prover 6: Proving ...
% 4.45/1.36  Prover 5: Proving ...
% 4.45/1.37  Prover 2: Proving ...
% 4.45/1.37  Prover 3: Constructing countermodel ...
% 4.45/1.39  Prover 1: Constructing countermodel ...
% 5.38/1.52  Prover 4: Constructing countermodel ...
% 5.38/1.54  Prover 0: Proving ...
% 8.97/1.95  Prover 3: gave up
% 8.97/1.97  Prover 7: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-236303470
% 8.97/1.99  Prover 7: Preprocessing ...
% 9.65/2.04  Prover 7: Warning: ignoring some quantifiers
% 9.65/2.05  Prover 7: Constructing countermodel ...
% 9.65/2.18  Prover 7: gave up
% 10.64/2.24  Prover 8: Options:  +triggersInConjecture +genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-200781089
% 10.64/2.27  Prover 8: Preprocessing ...
% 11.63/2.34  Prover 8: Warning: ignoring some quantifiers
% 11.63/2.34  Prover 8: Constructing countermodel ...
% 13.76/2.61  Prover 8: gave up
% 13.76/2.61  Prover 9: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allMinimal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=never -generateTriggers=all -randomSeed=1423531889
% 13.84/2.64  Prover 9: Preprocessing ...
% 13.84/2.82  Prover 9: Constructing countermodel ...
% 16.23/2.95  Prover 1: gave up
% 16.23/2.95  Prover 10: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=919308125
% 16.23/2.98  Prover 10: Preprocessing ...
% 16.23/3.01  Prover 10: Warning: ignoring some quantifiers
% 16.23/3.02  Prover 10: Constructing countermodel ...
% 16.91/3.05  Prover 10: gave up
% 16.91/3.05  Prover 11: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=allUni -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=all -randomSeed=-1509710984
% 16.91/3.06  Prover 11: Preprocessing ...
% 17.73/3.14  Prover 11: Constructing countermodel ...
% 32.48/5.14  Prover 2: proved (4507ms)
% 32.48/5.14  
% 32.48/5.14  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 32.48/5.14  
% 32.48/5.14  Prover 13: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=simple -reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=0 +ignoreQuantifiers -constructProofs=always -generateTriggers=complete -randomSeed=1138197443
% 32.48/5.14  Prover 6: stopped
% 32.48/5.15  Prover 0: stopped
% 32.48/5.15  Prover 9: stopped
% 32.48/5.15  Prover 5: stopped
% 32.48/5.15  Prover 19: Options:  +triggersInConjecture -genTotalityAxioms -tightFunctionScopes -clausifier=none -reverseFunctionalityPropagation -boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=complete -randomSeed=-1780594085
% 32.48/5.15  Prover 16: Options:  +triggersInConjecture -genTotalityAxioms +tightFunctionScopes -clausifier=simple +reverseFunctionalityPropagation +boolFunsAsPreds -triggerStrategy=maximal -realRatSaturationRounds=1 +ignoreQuantifiers -constructProofs=always -generateTriggers=completeFrugal -randomSeed=-2043353683
% 33.04/5.16  Prover 13: Preprocessing ...
% 33.04/5.16  Prover 19: Preprocessing ...
% 33.04/5.17  Prover 16: Preprocessing ...
% 33.11/5.18  Prover 13: Warning: ignoring some quantifiers
% 33.11/5.18  Prover 13: Constructing countermodel ...
% 33.11/5.20  Prover 16: Warning: ignoring some quantifiers
% 33.11/5.20  Prover 16: Constructing countermodel ...
% 33.11/5.20  Prover 19: Warning: ignoring some quantifiers
% 33.42/5.21  Prover 19: Constructing countermodel ...
% 35.50/5.49  Prover 19: gave up
% 39.55/6.11  Prover 16: Found proof (size 1213)
% 39.55/6.11  Prover 16: proved (957ms)
% 39.55/6.11  Prover 13: stopped
% 39.55/6.11  Prover 11: stopped
% 39.55/6.11  Prover 4: stopped
% 39.55/6.11  
% 39.55/6.11  % SZS status Theorem for /export/starexec/sandbox2/benchmark/theBenchmark.p
% 39.99/6.11  
% 39.99/6.13  % SZS output start Proof for theBenchmark
% 39.99/6.13  Assumptions after simplification:
% 39.99/6.13  ---------------------------------
% 39.99/6.13  
% 39.99/6.14    (a4)
% 39.99/6.16     ! [v0: $i] : ( ~ $i(v0) |  ~ stable(v0) |  ~ environment(v0) |  ? [v1: $i] : 
% 39.99/6.16      ? [v2: $i] : (equilibrium(v0) = v1 & $i(v2) & $i(v1) & greater_or_equal(v2,
% 39.99/6.16          v1) & in_environment(v0, v2)))
% 39.99/6.16  
% 39.99/6.16    (l1)
% 40.21/6.16    $i(efficient_producers) & $i(first_movers) &  ! [v0: $i] : ( ~ $i(v0) |  ~
% 40.21/6.16      stable(v0) |  ~ environment(v0) |  ? [v1: $i] : ($i(v1) & in_environment(v0,
% 40.21/6.16          v1) &  ! [v2: $i] : ( ~ $i(v2) |  ~ subpopulations(first_movers,
% 40.21/6.16            efficient_producers, v0, v2) |  ~ greater_or_equal(v2, v1) |  ? [v3:
% 40.21/6.16            $i] :  ? [v4: $i] : (growth_rate(efficient_producers, v2) = v3 &
% 40.21/6.16            growth_rate(first_movers, v2) = v4 & $i(v4) & $i(v3) & greater(v3,
% 40.21/6.16              v4)))))
% 40.21/6.16  
% 40.21/6.16    (l6)
% 40.21/6.17    $i(zero) & $i(efficient_producers) & $i(first_movers) &  ! [v0: $i] :  ! [v1:
% 40.21/6.17      $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ subpopulations(first_movers,
% 40.21/6.17        efficient_producers, v0, v1) |  ~ environment(v0) |  ? [v2: $i] :  ? [v3:
% 40.21/6.17        $i] :  ? [v4: $i] : ((v4 = zero & v3 = zero &
% 40.21/6.17          growth_rate(efficient_producers, v1) = zero & growth_rate(first_movers,
% 40.21/6.17            v1) = zero) | (equilibrium(v0) = v2 & $i(v2) &  ~ greater_or_equal(v1,
% 40.21/6.17            v2)) | (growth_rate(efficient_producers, v1) = v4 &
% 40.21/6.17          growth_rate(first_movers, v1) = v3 & $i(v4) & $i(v3) & greater(v4, zero)
% 40.21/6.17          & greater(zero, v3)) | (growth_rate(efficient_producers, v1) = v4 &
% 40.21/6.17          growth_rate(first_movers, v1) = v3 & $i(v4) & $i(v3) & greater(v3, zero)
% 40.21/6.17          & greater(zero, v4))))
% 40.21/6.17  
% 40.21/6.17    (mp_greater_or_equal)
% 40.21/6.17     ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~
% 40.21/6.17      greater_or_equal(v0, v1) | greater(v0, v1)) &  ! [v0: $i] :  ! [v1: $i] : (
% 40.21/6.17      ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1) | greater_or_equal(v0, v1)) &  ?
% 40.21/6.17    [v0: $i] : ( ~ $i(v0) | greater_or_equal(v0, v0))
% 40.21/6.17  
% 40.21/6.17    (mp_greater_transitivity)
% 40.21/6.17     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~ $i(v0) |
% 40.21/6.17       ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.21/6.17  
% 40.21/6.17    (mp_times_in_environment)
% 40.21/6.17     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v2 = v1 |  ~ $i(v2) |  ~ $i(v1) | 
% 40.21/6.17      ~ $i(v0) |  ~ in_environment(v0, v2) |  ~ in_environment(v0, v1) |
% 40.21/6.17      greater(v2, v1) | greater(v1, v2))
% 40.21/6.17  
% 40.21/6.17    (prove_l11)
% 40.21/6.17    $i(zero) & $i(efficient_producers) & $i(first_movers) &  ? [v0: $i] : ($i(v0)
% 40.21/6.17      & stable(v0) & environment(v0) &  ! [v1: $i] : ( ~ $i(v1) |  ~
% 40.21/6.17        in_environment(v0, v1) |  ? [v2: $i] :  ? [v3: $i] :  ? [v4: $i] : ($i(v2)
% 40.21/6.17          & subpopulations(first_movers, efficient_producers, v0, v2) &
% 40.21/6.17          greater_or_equal(v2, v1) & ((growth_rate(efficient_producers, v2) = v3 &
% 40.21/6.17              $i(v3) &  ~ greater(v3, zero)) | (growth_rate(first_movers, v2) = v4
% 40.21/6.17              & $i(v4) &  ~ greater(zero, v4))))))
% 40.21/6.17  
% 40.21/6.17    (function-axioms)
% 40.21/6.17     ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.21/6.17      (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0)) &  ! [v0: $i] : 
% 40.21/6.17    ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2) = v1) |  ~
% 40.21/6.17      (equilibrium(v2) = v0))
% 40.21/6.17  
% 40.21/6.17  Those formulas are unsatisfiable:
% 40.21/6.17  ---------------------------------
% 40.21/6.17  
% 40.21/6.17  Begin of proof
% 40.21/6.18  | 
% 40.21/6.18  | ALPHA: (mp_greater_or_equal) implies:
% 40.21/6.18  |   (1)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1)
% 40.21/6.18  |          | greater_or_equal(v0, v1))
% 40.21/6.18  |   (2)   ! [v0: $i] :  ! [v1: $i] : (v1 = v0 |  ~ $i(v1) |  ~ $i(v0) |  ~
% 40.21/6.18  |          greater_or_equal(v0, v1) | greater(v0, v1))
% 40.21/6.18  | 
% 40.21/6.18  | ALPHA: (l6) implies:
% 40.21/6.18  |   (3)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~
% 40.21/6.18  |          subpopulations(first_movers, efficient_producers, v0, v1) |  ~
% 40.21/6.18  |          environment(v0) |  ? [v2: $i] :  ? [v3: $i] :  ? [v4: $i] : ((v4 =
% 40.21/6.18  |              zero & v3 = zero & growth_rate(efficient_producers, v1) = zero &
% 40.21/6.18  |              growth_rate(first_movers, v1) = zero) | (equilibrium(v0) = v2 &
% 40.21/6.18  |              $i(v2) &  ~ greater_or_equal(v1, v2)) |
% 40.21/6.18  |            (growth_rate(efficient_producers, v1) = v4 &
% 40.21/6.18  |              growth_rate(first_movers, v1) = v3 & $i(v4) & $i(v3) &
% 40.21/6.18  |              greater(v4, zero) & greater(zero, v3)) |
% 40.21/6.18  |            (growth_rate(efficient_producers, v1) = v4 &
% 40.21/6.18  |              growth_rate(first_movers, v1) = v3 & $i(v4) & $i(v3) &
% 40.21/6.18  |              greater(v3, zero) & greater(zero, v4))))
% 40.21/6.18  | 
% 40.21/6.18  | ALPHA: (l1) implies:
% 40.21/6.18  |   (4)   ! [v0: $i] : ( ~ $i(v0) |  ~ stable(v0) |  ~ environment(v0) |  ? [v1:
% 40.21/6.18  |            $i] : ($i(v1) & in_environment(v0, v1) &  ! [v2: $i] : ( ~ $i(v2) |
% 40.21/6.18  |               ~ subpopulations(first_movers, efficient_producers, v0, v2) |  ~
% 40.21/6.18  |              greater_or_equal(v2, v1) |  ? [v3: $i] :  ? [v4: $i] :
% 40.21/6.18  |              (growth_rate(efficient_producers, v2) = v3 &
% 40.21/6.18  |                growth_rate(first_movers, v2) = v4 & $i(v4) & $i(v3) &
% 40.21/6.18  |                greater(v3, v4)))))
% 40.21/6.18  | 
% 40.21/6.18  | ALPHA: (prove_l11) implies:
% 40.21/6.18  |   (5)  $i(zero)
% 40.21/6.18  |   (6)   ? [v0: $i] : ($i(v0) & stable(v0) & environment(v0) &  ! [v1: $i] : (
% 40.21/6.18  |            ~ $i(v1) |  ~ in_environment(v0, v1) |  ? [v2: $i] :  ? [v3: $i] : 
% 40.21/6.18  |            ? [v4: $i] : ($i(v2) & subpopulations(first_movers,
% 40.21/6.18  |                efficient_producers, v0, v2) & greater_or_equal(v2, v1) &
% 40.21/6.18  |              ((growth_rate(efficient_producers, v2) = v3 & $i(v3) &  ~
% 40.21/6.18  |                  greater(v3, zero)) | (growth_rate(first_movers, v2) = v4 &
% 40.21/6.18  |                  $i(v4) &  ~ greater(zero, v4))))))
% 40.21/6.18  | 
% 40.21/6.18  | ALPHA: (function-axioms) implies:
% 40.21/6.18  |   (7)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~
% 40.21/6.18  |          (equilibrium(v2) = v1) |  ~ (equilibrium(v2) = v0))
% 40.21/6.18  |   (8)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.21/6.18  |          (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.21/6.18  | 
% 40.21/6.19  | DELTA: instantiating (6) with fresh symbol all_11_0 gives:
% 40.21/6.19  |   (9)  $i(all_11_0) & stable(all_11_0) & environment(all_11_0) &  ! [v0: $i] :
% 40.21/6.19  |        ( ~ $i(v0) |  ~ in_environment(all_11_0, v0) |  ? [v1: $i] :  ? [v2:
% 40.21/6.19  |            $i] :  ? [v3: $i] : ($i(v1) & subpopulations(first_movers,
% 40.21/6.19  |              efficient_producers, all_11_0, v1) & greater_or_equal(v1, v0) &
% 40.21/6.19  |            ((growth_rate(efficient_producers, v1) = v2 & $i(v2) &  ~
% 40.21/6.19  |                greater(v2, zero)) | (growth_rate(first_movers, v1) = v3 &
% 40.21/6.19  |                $i(v3) &  ~ greater(zero, v3)))))
% 40.21/6.19  | 
% 40.21/6.19  | ALPHA: (9) implies:
% 40.21/6.19  |   (10)  environment(all_11_0)
% 40.21/6.19  |   (11)  stable(all_11_0)
% 40.21/6.19  |   (12)  $i(all_11_0)
% 40.21/6.19  |   (13)   ! [v0: $i] : ( ~ $i(v0) |  ~ in_environment(all_11_0, v0) |  ? [v1:
% 40.21/6.19  |             $i] :  ? [v2: $i] :  ? [v3: $i] : ($i(v1) &
% 40.21/6.19  |             subpopulations(first_movers, efficient_producers, all_11_0, v1) &
% 40.21/6.19  |             greater_or_equal(v1, v0) & ((growth_rate(efficient_producers, v1)
% 40.21/6.19  |                 = v2 & $i(v2) &  ~ greater(v2, zero)) |
% 40.21/6.19  |               (growth_rate(first_movers, v1) = v3 & $i(v3) &  ~ greater(zero,
% 40.21/6.19  |                   v3)))))
% 40.21/6.19  | 
% 40.21/6.19  | GROUND_INST: instantiating (a4) with all_11_0, simplifying with (10), (11),
% 40.21/6.19  |              (12) gives:
% 40.21/6.19  |   (14)   ? [v0: $i] :  ? [v1: $i] : (equilibrium(all_11_0) = v0 & $i(v1) &
% 40.21/6.19  |           $i(v0) & greater_or_equal(v1, v0) & in_environment(all_11_0, v1))
% 40.21/6.19  | 
% 40.21/6.19  | GROUND_INST: instantiating (4) with all_11_0, simplifying with (10), (11),
% 40.21/6.19  |              (12) gives:
% 40.21/6.19  |   (15)   ? [v0: $i] : ($i(v0) & in_environment(all_11_0, v0) &  ! [v1: $i] : (
% 40.21/6.19  |             ~ $i(v1) |  ~ subpopulations(first_movers, efficient_producers,
% 40.21/6.19  |               all_11_0, v1) |  ~ greater_or_equal(v1, v0) |  ? [v2: $i] :  ?
% 40.21/6.19  |             [v3: $i] : (growth_rate(efficient_producers, v1) = v2 &
% 40.21/6.19  |               growth_rate(first_movers, v1) = v3 & $i(v3) & $i(v2) &
% 40.21/6.19  |               greater(v2, v3))))
% 40.21/6.19  | 
% 40.21/6.19  | DELTA: instantiating (14) with fresh symbols all_19_0, all_19_1 gives:
% 40.21/6.19  |   (16)  equilibrium(all_11_0) = all_19_1 & $i(all_19_0) & $i(all_19_1) &
% 40.21/6.19  |         greater_or_equal(all_19_0, all_19_1) & in_environment(all_11_0,
% 40.21/6.19  |           all_19_0)
% 40.21/6.19  | 
% 40.21/6.19  | ALPHA: (16) implies:
% 40.21/6.19  |   (17)  in_environment(all_11_0, all_19_0)
% 40.21/6.19  |   (18)  greater_or_equal(all_19_0, all_19_1)
% 40.21/6.19  |   (19)  $i(all_19_1)
% 40.21/6.19  |   (20)  $i(all_19_0)
% 40.21/6.19  |   (21)  equilibrium(all_11_0) = all_19_1
% 40.21/6.19  | 
% 40.21/6.19  | DELTA: instantiating (15) with fresh symbol all_21_0 gives:
% 40.21/6.19  |   (22)  $i(all_21_0) & in_environment(all_11_0, all_21_0) &  ! [v0: $i] : ( ~
% 40.21/6.19  |           $i(v0) |  ~ subpopulations(first_movers, efficient_producers,
% 40.21/6.19  |             all_11_0, v0) |  ~ greater_or_equal(v0, all_21_0) |  ? [v1: $i] : 
% 40.21/6.19  |           ? [v2: $i] : (growth_rate(efficient_producers, v0) = v1 &
% 40.21/6.19  |             growth_rate(first_movers, v0) = v2 & $i(v2) & $i(v1) & greater(v1,
% 40.21/6.19  |               v2)))
% 40.21/6.19  | 
% 40.21/6.19  | ALPHA: (22) implies:
% 40.21/6.19  |   (23)  in_environment(all_11_0, all_21_0)
% 40.21/6.19  |   (24)  $i(all_21_0)
% 40.21/6.19  |   (25)   ! [v0: $i] : ( ~ $i(v0) |  ~ subpopulations(first_movers,
% 40.21/6.19  |             efficient_producers, all_11_0, v0) |  ~ greater_or_equal(v0,
% 40.21/6.19  |             all_21_0) |  ? [v1: $i] :  ? [v2: $i] :
% 40.21/6.19  |           (growth_rate(efficient_producers, v0) = v1 &
% 40.21/6.19  |             growth_rate(first_movers, v0) = v2 & $i(v2) & $i(v1) & greater(v1,
% 40.21/6.19  |               v2)))
% 40.21/6.19  | 
% 40.21/6.20  | GROUND_INST: instantiating (13) with all_19_0, simplifying with (17), (20)
% 40.21/6.20  |              gives:
% 40.21/6.20  |   (26)   ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] : ($i(v0) &
% 40.21/6.20  |           subpopulations(first_movers, efficient_producers, all_11_0, v0) &
% 40.21/6.20  |           greater_or_equal(v0, all_19_0) & ((growth_rate(efficient_producers,
% 40.21/6.20  |                 v0) = v1 & $i(v1) &  ~ greater(v1, zero)) |
% 40.21/6.20  |             (growth_rate(first_movers, v0) = v2 & $i(v2) &  ~ greater(zero,
% 40.21/6.20  |                 v2))))
% 40.21/6.20  | 
% 40.21/6.20  | GROUND_INST: instantiating (mp_times_in_environment) with all_11_0, all_19_0,
% 40.21/6.20  |              all_21_0, simplifying with (12), (17), (20), (23), (24) gives:
% 40.21/6.20  |   (27)  all_21_0 = all_19_0 | greater(all_21_0, all_19_0) | greater(all_19_0,
% 40.21/6.20  |           all_21_0)
% 40.21/6.20  | 
% 40.21/6.20  | GROUND_INST: instantiating (13) with all_21_0, simplifying with (23), (24)
% 40.21/6.20  |              gives:
% 40.21/6.20  |   (28)   ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] : ($i(v0) &
% 40.21/6.20  |           subpopulations(first_movers, efficient_producers, all_11_0, v0) &
% 40.21/6.20  |           greater_or_equal(v0, all_21_0) & ((growth_rate(efficient_producers,
% 40.21/6.20  |                 v0) = v1 & $i(v1) &  ~ greater(v1, zero)) |
% 40.21/6.20  |             (growth_rate(first_movers, v0) = v2 & $i(v2) &  ~ greater(zero,
% 40.21/6.20  |                 v2))))
% 40.21/6.20  | 
% 40.21/6.20  | GROUND_INST: instantiating (2) with all_19_0, all_19_1, simplifying with (18),
% 40.21/6.20  |              (19), (20) gives:
% 40.21/6.20  |   (29)  all_19_0 = all_19_1 | greater(all_19_0, all_19_1)
% 40.21/6.20  | 
% 40.21/6.20  | DELTA: instantiating (28) with fresh symbols all_29_0, all_29_1, all_29_2
% 40.21/6.20  |        gives:
% 40.21/6.20  |   (30)  $i(all_29_2) & subpopulations(first_movers, efficient_producers,
% 40.21/6.20  |           all_11_0, all_29_2) & greater_or_equal(all_29_2, all_21_0) &
% 40.21/6.20  |         ((growth_rate(efficient_producers, all_29_2) = all_29_1 & $i(all_29_1)
% 40.21/6.20  |             &  ~ greater(all_29_1, zero)) | (growth_rate(first_movers,
% 40.21/6.20  |               all_29_2) = all_29_0 & $i(all_29_0) &  ~ greater(zero,
% 40.21/6.20  |               all_29_0)))
% 40.21/6.20  | 
% 40.21/6.20  | ALPHA: (30) implies:
% 40.21/6.20  |   (31)  greater_or_equal(all_29_2, all_21_0)
% 40.21/6.20  |   (32)  subpopulations(first_movers, efficient_producers, all_11_0, all_29_2)
% 40.21/6.20  |   (33)  $i(all_29_2)
% 40.21/6.20  |   (34)  (growth_rate(efficient_producers, all_29_2) = all_29_1 & $i(all_29_1)
% 40.21/6.20  |           &  ~ greater(all_29_1, zero)) | (growth_rate(first_movers, all_29_2)
% 40.21/6.20  |           = all_29_0 & $i(all_29_0) &  ~ greater(zero, all_29_0))
% 40.21/6.20  | 
% 40.21/6.20  | DELTA: instantiating (26) with fresh symbols all_31_0, all_31_1, all_31_2
% 40.21/6.20  |        gives:
% 40.21/6.20  |   (35)  $i(all_31_2) & subpopulations(first_movers, efficient_producers,
% 40.21/6.20  |           all_11_0, all_31_2) & greater_or_equal(all_31_2, all_19_0) &
% 40.21/6.20  |         ((growth_rate(efficient_producers, all_31_2) = all_31_1 & $i(all_31_1)
% 40.21/6.20  |             &  ~ greater(all_31_1, zero)) | (growth_rate(first_movers,
% 40.21/6.20  |               all_31_2) = all_31_0 & $i(all_31_0) &  ~ greater(zero,
% 40.21/6.20  |               all_31_0)))
% 40.21/6.20  | 
% 40.21/6.20  | ALPHA: (35) implies:
% 40.21/6.20  |   (36)  greater_or_equal(all_31_2, all_19_0)
% 40.21/6.20  |   (37)  subpopulations(first_movers, efficient_producers, all_11_0, all_31_2)
% 40.21/6.20  |   (38)  $i(all_31_2)
% 40.21/6.20  |   (39)  (growth_rate(efficient_producers, all_31_2) = all_31_1 & $i(all_31_1)
% 40.21/6.20  |           &  ~ greater(all_31_1, zero)) | (growth_rate(first_movers, all_31_2)
% 40.21/6.20  |           = all_31_0 & $i(all_31_0) &  ~ greater(zero, all_31_0))
% 40.21/6.20  | 
% 40.21/6.20  | GROUND_INST: instantiating (2) with all_29_2, all_21_0, simplifying with (24),
% 40.21/6.20  |              (31), (33) gives:
% 40.21/6.21  |   (40)  all_29_2 = all_21_0 | greater(all_29_2, all_21_0)
% 40.21/6.21  | 
% 40.21/6.21  | GROUND_INST: instantiating (2) with all_31_2, all_19_0, simplifying with (20),
% 40.21/6.21  |              (36), (38) gives:
% 40.21/6.21  |   (41)  all_31_2 = all_19_0 | greater(all_31_2, all_19_0)
% 40.21/6.21  | 
% 40.21/6.21  | GROUND_INST: instantiating (3) with all_11_0, all_29_2, simplifying with (10),
% 40.21/6.21  |              (12), (32), (33) gives:
% 40.21/6.21  |   (42)   ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] : ((v2 = zero & v1 = zero &
% 40.21/6.21  |             growth_rate(efficient_producers, all_29_2) = zero &
% 40.21/6.21  |             growth_rate(first_movers, all_29_2) = zero) |
% 40.21/6.21  |           (equilibrium(all_11_0) = v0 & $i(v0) &  ~ greater_or_equal(all_29_2,
% 40.21/6.21  |               v0)) | (growth_rate(efficient_producers, all_29_2) = v2 &
% 40.21/6.21  |             growth_rate(first_movers, all_29_2) = v1 & $i(v2) & $i(v1) &
% 40.21/6.21  |             greater(v2, zero) & greater(zero, v1)) |
% 40.21/6.21  |           (growth_rate(efficient_producers, all_29_2) = v2 &
% 40.21/6.21  |             growth_rate(first_movers, all_29_2) = v1 & $i(v2) & $i(v1) &
% 40.21/6.21  |             greater(v1, zero) & greater(zero, v2)))
% 40.21/6.21  | 
% 40.21/6.21  | GROUND_INST: instantiating (25) with all_29_2, simplifying with (31), (32),
% 40.21/6.21  |              (33) gives:
% 40.21/6.21  |   (43)   ? [v0: $i] :  ? [v1: $i] : (growth_rate(efficient_producers,
% 40.21/6.21  |             all_29_2) = v0 & growth_rate(first_movers, all_29_2) = v1 & $i(v1)
% 40.21/6.21  |           & $i(v0) & greater(v0, v1))
% 40.21/6.21  | 
% 40.21/6.21  | GROUND_INST: instantiating (3) with all_11_0, all_31_2, simplifying with (10),
% 40.21/6.21  |              (12), (37), (38) gives:
% 40.21/6.21  |   (44)   ? [v0: $i] :  ? [v1: $i] :  ? [v2: $i] : ((v2 = zero & v1 = zero &
% 40.21/6.21  |             growth_rate(efficient_producers, all_31_2) = zero &
% 40.21/6.21  |             growth_rate(first_movers, all_31_2) = zero) |
% 40.21/6.21  |           (equilibrium(all_11_0) = v0 & $i(v0) &  ~ greater_or_equal(all_31_2,
% 40.21/6.21  |               v0)) | (growth_rate(efficient_producers, all_31_2) = v2 &
% 40.21/6.21  |             growth_rate(first_movers, all_31_2) = v1 & $i(v2) & $i(v1) &
% 40.21/6.21  |             greater(v2, zero) & greater(zero, v1)) |
% 40.21/6.21  |           (growth_rate(efficient_producers, all_31_2) = v2 &
% 40.21/6.21  |             growth_rate(first_movers, all_31_2) = v1 & $i(v2) & $i(v1) &
% 40.21/6.21  |             greater(v1, zero) & greater(zero, v2)))
% 40.21/6.21  | 
% 40.21/6.21  | GROUND_INST: instantiating (25) with all_31_2, simplifying with (37), (38)
% 40.21/6.21  |              gives:
% 40.21/6.21  |   (45)   ~ greater_or_equal(all_31_2, all_21_0) |  ? [v0: $i] :  ? [v1: $i] :
% 40.21/6.21  |         (growth_rate(efficient_producers, all_31_2) = v0 &
% 40.21/6.21  |           growth_rate(first_movers, all_31_2) = v1 & $i(v1) & $i(v0) &
% 40.21/6.21  |           greater(v0, v1))
% 40.21/6.21  | 
% 40.21/6.21  | DELTA: instantiating (43) with fresh symbols all_38_0, all_38_1 gives:
% 40.21/6.21  |   (46)  growth_rate(efficient_producers, all_29_2) = all_38_1 &
% 40.21/6.21  |         growth_rate(first_movers, all_29_2) = all_38_0 & $i(all_38_0) &
% 40.21/6.21  |         $i(all_38_1) & greater(all_38_1, all_38_0)
% 40.21/6.21  | 
% 40.21/6.21  | ALPHA: (46) implies:
% 40.21/6.21  |   (47)  greater(all_38_1, all_38_0)
% 40.21/6.21  |   (48)  growth_rate(first_movers, all_29_2) = all_38_0
% 40.21/6.21  |   (49)  growth_rate(efficient_producers, all_29_2) = all_38_1
% 40.21/6.21  | 
% 40.21/6.21  | DELTA: instantiating (44) with fresh symbols all_40_0, all_40_1, all_40_2
% 40.21/6.21  |        gives:
% 40.21/6.21  |   (50)  (all_40_0 = zero & all_40_1 = zero & growth_rate(efficient_producers,
% 40.21/6.21  |             all_31_2) = zero & growth_rate(first_movers, all_31_2) = zero) |
% 40.21/6.21  |         (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.21/6.21  |           greater_or_equal(all_31_2, all_40_2)) |
% 40.21/6.21  |         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.21/6.21  |           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.21/6.21  |           $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1)) |
% 40.21/6.21  |         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.21/6.22  |           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.21/6.22  |           $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0))
% 40.21/6.22  | 
% 40.21/6.22  | DELTA: instantiating (42) with fresh symbols all_41_0, all_41_1, all_41_2
% 40.21/6.22  |        gives:
% 40.21/6.22  |   (51)  (all_41_0 = zero & all_41_1 = zero & growth_rate(efficient_producers,
% 40.21/6.22  |             all_29_2) = zero & growth_rate(first_movers, all_29_2) = zero) |
% 40.21/6.22  |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.21/6.22  |           greater_or_equal(all_29_2, all_41_2)) |
% 40.21/6.22  |         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.21/6.22  |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.21/6.22  |           $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)) |
% 40.21/6.22  |         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.21/6.22  |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.21/6.22  |           $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.21/6.22  | 
% 40.21/6.22  | GROUND_INST: instantiating (8) with all_38_0, all_38_1, all_29_2,
% 40.21/6.22  |              first_movers, simplifying with (48) gives:
% 40.21/6.22  |   (52)  all_38_0 = all_38_1 |  ~ (growth_rate(first_movers, all_29_2) =
% 40.21/6.22  |           all_38_1)
% 40.21/6.22  | 
% 40.21/6.22  | BETA: splitting (34) gives:
% 40.21/6.22  | 
% 40.21/6.22  | Case 1:
% 40.21/6.22  | | 
% 40.21/6.22  | |   (53)  growth_rate(efficient_producers, all_29_2) = all_29_1 & $i(all_29_1)
% 40.21/6.22  | |         &  ~ greater(all_29_1, zero)
% 40.21/6.22  | | 
% 40.21/6.22  | | ALPHA: (53) implies:
% 40.21/6.22  | |   (54)   ~ greater(all_29_1, zero)
% 40.21/6.22  | |   (55)  growth_rate(efficient_producers, all_29_2) = all_29_1
% 40.21/6.22  | | 
% 40.21/6.22  | | GROUND_INST: instantiating (8) with all_38_1, all_29_1, all_29_2,
% 40.21/6.22  | |              efficient_producers, simplifying with (49), (55) gives:
% 40.21/6.22  | |   (56)  all_38_1 = all_29_1
% 40.21/6.22  | | 
% 40.21/6.22  | | REDUCE: (47), (56) imply:
% 40.21/6.22  | |   (57)  greater(all_29_1, all_38_0)
% 40.21/6.22  | | 
% 40.21/6.22  | | PRED_UNIFY: (54), (57) imply:
% 40.21/6.22  | |   (58)   ~ (all_38_0 = zero)
% 40.21/6.22  | | 
% 40.21/6.22  | | BETA: splitting (29) gives:
% 40.21/6.22  | | 
% 40.21/6.22  | | Case 1:
% 40.21/6.22  | | | 
% 40.21/6.22  | | |   (59)  greater(all_19_0, all_19_1)
% 40.21/6.22  | | | 
% 40.21/6.22  | | | BETA: splitting (27) gives:
% 40.21/6.22  | | | 
% 40.21/6.22  | | | Case 1:
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | |   (60)  greater(all_21_0, all_19_0)
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | | GROUND_INST: instantiating (mp_greater_transitivity) with all_21_0,
% 40.21/6.22  | | | |              all_19_0, all_19_1, simplifying with (19), (20), (24),
% 40.21/6.22  | | | |              (59), (60) gives:
% 40.21/6.22  | | | |   (61)  greater(all_21_0, all_19_1)
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | | REF_CLOSE: (1), (5), (7), (8), (19), (21), (24), (33), (40), (48), (51),
% 40.21/6.22  | | | |            (52), (54), (55), (56), (57), (58), (61),
% 40.21/6.22  | | | |            (mp_greater_transitivity) are inconsistent by sub-proof #15.
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | Case 2:
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | |   (62)   ~ greater(all_21_0, all_19_0)
% 40.21/6.22  | | | |   (63)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | | BETA: splitting (39) gives:
% 40.21/6.22  | | | | 
% 40.21/6.22  | | | | Case 1:
% 40.21/6.22  | | | | | 
% 40.21/6.22  | | | | |   (64)  growth_rate(efficient_producers, all_31_2) = all_31_1 &
% 40.21/6.22  | | | | |         $i(all_31_1) &  ~ greater(all_31_1, zero)
% 40.21/6.22  | | | | | 
% 40.21/6.22  | | | | | ALPHA: (64) implies:
% 40.21/6.22  | | | | |   (65)   ~ greater(all_31_1, zero)
% 40.21/6.22  | | | | |   (66)  growth_rate(efficient_producers, all_31_2) = all_31_1
% 40.21/6.22  | | | | | 
% 40.21/6.22  | | | | | BETA: splitting (45) gives:
% 40.21/6.22  | | | | | 
% 40.21/6.22  | | | | | Case 1:
% 40.21/6.22  | | | | | | 
% 40.21/6.22  | | | | | |   (67)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.21/6.22  | | | | | | 
% 40.21/6.22  | | | | | | PRED_UNIFY: (36), (67) imply:
% 40.21/6.22  | | | | | |   (68)   ~ (all_21_0 = all_19_0)
% 40.21/6.22  | | | | | | 
% 40.21/6.22  | | | | | | REF_CLOSE: (1), (20), (24), (38), (41), (63), (67), (68),
% 40.21/6.22  | | | | | |            (mp_greater_transitivity) are inconsistent by sub-proof
% 40.21/6.22  | | | | | |            #14.
% 40.21/6.22  | | | | | | 
% 40.21/6.22  | | | | | Case 2:
% 40.21/6.22  | | | | | | 
% 40.21/6.22  | | | | | |   (69)  greater_or_equal(all_31_2, all_21_0)
% 40.21/6.23  | | | | | |   (70)   ? [v0: $i] :  ? [v1: $i] :
% 40.21/6.23  | | | | | |         (growth_rate(efficient_producers, all_31_2) = v0 &
% 40.21/6.23  | | | | | |           growth_rate(first_movers, all_31_2) = v1 & $i(v1) & $i(v0)
% 40.21/6.23  | | | | | |           & greater(v0, v1))
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | DELTA: instantiating (70) with fresh symbols all_106_0, all_106_1
% 40.21/6.23  | | | | | |        gives:
% 40.21/6.23  | | | | | |   (71)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.21/6.23  | | | | | |         growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.21/6.23  | | | | | |         $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.21/6.23  | | | | | |           all_106_0)
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | ALPHA: (71) implies:
% 40.21/6.23  | | | | | |   (72)  greater(all_106_1, all_106_0)
% 40.21/6.23  | | | | | |   (73)  $i(all_106_0)
% 40.21/6.23  | | | | | |   (74)  growth_rate(first_movers, all_31_2) = all_106_0
% 40.21/6.23  | | | | | |   (75)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | GROUND_INST: instantiating (8) with all_31_1, all_106_1, all_31_2,
% 40.21/6.23  | | | | | |              efficient_producers, simplifying with (66), (75) gives:
% 40.21/6.23  | | | | | |   (76)  all_106_1 = all_31_1
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | REDUCE: (72), (76) imply:
% 40.21/6.23  | | | | | |   (77)  greater(all_31_1, all_106_0)
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | PRED_UNIFY: (65), (77) imply:
% 40.21/6.23  | | | | | |   (78)   ~ (all_106_0 = zero)
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | GROUND_INST: instantiating (2) with all_31_2, all_21_0, simplifying
% 40.21/6.23  | | | | | |              with (24), (38), (69) gives:
% 40.21/6.23  | | | | | |   (79)  all_31_2 = all_21_0 | greater(all_31_2, all_21_0)
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | BETA: splitting (41) gives:
% 40.21/6.23  | | | | | | 
% 40.21/6.23  | | | | | | Case 1:
% 40.21/6.23  | | | | | | | 
% 40.21/6.23  | | | | | | |   (80)  greater(all_31_2, all_19_0)
% 40.21/6.23  | | | | | | | 
% 40.21/6.23  | | | | | | | PRED_UNIFY: (62), (80) imply:
% 40.21/6.23  | | | | | | |   (81)   ~ (all_31_2 = all_21_0)
% 40.21/6.23  | | | | | | | 
% 40.21/6.23  | | | | | | | BETA: splitting (79) gives:
% 40.21/6.23  | | | | | | | 
% 40.21/6.23  | | | | | | | Case 1:
% 40.21/6.23  | | | | | | | | 
% 40.21/6.23  | | | | | | | | 
% 40.21/6.23  | | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with
% 40.21/6.23  | | | | | | | |              all_31_2, all_19_0, all_19_1, simplifying with
% 40.21/6.23  | | | | | | | |              (19), (20), (38), (59), (80) gives:
% 40.21/6.23  | | | | | | | |   (82)  greater(all_31_2, all_19_1)
% 40.21/6.23  | | | | | | | | 
% 40.21/6.23  | | | | | | | | BETA: splitting (52) gives:
% 40.21/6.23  | | | | | | | | 
% 40.21/6.23  | | | | | | | | Case 1:
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.21/6.23  | | | | | | | | |              simplifying with (19), (38), (82) gives:
% 40.21/6.23  | | | | | | | | |   (83)  greater_or_equal(all_31_2, all_19_1)
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | DELTA: instantiating (70) with fresh symbols all_106_0,
% 40.21/6.23  | | | | | | | | |        all_106_1 gives:
% 40.21/6.23  | | | | | | | | |   (84)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.21/6.23  | | | | | | | | |         & growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.21/6.23  | | | | | | | | |         $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.21/6.23  | | | | | | | | |           all_106_0)
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (65), (66), (83), (84),
% 40.21/6.23  | | | | | | | | |            (mp_greater_transitivity) are inconsistent by
% 40.21/6.23  | | | | | | | | |            sub-proof #11.
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | Case 2:
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | |   (85)  all_38_0 = all_38_1
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | COMBINE_EQS: (56), (85) imply:
% 40.21/6.23  | | | | | | | | |   (86)  all_38_0 = all_29_1
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | REDUCE: (58), (86) imply:
% 40.21/6.23  | | | | | | | | |   (87)   ~ (all_29_1 = zero)
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | BETA: splitting (51) gives:
% 40.21/6.23  | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | Case 1:
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | |   (88)  (all_41_0 = zero & all_41_1 = zero &
% 40.21/6.23  | | | | | | | | | |           growth_rate(efficient_producers, all_29_2) = zero
% 40.21/6.23  | | | | | | | | | |           & growth_rate(first_movers, all_29_2) = zero) |
% 40.21/6.23  | | | | | | | | | |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) & 
% 40.21/6.23  | | | | | | | | | |           ~ greater_or_equal(all_29_2, all_41_2))
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | BETA: splitting (88) gives:
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | Case 1:
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | |   (89)  all_41_0 = zero & all_41_1 = zero &
% 40.21/6.23  | | | | | | | | | | |         growth_rate(efficient_producers, all_29_2) = zero
% 40.21/6.23  | | | | | | | | | | |         & growth_rate(first_movers, all_29_2) = zero
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | ALPHA: (89) implies:
% 40.21/6.23  | | | | | | | | | | |   (90)  growth_rate(efficient_producers, all_29_2) = zero
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | REF_CLOSE: (8), (55), (87), (90) are inconsistent by
% 40.21/6.23  | | | | | | | | | | |            sub-proof #10.
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | Case 2:
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | |   (91)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) & 
% 40.21/6.23  | | | | | | | | | | |         ~ greater_or_equal(all_29_2, all_41_2)
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | ALPHA: (91) implies:
% 40.21/6.23  | | | | | | | | | | |   (92)  $i(all_41_2)
% 40.21/6.23  | | | | | | | | | | |   (93)  equilibrium(all_11_0) = all_41_2
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | GROUND_INST: instantiating (7) with all_19_1, all_41_2,
% 40.21/6.23  | | | | | | | | | | |              all_11_0, simplifying with (21), (93) gives:
% 40.21/6.23  | | | | | | | | | | |   (94)  all_41_2 = all_19_1
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.21/6.23  | | | | | | | | | | |              simplifying with (19), (38), (82) gives:
% 40.21/6.23  | | | | | | | | | | |   (95)  greater_or_equal(all_31_2, all_19_1)
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | DELTA: instantiating (70) with fresh symbols all_106_0,
% 40.21/6.23  | | | | | | | | | | |        all_106_1 gives:
% 40.21/6.23  | | | | | | | | | | |   (96)  growth_rate(efficient_producers, all_31_2) =
% 40.21/6.23  | | | | | | | | | | |         all_106_1 & growth_rate(first_movers, all_31_2) =
% 40.21/6.23  | | | | | | | | | | |         all_106_0 & $i(all_106_0) & $i(all_106_1) &
% 40.21/6.23  | | | | | | | | | | |         greater(all_106_1, all_106_0)
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (65), (66), (95), (96),
% 40.21/6.23  | | | | | | | | | | |            (mp_greater_transitivity) are inconsistent by
% 40.21/6.23  | | | | | | | | | | |            sub-proof #11.
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | End of split
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | Case 2:
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | |   (97)  (growth_rate(efficient_producers, all_29_2) =
% 40.21/6.23  | | | | | | | | | |           all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.21/6.23  | | | | | | | | | |           all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.21/6.23  | | | | | | | | | |           greater(all_41_0, zero) & greater(zero, all_41_1))
% 40.21/6.23  | | | | | | | | | |         | (growth_rate(efficient_producers, all_29_2) =
% 40.21/6.23  | | | | | | | | | |           all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.21/6.23  | | | | | | | | | |           all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.21/6.23  | | | | | | | | | |           greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | BETA: splitting (97) gives:
% 40.21/6.23  | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | Case 1:
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | |   (98)  growth_rate(efficient_producers, all_29_2) =
% 40.21/6.23  | | | | | | | | | | |         all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.21/6.23  | | | | | | | | | | |         all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.21/6.23  | | | | | | | | | | |         greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.21/6.23  | | | | | | | | | | | 
% 40.21/6.23  | | | | | | | | | | | ALPHA: (98) implies:
% 40.21/6.24  | | | | | | | | | | |   (99)  greater(all_41_0, zero)
% 40.21/6.24  | | | | | | | | | | |   (100)  growth_rate(efficient_producers, all_29_2) =
% 40.21/6.24  | | | | | | | | | | |          all_41_0
% 40.21/6.24  | | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | | | REF_CLOSE: (8), (54), (55), (99), (100) are inconsistent by
% 40.21/6.24  | | | | | | | | | | |            sub-proof #19.
% 40.21/6.24  | | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | | Case 2:
% 40.21/6.24  | | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | | |   (101)  growth_rate(efficient_producers, all_29_2) =
% 40.21/6.24  | | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.21/6.24  | | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.21/6.24  | | | | | | | | | | |          greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.21/6.24  | | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | | | ALPHA: (101) implies:
% 40.21/6.24  | | | | | | | | | | |   (102)  greater(all_41_1, zero)
% 40.21/6.24  | | | | | | | | | | |   (103)  $i(all_41_1)
% 40.21/6.24  | | | | | | | | | | |   (104)  $i(all_41_0)
% 40.21/6.24  | | | | | | | | | | |   (105)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.21/6.24  | | | | | | | | | | |   (106)  growth_rate(efficient_producers, all_29_2) =
% 40.21/6.24  | | | | | | | | | | |          all_41_0
% 40.21/6.24  | | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | | | REF_CLOSE: (5), (8), (48), (54), (55), (57), (102), (103),
% 40.21/6.24  | | | | | | | | | | |            (104), (105), (106), (mp_greater_transitivity) are
% 40.21/6.24  | | | | | | | | | | |            inconsistent by sub-proof #18.
% 40.21/6.24  | | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | | End of split
% 40.21/6.24  | | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | End of split
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | End of split
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | Case 2:
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | |   (107)  all_31_2 = all_21_0
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | | REDUCE: (81), (107) imply:
% 40.21/6.24  | | | | | | | |   (108)  $false
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | | CLOSE: (108) is inconsistent.
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | End of split
% 40.21/6.24  | | | | | | | 
% 40.21/6.24  | | | | | | Case 2:
% 40.21/6.24  | | | | | | | 
% 40.21/6.24  | | | | | | |   (109)  all_31_2 = all_19_0
% 40.21/6.24  | | | | | | | 
% 40.21/6.24  | | | | | | | REDUCE: (66), (109) imply:
% 40.21/6.24  | | | | | | |   (110)  growth_rate(efficient_producers, all_19_0) = all_31_1
% 40.21/6.24  | | | | | | | 
% 40.21/6.24  | | | | | | | REDUCE: (74), (109) imply:
% 40.21/6.24  | | | | | | |   (111)  growth_rate(first_movers, all_19_0) = all_106_0
% 40.21/6.24  | | | | | | | 
% 40.21/6.24  | | | | | | | BETA: splitting (50) gives:
% 40.21/6.24  | | | | | | | 
% 40.21/6.24  | | | | | | | Case 1:
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | |   (112)  (all_40_0 = zero & all_40_1 = zero &
% 40.21/6.24  | | | | | | | |            growth_rate(efficient_producers, all_31_2) = zero &
% 40.21/6.24  | | | | | | | |            growth_rate(first_movers, all_31_2) = zero) |
% 40.21/6.24  | | | | | | | |          (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.21/6.24  | | | | | | | |            greater_or_equal(all_31_2, all_40_2))
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | | BETA: splitting (112) gives:
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | | Case 1:
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | |   (113)  all_40_0 = zero & all_40_1 = zero &
% 40.21/6.24  | | | | | | | | |          growth_rate(efficient_producers, all_31_2) = zero &
% 40.21/6.24  | | | | | | | | |          growth_rate(first_movers, all_31_2) = zero
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | ALPHA: (113) implies:
% 40.21/6.24  | | | | | | | | |   (114)  growth_rate(first_movers, all_31_2) = zero
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (109), (114) imply:
% 40.21/6.24  | | | | | | | | |   (115)  growth_rate(first_movers, all_19_0) = zero
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | GROUND_INST: instantiating (8) with zero, all_106_0, all_19_0,
% 40.21/6.24  | | | | | | | | |              first_movers, simplifying with (111), (115) gives:
% 40.21/6.24  | | | | | | | | |   (116)  all_106_0 = zero
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (78), (116) imply:
% 40.21/6.24  | | | | | | | | |   (117)  $false
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | CLOSE: (117) is inconsistent.
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | Case 2:
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | |   (118)  equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.21/6.24  | | | | | | | | |          greater_or_equal(all_31_2, all_40_2)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | ALPHA: (118) implies:
% 40.21/6.24  | | | | | | | | |   (119)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.21/6.24  | | | | | | | | |   (120)  equilibrium(all_11_0) = all_40_2
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (109), (119) imply:
% 40.21/6.24  | | | | | | | | |   (121)   ~ greater_or_equal(all_19_0, all_40_2)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REF_CLOSE: (7), (18), (21), (120), (121) are inconsistent by
% 40.21/6.24  | | | | | | | | |            sub-proof #9.
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | End of split
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | Case 2:
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | |   (122)  (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.21/6.24  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.21/6.24  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.21/6.24  | | | | | | | |            & greater(zero, all_40_1)) |
% 40.21/6.24  | | | | | | | |          (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.21/6.24  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.21/6.24  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.21/6.24  | | | | | | | |            & greater(zero, all_40_0))
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | | BETA: splitting (122) gives:
% 40.21/6.24  | | | | | | | | 
% 40.21/6.24  | | | | | | | | Case 1:
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | |   (123)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.21/6.24  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.21/6.24  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.21/6.24  | | | | | | | | |          & greater(zero, all_40_1)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | ALPHA: (123) implies:
% 40.21/6.24  | | | | | | | | |   (124)  greater(all_40_0, zero)
% 40.21/6.24  | | | | | | | | |   (125)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REF_CLOSE: (8), (65), (66), (124), (125) are inconsistent by
% 40.21/6.24  | | | | | | | | |            sub-proof #12.
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | Case 2:
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | |   (126)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.21/6.24  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.21/6.24  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.21/6.24  | | | | | | | | |          & greater(zero, all_40_0)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | ALPHA: (126) implies:
% 40.21/6.24  | | | | | | | | |   (127)  greater(all_40_1, zero)
% 40.21/6.24  | | | | | | | | |   (128)  $i(all_40_0)
% 40.21/6.24  | | | | | | | | |   (129)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.21/6.24  | | | | | | | | |   (130)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (109), (130) imply:
% 40.21/6.24  | | | | | | | | |   (131)  growth_rate(efficient_producers, all_19_0) = all_40_0
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (109), (129) imply:
% 40.21/6.24  | | | | | | | | |   (132)  growth_rate(first_movers, all_19_0) = all_40_1
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | GROUND_INST: instantiating (8) with all_40_1, all_106_0,
% 40.21/6.24  | | | | | | | | |              all_19_0, first_movers, simplifying with (111),
% 40.21/6.24  | | | | | | | | |              (132) gives:
% 40.21/6.24  | | | | | | | | |   (133)  all_106_0 = all_40_1
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | GROUND_INST: instantiating (8) with all_31_1, all_40_0,
% 40.21/6.24  | | | | | | | | |              all_19_0, efficient_producers, simplifying with
% 40.21/6.24  | | | | | | | | |              (110), (131) gives:
% 40.21/6.24  | | | | | | | | |   (134)  all_40_0 = all_31_1
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (73), (133) imply:
% 40.21/6.24  | | | | | | | | |   (135)  $i(all_40_1)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (128), (134) imply:
% 40.21/6.24  | | | | | | | | |   (136)  $i(all_31_1)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | REDUCE: (77), (133) imply:
% 40.21/6.24  | | | | | | | | |   (137)  greater(all_31_1, all_40_1)
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with
% 40.21/6.24  | | | | | | | | |              all_31_1, all_40_1, zero, simplifying with (5),
% 40.21/6.24  | | | | | | | | |              (65), (127), (135), (136), (137) gives:
% 40.21/6.24  | | | | | | | | |   (138)  $false
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.24  | | | | | | | | | CLOSE: (138) is inconsistent.
% 40.21/6.24  | | | | | | | | | 
% 40.21/6.25  | | | | | | | | End of split
% 40.21/6.25  | | | | | | | | 
% 40.21/6.25  | | | | | | | End of split
% 40.21/6.25  | | | | | | | 
% 40.21/6.25  | | | | | | End of split
% 40.21/6.25  | | | | | | 
% 40.21/6.25  | | | | | End of split
% 40.21/6.25  | | | | | 
% 40.21/6.25  | | | | Case 2:
% 40.21/6.25  | | | | | 
% 40.21/6.25  | | | | |   (139)  growth_rate(first_movers, all_31_2) = all_31_0 & $i(all_31_0)
% 40.21/6.25  | | | | |          &  ~ greater(zero, all_31_0)
% 40.21/6.25  | | | | | 
% 40.21/6.25  | | | | | ALPHA: (139) implies:
% 40.21/6.25  | | | | |   (140)   ~ greater(zero, all_31_0)
% 40.21/6.25  | | | | |   (141)  growth_rate(first_movers, all_31_2) = all_31_0
% 40.21/6.25  | | | | | 
% 40.21/6.25  | | | | | BETA: splitting (45) gives:
% 40.21/6.25  | | | | | 
% 40.21/6.25  | | | | | Case 1:
% 40.21/6.25  | | | | | | 
% 40.21/6.25  | | | | | |   (142)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.21/6.25  | | | | | | 
% 40.21/6.25  | | | | | | PRED_UNIFY: (36), (142) imply:
% 40.21/6.25  | | | | | |   (143)   ~ (all_21_0 = all_19_0)
% 40.21/6.25  | | | | | | 
% 40.21/6.25  | | | | | | REF_CLOSE: (1), (20), (24), (38), (41), (63), (142), (143),
% 40.21/6.25  | | | | | |            (mp_greater_transitivity) are inconsistent by sub-proof
% 40.21/6.25  | | | | | |            #14.
% 40.21/6.25  | | | | | | 
% 40.21/6.25  | | | | | Case 2:
% 40.21/6.25  | | | | | | 
% 40.21/6.25  | | | | | |   (144)   ? [v0: $i] :  ? [v1: $i] :
% 40.21/6.25  | | | | | |          (growth_rate(efficient_producers, all_31_2) = v0 &
% 40.21/6.25  | | | | | |            growth_rate(first_movers, all_31_2) = v1 & $i(v1) &
% 40.21/6.25  | | | | | |            $i(v0) & greater(v0, v1))
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | DELTA: instantiating (144) with fresh symbols all_106_0, all_106_1
% 40.65/6.25  | | | | | |        gives:
% 40.65/6.25  | | | | | |   (145)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.25  | | | | | |          growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.65/6.25  | | | | | |          $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.65/6.25  | | | | | |            all_106_0)
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | ALPHA: (145) implies:
% 40.65/6.25  | | | | | |   (146)  greater(all_106_1, all_106_0)
% 40.65/6.25  | | | | | |   (147)  $i(all_106_1)
% 40.65/6.25  | | | | | |   (148)  growth_rate(first_movers, all_31_2) = all_106_0
% 40.65/6.25  | | | | | |   (149)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | GROUND_INST: instantiating (8) with all_31_0, all_106_0, all_31_2,
% 40.65/6.25  | | | | | |              first_movers, simplifying with (141), (148) gives:
% 40.65/6.25  | | | | | |   (150)  all_106_0 = all_31_0
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | REDUCE: (146), (150) imply:
% 40.65/6.25  | | | | | |   (151)  greater(all_106_1, all_31_0)
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | PRED_UNIFY: (140), (151) imply:
% 40.65/6.25  | | | | | |   (152)   ~ (all_106_1 = zero)
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | BETA: splitting (41) gives:
% 40.65/6.25  | | | | | | 
% 40.65/6.25  | | | | | | Case 1:
% 40.65/6.25  | | | | | | | 
% 40.65/6.25  | | | | | | |   (153)  greater(all_31_2, all_19_0)
% 40.65/6.25  | | | | | | | 
% 40.65/6.25  | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with
% 40.65/6.25  | | | | | | |              all_31_2, all_19_0, all_19_1, simplifying with (19),
% 40.65/6.25  | | | | | | |              (20), (38), (59), (153) gives:
% 40.65/6.25  | | | | | | |   (154)  greater(all_31_2, all_19_1)
% 40.65/6.25  | | | | | | | 
% 40.65/6.25  | | | | | | | BETA: splitting (52) gives:
% 40.65/6.25  | | | | | | | 
% 40.65/6.25  | | | | | | | Case 1:
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.65/6.25  | | | | | | | |              simplifying with (19), (38), (154) gives:
% 40.65/6.25  | | | | | | | |   (155)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | DELTA: instantiating (144) with fresh symbols all_106_0,
% 40.65/6.25  | | | | | | | |        all_106_1 gives:
% 40.65/6.25  | | | | | | | |   (156)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.25  | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.65/6.25  | | | | | | | |          $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.65/6.25  | | | | | | | |            all_106_0)
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (140), (141), (155),
% 40.65/6.25  | | | | | | | |            (156), (mp_greater_transitivity) are inconsistent by
% 40.65/6.25  | | | | | | | |            sub-proof #7.
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | Case 2:
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | |   (157)  all_38_0 = all_38_1
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | COMBINE_EQS: (56), (157) imply:
% 40.65/6.25  | | | | | | | |   (158)  all_38_0 = all_29_1
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | REDUCE: (58), (158) imply:
% 40.65/6.25  | | | | | | | |   (159)   ~ (all_29_1 = zero)
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | BETA: splitting (51) gives:
% 40.65/6.25  | | | | | | | | 
% 40.65/6.25  | | | | | | | | Case 1:
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | |   (160)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.25  | | | | | | | | |            growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.25  | | | | | | | | |            growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.25  | | | | | | | | |          (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.25  | | | | | | | | |            greater_or_equal(all_29_2, all_41_2))
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | BETA: splitting (160) gives:
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | Case 1:
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | |   (161)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.25  | | | | | | | | | |          growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.25  | | | | | | | | | |          growth_rate(first_movers, all_29_2) = zero
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | ALPHA: (161) implies:
% 40.65/6.25  | | | | | | | | | |   (162)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | REF_CLOSE: (8), (55), (159), (162) are inconsistent by
% 40.65/6.25  | | | | | | | | | |            sub-proof #10.
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | Case 2:
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | |   (163)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) & 
% 40.65/6.25  | | | | | | | | | |          ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | ALPHA: (163) implies:
% 40.65/6.25  | | | | | | | | | |   (164)  $i(all_41_2)
% 40.65/6.25  | | | | | | | | | |   (165)  equilibrium(all_11_0) = all_41_2
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | GROUND_INST: instantiating (7) with all_19_1, all_41_2,
% 40.65/6.25  | | | | | | | | | |              all_11_0, simplifying with (21), (165) gives:
% 40.65/6.25  | | | | | | | | | |   (166)  all_41_2 = all_19_1
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.65/6.25  | | | | | | | | | |              simplifying with (19), (38), (154) gives:
% 40.65/6.25  | | | | | | | | | |   (167)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | DELTA: instantiating (144) with fresh symbols all_106_0,
% 40.65/6.25  | | | | | | | | | |        all_106_1 gives:
% 40.65/6.25  | | | | | | | | | |   (168)  growth_rate(efficient_producers, all_31_2) =
% 40.65/6.25  | | | | | | | | | |          all_106_1 & growth_rate(first_movers, all_31_2) =
% 40.65/6.25  | | | | | | | | | |          all_106_0 & $i(all_106_0) & $i(all_106_1) &
% 40.65/6.25  | | | | | | | | | |          greater(all_106_1, all_106_0)
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (140), (141), (167),
% 40.65/6.25  | | | | | | | | | |            (168), (mp_greater_transitivity) are inconsistent
% 40.65/6.25  | | | | | | | | | |            by sub-proof #7.
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | End of split
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | Case 2:
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | |   (169)  (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.25  | | | | | | | | |            all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.25  | | | | | | | | |            all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.25  | | | | | | | | |            greater(all_41_0, zero) & greater(zero, all_41_1))
% 40.65/6.25  | | | | | | | | |          | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.25  | | | | | | | | |            all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.25  | | | | | | | | |            all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.25  | | | | | | | | |            greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | BETA: splitting (169) gives:
% 40.65/6.25  | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | Case 1:
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | |   (170)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.25  | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.25  | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.25  | | | | | | | | | |          greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | ALPHA: (170) implies:
% 40.65/6.25  | | | | | | | | | |   (171)  greater(all_41_0, zero)
% 40.65/6.25  | | | | | | | | | |   (172)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.25  | | | | | | | | | |          all_41_0
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | REF_CLOSE: (8), (54), (55), (171), (172) are inconsistent by
% 40.65/6.25  | | | | | | | | | |            sub-proof #19.
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | Case 2:
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | |   (173)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.25  | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.25  | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.25  | | | | | | | | | |          greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.65/6.25  | | | | | | | | | | 
% 40.65/6.25  | | | | | | | | | | ALPHA: (173) implies:
% 40.65/6.25  | | | | | | | | | |   (174)  greater(all_41_1, zero)
% 40.65/6.26  | | | | | | | | | |   (175)  $i(all_41_1)
% 40.65/6.26  | | | | | | | | | |   (176)  $i(all_41_0)
% 40.65/6.26  | | | | | | | | | |   (177)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.26  | | | | | | | | | |   (178)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.26  | | | | | | | | | |          all_41_0
% 40.65/6.26  | | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | | REF_CLOSE: (5), (8), (48), (54), (55), (57), (174), (175),
% 40.65/6.26  | | | | | | | | | |            (176), (177), (178), (mp_greater_transitivity) are
% 40.65/6.26  | | | | | | | | | |            inconsistent by sub-proof #18.
% 40.65/6.26  | | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | End of split
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | End of split
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | End of split
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | Case 2:
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | |   (179)  all_31_2 = all_19_0
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | | REDUCE: (149), (179) imply:
% 40.65/6.26  | | | | | | |   (180)  growth_rate(efficient_producers, all_19_0) = all_106_1
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | | REDUCE: (141), (179) imply:
% 40.65/6.26  | | | | | | |   (181)  growth_rate(first_movers, all_19_0) = all_31_0
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | | BETA: splitting (50) gives:
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | | Case 1:
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | |   (182)  (all_40_0 = zero & all_40_1 = zero &
% 40.65/6.26  | | | | | | | |            growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.26  | | | | | | | |            growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.26  | | | | | | | |          (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.26  | | | | | | | |            greater_or_equal(all_31_2, all_40_2))
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | | BETA: splitting (182) gives:
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | | Case 1:
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | |   (183)  all_40_0 = zero & all_40_1 = zero &
% 40.65/6.26  | | | | | | | | |          growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.26  | | | | | | | | |          growth_rate(first_movers, all_31_2) = zero
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | ALPHA: (183) implies:
% 40.65/6.26  | | | | | | | | |   (184)  growth_rate(efficient_producers, all_31_2) = zero
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (179), (184) imply:
% 40.65/6.26  | | | | | | | | |   (185)  growth_rate(efficient_producers, all_19_0) = zero
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | GROUND_INST: instantiating (8) with zero, all_106_1, all_19_0,
% 40.65/6.26  | | | | | | | | |              efficient_producers, simplifying with (180), (185)
% 40.65/6.26  | | | | | | | | |              gives:
% 40.65/6.26  | | | | | | | | |   (186)  all_106_1 = zero
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (152), (186) imply:
% 40.65/6.26  | | | | | | | | |   (187)  $false
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | CLOSE: (187) is inconsistent.
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | Case 2:
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | |   (188)  equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.26  | | | | | | | | |          greater_or_equal(all_31_2, all_40_2)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | ALPHA: (188) implies:
% 40.65/6.26  | | | | | | | | |   (189)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.65/6.26  | | | | | | | | |   (190)  equilibrium(all_11_0) = all_40_2
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (179), (189) imply:
% 40.65/6.26  | | | | | | | | |   (191)   ~ greater_or_equal(all_19_0, all_40_2)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REF_CLOSE: (7), (18), (21), (190), (191) are inconsistent by
% 40.65/6.26  | | | | | | | | |            sub-proof #9.
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | End of split
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | Case 2:
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | |   (192)  (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.26  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.26  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.65/6.26  | | | | | | | |            & greater(zero, all_40_1)) |
% 40.65/6.26  | | | | | | | |          (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.26  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.26  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.65/6.26  | | | | | | | |            & greater(zero, all_40_0))
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | | BETA: splitting (192) gives:
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | | Case 1:
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | |   (193)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.26  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.26  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.65/6.26  | | | | | | | | |          & greater(zero, all_40_1)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | ALPHA: (193) implies:
% 40.65/6.26  | | | | | | | | |   (194)  greater(zero, all_40_1)
% 40.65/6.26  | | | | | | | | |   (195)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REF_CLOSE: (8), (140), (141), (194), (195) are inconsistent by
% 40.65/6.26  | | | | | | | | |            sub-proof #8.
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | Case 2:
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | |   (196)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.26  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.26  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.65/6.26  | | | | | | | | |          & greater(zero, all_40_0)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | ALPHA: (196) implies:
% 40.65/6.26  | | | | | | | | |   (197)  greater(zero, all_40_0)
% 40.65/6.26  | | | | | | | | |   (198)  $i(all_40_1)
% 40.65/6.26  | | | | | | | | |   (199)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.26  | | | | | | | | |   (200)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (179), (200) imply:
% 40.65/6.26  | | | | | | | | |   (201)  growth_rate(efficient_producers, all_19_0) = all_40_0
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (179), (199) imply:
% 40.65/6.26  | | | | | | | | |   (202)  growth_rate(first_movers, all_19_0) = all_40_1
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | GROUND_INST: instantiating (8) with all_31_0, all_40_1,
% 40.65/6.26  | | | | | | | | |              all_19_0, first_movers, simplifying with (181),
% 40.65/6.26  | | | | | | | | |              (202) gives:
% 40.65/6.26  | | | | | | | | |   (203)  all_40_1 = all_31_0
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | GROUND_INST: instantiating (8) with all_40_0, all_106_1,
% 40.65/6.26  | | | | | | | | |              all_19_0, efficient_producers, simplifying with
% 40.65/6.26  | | | | | | | | |              (180), (201) gives:
% 40.65/6.26  | | | | | | | | |   (204)  all_106_1 = all_40_0
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (147), (204) imply:
% 40.65/6.26  | | | | | | | | |   (205)  $i(all_40_0)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (198), (203) imply:
% 40.65/6.26  | | | | | | | | |   (206)  $i(all_31_0)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | REDUCE: (151), (204) imply:
% 40.65/6.26  | | | | | | | | |   (207)  greater(all_40_0, all_31_0)
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with zero,
% 40.65/6.26  | | | | | | | | |              all_40_0, all_31_0, simplifying with (5), (140),
% 40.65/6.26  | | | | | | | | |              (197), (205), (206), (207) gives:
% 40.65/6.26  | | | | | | | | |   (208)  $false
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | | CLOSE: (208) is inconsistent.
% 40.65/6.26  | | | | | | | | | 
% 40.65/6.26  | | | | | | | | End of split
% 40.65/6.26  | | | | | | | | 
% 40.65/6.26  | | | | | | | End of split
% 40.65/6.26  | | | | | | | 
% 40.65/6.26  | | | | | | End of split
% 40.65/6.26  | | | | | | 
% 40.65/6.26  | | | | | End of split
% 40.65/6.26  | | | | | 
% 40.65/6.26  | | | | End of split
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | End of split
% 40.65/6.26  | | | 
% 40.65/6.26  | | Case 2:
% 40.65/6.26  | | | 
% 40.65/6.26  | | |   (209)  all_19_0 = all_19_1
% 40.65/6.26  | | | 
% 40.65/6.26  | | | REDUCE: (36), (209) imply:
% 40.65/6.26  | | |   (210)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.26  | | | 
% 40.65/6.26  | | | BETA: splitting (27) gives:
% 40.65/6.26  | | | 
% 40.65/6.26  | | | Case 1:
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | |   (211)  greater(all_21_0, all_19_0)
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | | REDUCE: (209), (211) imply:
% 40.65/6.26  | | | |   (212)  greater(all_21_0, all_19_1)
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | | REF_CLOSE: (1), (5), (7), (8), (19), (21), (24), (33), (40), (48), (51),
% 40.65/6.26  | | | |            (52), (54), (55), (56), (57), (58), (212),
% 40.65/6.26  | | | |            (mp_greater_transitivity) are inconsistent by sub-proof #15.
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | Case 2:
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | |   (213)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | | REF_CLOSE: (1), (5), (7), (8), (19), (21), (24), (38), (39), (41), (45),
% 40.65/6.26  | | | |            (50), (209), (210), (213), (mp_greater_transitivity) are
% 40.65/6.26  | | | |            inconsistent by sub-proof #5.
% 40.65/6.26  | | | | 
% 40.65/6.26  | | | End of split
% 40.65/6.26  | | | 
% 40.65/6.26  | | End of split
% 40.65/6.26  | | 
% 40.65/6.26  | Case 2:
% 40.65/6.26  | | 
% 40.65/6.26  | |   (214)  growth_rate(first_movers, all_29_2) = all_29_0 & $i(all_29_0) &  ~
% 40.65/6.26  | |          greater(zero, all_29_0)
% 40.65/6.26  | | 
% 40.65/6.26  | | ALPHA: (214) implies:
% 40.65/6.26  | |   (215)   ~ greater(zero, all_29_0)
% 40.65/6.26  | |   (216)  growth_rate(first_movers, all_29_2) = all_29_0
% 40.65/6.26  | | 
% 40.65/6.26  | | GROUND_INST: instantiating (8) with all_38_0, all_29_0, all_29_2,
% 40.65/6.26  | |              first_movers, simplifying with (48), (216) gives:
% 40.65/6.26  | |   (217)  all_38_0 = all_29_0
% 40.65/6.26  | | 
% 40.65/6.26  | | REDUCE: (47), (217) imply:
% 40.65/6.26  | |   (218)  greater(all_38_1, all_29_0)
% 40.65/6.26  | | 
% 40.65/6.26  | | PRED_UNIFY: (215), (218) imply:
% 40.65/6.27  | |   (219)   ~ (all_38_1 = zero)
% 40.65/6.27  | | 
% 40.65/6.27  | | BETA: splitting (29) gives:
% 40.65/6.27  | | 
% 40.65/6.27  | | Case 1:
% 40.65/6.27  | | | 
% 40.65/6.27  | | |   (220)  greater(all_19_0, all_19_1)
% 40.65/6.27  | | | 
% 40.65/6.27  | | | BETA: splitting (27) gives:
% 40.65/6.27  | | | 
% 40.65/6.27  | | | Case 1:
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | |   (221)  greater(all_21_0, all_19_0)
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | | GROUND_INST: instantiating (mp_greater_transitivity) with all_21_0,
% 40.65/6.27  | | | |              all_19_0, all_19_1, simplifying with (19), (20), (24),
% 40.65/6.27  | | | |              (220), (221) gives:
% 40.65/6.27  | | | |   (222)  greater(all_21_0, all_19_1)
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | | REF_CLOSE: (1), (5), (7), (8), (19), (21), (24), (33), (40), (49), (51),
% 40.65/6.27  | | | |            (215), (216), (218), (219), (222), (mp_greater_transitivity)
% 40.65/6.27  | | | |            are inconsistent by sub-proof #3.
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | Case 2:
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | |   (223)   ~ greater(all_21_0, all_19_0)
% 40.65/6.27  | | | |   (224)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | | BETA: splitting (39) gives:
% 40.65/6.27  | | | | 
% 40.65/6.27  | | | | Case 1:
% 40.65/6.27  | | | | | 
% 40.65/6.27  | | | | |   (225)  growth_rate(efficient_producers, all_31_2) = all_31_1 &
% 40.65/6.27  | | | | |          $i(all_31_1) &  ~ greater(all_31_1, zero)
% 40.65/6.27  | | | | | 
% 40.65/6.27  | | | | | ALPHA: (225) implies:
% 40.65/6.27  | | | | |   (226)   ~ greater(all_31_1, zero)
% 40.65/6.27  | | | | |   (227)  growth_rate(efficient_producers, all_31_2) = all_31_1
% 40.65/6.27  | | | | | 
% 40.65/6.27  | | | | | BETA: splitting (45) gives:
% 40.65/6.27  | | | | | 
% 40.65/6.27  | | | | | Case 1:
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | |   (228)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | PRED_UNIFY: (36), (228) imply:
% 40.65/6.27  | | | | | |   (229)   ~ (all_21_0 = all_19_0)
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | REF_CLOSE: (1), (20), (24), (38), (41), (224), (228), (229),
% 40.65/6.27  | | | | | |            (mp_greater_transitivity) are inconsistent by sub-proof
% 40.65/6.27  | | | | | |            #14.
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | Case 2:
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | |   (230)  greater_or_equal(all_31_2, all_21_0)
% 40.65/6.27  | | | | | |   (231)   ? [v0: $i] :  ? [v1: $i] :
% 40.65/6.27  | | | | | |          (growth_rate(efficient_producers, all_31_2) = v0 &
% 40.65/6.27  | | | | | |            growth_rate(first_movers, all_31_2) = v1 & $i(v1) &
% 40.65/6.27  | | | | | |            $i(v0) & greater(v0, v1))
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | DELTA: instantiating (231) with fresh symbols all_106_0, all_106_1
% 40.65/6.27  | | | | | |        gives:
% 40.65/6.27  | | | | | |   (232)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.27  | | | | | |          growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.65/6.27  | | | | | |          $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.65/6.27  | | | | | |            all_106_0)
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | ALPHA: (232) implies:
% 40.65/6.27  | | | | | |   (233)  greater(all_106_1, all_106_0)
% 40.65/6.27  | | | | | |   (234)  $i(all_106_0)
% 40.65/6.27  | | | | | |   (235)  growth_rate(first_movers, all_31_2) = all_106_0
% 40.65/6.27  | | | | | |   (236)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | GROUND_INST: instantiating (8) with all_31_1, all_106_1, all_31_2,
% 40.65/6.27  | | | | | |              efficient_producers, simplifying with (227), (236)
% 40.65/6.27  | | | | | |              gives:
% 40.65/6.27  | | | | | |   (237)  all_106_1 = all_31_1
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | REDUCE: (233), (237) imply:
% 40.65/6.27  | | | | | |   (238)  greater(all_31_1, all_106_0)
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | PRED_UNIFY: (226), (238) imply:
% 40.65/6.27  | | | | | |   (239)   ~ (all_106_0 = zero)
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | GROUND_INST: instantiating (2) with all_31_2, all_21_0, simplifying
% 40.65/6.27  | | | | | |              with (24), (38), (230) gives:
% 40.65/6.27  | | | | | |   (240)  all_31_2 = all_21_0 | greater(all_31_2, all_21_0)
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | BETA: splitting (41) gives:
% 40.65/6.27  | | | | | | 
% 40.65/6.27  | | | | | | Case 1:
% 40.65/6.27  | | | | | | | 
% 40.65/6.27  | | | | | | |   (241)  greater(all_31_2, all_19_0)
% 40.65/6.27  | | | | | | | 
% 40.65/6.27  | | | | | | | PRED_UNIFY: (223), (241) imply:
% 40.65/6.27  | | | | | | |   (242)   ~ (all_31_2 = all_21_0)
% 40.65/6.27  | | | | | | | 
% 40.65/6.27  | | | | | | | BETA: splitting (240) gives:
% 40.65/6.27  | | | | | | | 
% 40.65/6.27  | | | | | | | Case 1:
% 40.65/6.27  | | | | | | | | 
% 40.65/6.27  | | | | | | | | 
% 40.65/6.27  | | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with
% 40.65/6.27  | | | | | | | |              all_31_2, all_19_0, all_19_1, simplifying with
% 40.65/6.27  | | | | | | | |              (19), (20), (38), (220), (241) gives:
% 40.65/6.27  | | | | | | | |   (243)  greater(all_31_2, all_19_1)
% 40.65/6.27  | | | | | | | | 
% 40.65/6.27  | | | | | | | | BETA: splitting (52) gives:
% 40.65/6.27  | | | | | | | | 
% 40.65/6.27  | | | | | | | | Case 1:
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.65/6.27  | | | | | | | | |              simplifying with (19), (38), (243) gives:
% 40.65/6.27  | | | | | | | | |   (244)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | DELTA: instantiating (231) with fresh symbols all_106_0,
% 40.65/6.27  | | | | | | | | |        all_106_1 gives:
% 40.65/6.27  | | | | | | | | |   (245)  growth_rate(efficient_producers, all_31_2) =
% 40.65/6.27  | | | | | | | | |          all_106_1 & growth_rate(first_movers, all_31_2) =
% 40.65/6.27  | | | | | | | | |          all_106_0 & $i(all_106_0) & $i(all_106_1) &
% 40.65/6.27  | | | | | | | | |          greater(all_106_1, all_106_0)
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (226), (227), (244),
% 40.65/6.27  | | | | | | | | |            (245), (mp_greater_transitivity) are inconsistent
% 40.65/6.27  | | | | | | | | |            by sub-proof #11.
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | Case 2:
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | |   (246)  all_38_0 = all_38_1
% 40.65/6.27  | | | | | | | | |   (247)  growth_rate(first_movers, all_29_2) = all_38_1
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | COMBINE_EQS: (217), (246) imply:
% 40.65/6.27  | | | | | | | | |   (248)  all_38_1 = all_29_0
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | REDUCE: (219), (248) imply:
% 40.65/6.27  | | | | | | | | |   (249)   ~ (all_29_0 = zero)
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | REDUCE: (49), (248) imply:
% 40.65/6.27  | | | | | | | | |   (250)  growth_rate(efficient_producers, all_29_2) = all_29_0
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | BETA: splitting (51) gives:
% 40.65/6.27  | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | Case 1:
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | |   (251)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.27  | | | | | | | | | |            growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.27  | | | | | | | | | |            & growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.27  | | | | | | | | | |          (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) & 
% 40.65/6.27  | | | | | | | | | |            ~ greater_or_equal(all_29_2, all_41_2))
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | BETA: splitting (251) gives:
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | Case 1:
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | |   (252)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.27  | | | | | | | | | | |          growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.27  | | | | | | | | | | |          & growth_rate(first_movers, all_29_2) = zero
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | ALPHA: (252) implies:
% 40.65/6.27  | | | | | | | | | | |   (253)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | REF_CLOSE: (8), (249), (250), (253) are inconsistent by
% 40.65/6.27  | | | | | | | | | | |            sub-proof #2.
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | Case 2:
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | |   (254)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) & 
% 40.65/6.27  | | | | | | | | | | |          ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | ALPHA: (254) implies:
% 40.65/6.27  | | | | | | | | | | |   (255)  $i(all_41_2)
% 40.65/6.27  | | | | | | | | | | |   (256)  equilibrium(all_11_0) = all_41_2
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | GROUND_INST: instantiating (7) with all_19_1, all_41_2,
% 40.65/6.27  | | | | | | | | | | |              all_11_0, simplifying with (21), (256) gives:
% 40.65/6.27  | | | | | | | | | | |   (257)  all_41_2 = all_19_1
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.65/6.27  | | | | | | | | | | |              simplifying with (19), (38), (243) gives:
% 40.65/6.27  | | | | | | | | | | |   (258)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | DELTA: instantiating (231) with fresh symbols all_106_0,
% 40.65/6.27  | | | | | | | | | | |        all_106_1 gives:
% 40.65/6.27  | | | | | | | | | | |   (259)  growth_rate(efficient_producers, all_31_2) =
% 40.65/6.27  | | | | | | | | | | |          all_106_1 & growth_rate(first_movers, all_31_2) =
% 40.65/6.27  | | | | | | | | | | |          all_106_0 & $i(all_106_0) & $i(all_106_1) &
% 40.65/6.27  | | | | | | | | | | |          greater(all_106_1, all_106_0)
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (226), (227), (258),
% 40.65/6.27  | | | | | | | | | | |            (259), (mp_greater_transitivity) are inconsistent
% 40.65/6.27  | | | | | | | | | | |            by sub-proof #11.
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | End of split
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | Case 2:
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | |   (260)  (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.27  | | | | | | | | | |            all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.27  | | | | | | | | | |            all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.27  | | | | | | | | | |            greater(all_41_0, zero) & greater(zero,
% 40.65/6.27  | | | | | | | | | |              all_41_1)) | (growth_rate(efficient_producers,
% 40.65/6.27  | | | | | | | | | |              all_29_2) = all_41_0 &
% 40.65/6.27  | | | | | | | | | |            growth_rate(first_movers, all_29_2) = all_41_1 &
% 40.65/6.27  | | | | | | | | | |            $i(all_41_0) & $i(all_41_1) & greater(all_41_1,
% 40.65/6.27  | | | | | | | | | |              zero) & greater(zero, all_41_0))
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | BETA: splitting (260) gives:
% 40.65/6.27  | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | Case 1:
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | |   (261)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.27  | | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.27  | | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.27  | | | | | | | | | | |          greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | ALPHA: (261) implies:
% 40.65/6.27  | | | | | | | | | | |   (262)  greater(zero, all_41_1)
% 40.65/6.27  | | | | | | | | | | |   (263)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | | REF_CLOSE: (8), (215), (216), (262), (263) are inconsistent
% 40.65/6.27  | | | | | | | | | | |            by sub-proof #4.
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.27  | | | | | | | | | | Case 2:
% 40.65/6.27  | | | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | | |   (264)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.28  | | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.28  | | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.28  | | | | | | | | | | |          greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.65/6.28  | | | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | | | ALPHA: (264) implies:
% 40.65/6.28  | | | | | | | | | | |   (265)  greater(zero, all_41_0)
% 40.65/6.28  | | | | | | | | | | |   (266)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.28  | | | | | | | | | | |          all_41_0
% 40.65/6.28  | | | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | | | REF_CLOSE: (8), (215), (250), (265), (266) are inconsistent
% 40.65/6.28  | | | | | | | | | | |            by sub-proof #1.
% 40.65/6.28  | | | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | | End of split
% 40.65/6.28  | | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | End of split
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | End of split
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | Case 2:
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | |   (267)  all_31_2 = all_21_0
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | | REDUCE: (242), (267) imply:
% 40.65/6.28  | | | | | | | |   (268)  $false
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | | CLOSE: (268) is inconsistent.
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | End of split
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | Case 2:
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | |   (269)  all_31_2 = all_19_0
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | | REDUCE: (227), (269) imply:
% 40.65/6.28  | | | | | | |   (270)  growth_rate(efficient_producers, all_19_0) = all_31_1
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | | REDUCE: (235), (269) imply:
% 40.65/6.28  | | | | | | |   (271)  growth_rate(first_movers, all_19_0) = all_106_0
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | | BETA: splitting (50) gives:
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | | Case 1:
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | |   (272)  (all_40_0 = zero & all_40_1 = zero &
% 40.65/6.28  | | | | | | | |            growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.28  | | | | | | | |            growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.28  | | | | | | | |          (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.28  | | | | | | | |            greater_or_equal(all_31_2, all_40_2))
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | | BETA: splitting (272) gives:
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | | Case 1:
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | |   (273)  all_40_0 = zero & all_40_1 = zero &
% 40.65/6.28  | | | | | | | | |          growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.28  | | | | | | | | |          growth_rate(first_movers, all_31_2) = zero
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | ALPHA: (273) implies:
% 40.65/6.28  | | | | | | | | |   (274)  growth_rate(first_movers, all_31_2) = zero
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (269), (274) imply:
% 40.65/6.28  | | | | | | | | |   (275)  growth_rate(first_movers, all_19_0) = zero
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | GROUND_INST: instantiating (8) with zero, all_106_0, all_19_0,
% 40.65/6.28  | | | | | | | | |              first_movers, simplifying with (271), (275) gives:
% 40.65/6.28  | | | | | | | | |   (276)  all_106_0 = zero
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (239), (276) imply:
% 40.65/6.28  | | | | | | | | |   (277)  $false
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | CLOSE: (277) is inconsistent.
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | Case 2:
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | |   (278)  equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.28  | | | | | | | | |          greater_or_equal(all_31_2, all_40_2)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | ALPHA: (278) implies:
% 40.65/6.28  | | | | | | | | |   (279)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.65/6.28  | | | | | | | | |   (280)  equilibrium(all_11_0) = all_40_2
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (269), (279) imply:
% 40.65/6.28  | | | | | | | | |   (281)   ~ greater_or_equal(all_19_0, all_40_2)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REF_CLOSE: (7), (18), (21), (280), (281) are inconsistent by
% 40.65/6.28  | | | | | | | | |            sub-proof #9.
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | End of split
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | Case 2:
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | |   (282)  (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.28  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.28  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.65/6.28  | | | | | | | |            & greater(zero, all_40_1)) |
% 40.65/6.28  | | | | | | | |          (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.28  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.28  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.65/6.28  | | | | | | | |            & greater(zero, all_40_0))
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | | BETA: splitting (282) gives:
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | | Case 1:
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | |   (283)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.28  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.28  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.65/6.28  | | | | | | | | |          & greater(zero, all_40_1)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | ALPHA: (283) implies:
% 40.65/6.28  | | | | | | | | |   (284)  greater(all_40_0, zero)
% 40.65/6.28  | | | | | | | | |   (285)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REF_CLOSE: (8), (226), (227), (284), (285) are inconsistent by
% 40.65/6.28  | | | | | | | | |            sub-proof #12.
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | Case 2:
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | |   (286)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.28  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.28  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.65/6.28  | | | | | | | | |          & greater(zero, all_40_0)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | ALPHA: (286) implies:
% 40.65/6.28  | | | | | | | | |   (287)  greater(all_40_1, zero)
% 40.65/6.28  | | | | | | | | |   (288)  $i(all_40_0)
% 40.65/6.28  | | | | | | | | |   (289)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.28  | | | | | | | | |   (290)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (269), (290) imply:
% 40.65/6.28  | | | | | | | | |   (291)  growth_rate(efficient_producers, all_19_0) = all_40_0
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (269), (289) imply:
% 40.65/6.28  | | | | | | | | |   (292)  growth_rate(first_movers, all_19_0) = all_40_1
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | GROUND_INST: instantiating (8) with all_40_1, all_106_0,
% 40.65/6.28  | | | | | | | | |              all_19_0, first_movers, simplifying with (271),
% 40.65/6.28  | | | | | | | | |              (292) gives:
% 40.65/6.28  | | | | | | | | |   (293)  all_106_0 = all_40_1
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | GROUND_INST: instantiating (8) with all_31_1, all_40_0,
% 40.65/6.28  | | | | | | | | |              all_19_0, efficient_producers, simplifying with
% 40.65/6.28  | | | | | | | | |              (270), (291) gives:
% 40.65/6.28  | | | | | | | | |   (294)  all_40_0 = all_31_1
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (234), (293) imply:
% 40.65/6.28  | | | | | | | | |   (295)  $i(all_40_1)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (288), (294) imply:
% 40.65/6.28  | | | | | | | | |   (296)  $i(all_31_1)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | REDUCE: (238), (293) imply:
% 40.65/6.28  | | | | | | | | |   (297)  greater(all_31_1, all_40_1)
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with
% 40.65/6.28  | | | | | | | | |              all_31_1, all_40_1, zero, simplifying with (5),
% 40.65/6.28  | | | | | | | | |              (226), (287), (295), (296), (297) gives:
% 40.65/6.28  | | | | | | | | |   (298)  $false
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | | CLOSE: (298) is inconsistent.
% 40.65/6.28  | | | | | | | | | 
% 40.65/6.28  | | | | | | | | End of split
% 40.65/6.28  | | | | | | | | 
% 40.65/6.28  | | | | | | | End of split
% 40.65/6.28  | | | | | | | 
% 40.65/6.28  | | | | | | End of split
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | End of split
% 40.65/6.28  | | | | | 
% 40.65/6.28  | | | | Case 2:
% 40.65/6.28  | | | | | 
% 40.65/6.28  | | | | |   (299)  growth_rate(first_movers, all_31_2) = all_31_0 & $i(all_31_0)
% 40.65/6.28  | | | | |          &  ~ greater(zero, all_31_0)
% 40.65/6.28  | | | | | 
% 40.65/6.28  | | | | | ALPHA: (299) implies:
% 40.65/6.28  | | | | |   (300)   ~ greater(zero, all_31_0)
% 40.65/6.28  | | | | |   (301)  growth_rate(first_movers, all_31_2) = all_31_0
% 40.65/6.28  | | | | | 
% 40.65/6.28  | | | | | BETA: splitting (45) gives:
% 40.65/6.28  | | | | | 
% 40.65/6.28  | | | | | Case 1:
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | |   (302)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | | PRED_UNIFY: (36), (302) imply:
% 40.65/6.28  | | | | | |   (303)   ~ (all_21_0 = all_19_0)
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | | REF_CLOSE: (1), (20), (24), (38), (41), (224), (302), (303),
% 40.65/6.28  | | | | | |            (mp_greater_transitivity) are inconsistent by sub-proof
% 40.65/6.28  | | | | | |            #14.
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | Case 2:
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | |   (304)   ? [v0: $i] :  ? [v1: $i] :
% 40.65/6.28  | | | | | |          (growth_rate(efficient_producers, all_31_2) = v0 &
% 40.65/6.28  | | | | | |            growth_rate(first_movers, all_31_2) = v1 & $i(v1) &
% 40.65/6.28  | | | | | |            $i(v0) & greater(v0, v1))
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | | DELTA: instantiating (304) with fresh symbols all_106_0, all_106_1
% 40.65/6.28  | | | | | |        gives:
% 40.65/6.28  | | | | | |   (305)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.28  | | | | | |          growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.65/6.28  | | | | | |          $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.65/6.28  | | | | | |            all_106_0)
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | | ALPHA: (305) implies:
% 40.65/6.28  | | | | | |   (306)  greater(all_106_1, all_106_0)
% 40.65/6.28  | | | | | |   (307)  $i(all_106_1)
% 40.65/6.28  | | | | | |   (308)  growth_rate(first_movers, all_31_2) = all_106_0
% 40.65/6.28  | | | | | |   (309)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | | GROUND_INST: instantiating (8) with all_31_0, all_106_0, all_31_2,
% 40.65/6.28  | | | | | |              first_movers, simplifying with (301), (308) gives:
% 40.65/6.28  | | | | | |   (310)  all_106_0 = all_31_0
% 40.65/6.28  | | | | | | 
% 40.65/6.28  | | | | | | REDUCE: (306), (310) imply:
% 40.65/6.29  | | | | | |   (311)  greater(all_106_1, all_31_0)
% 40.65/6.29  | | | | | | 
% 40.65/6.29  | | | | | | PRED_UNIFY: (300), (311) imply:
% 40.65/6.29  | | | | | |   (312)   ~ (all_106_1 = zero)
% 40.65/6.29  | | | | | | 
% 40.65/6.29  | | | | | | BETA: splitting (41) gives:
% 40.65/6.29  | | | | | | 
% 40.65/6.29  | | | | | | Case 1:
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | |   (313)  greater(all_31_2, all_19_0)
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with
% 40.65/6.29  | | | | | | |              all_31_2, all_19_0, all_19_1, simplifying with (19),
% 40.65/6.29  | | | | | | |              (20), (38), (220), (313) gives:
% 40.65/6.29  | | | | | | |   (314)  greater(all_31_2, all_19_1)
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | BETA: splitting (52) gives:
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.65/6.29  | | | | | | | |              simplifying with (19), (38), (314) gives:
% 40.65/6.29  | | | | | | | |   (315)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | DELTA: instantiating (304) with fresh symbols all_106_0,
% 40.65/6.29  | | | | | | | |        all_106_1 gives:
% 40.65/6.29  | | | | | | | |   (316)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.29  | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_106_0 &
% 40.65/6.29  | | | | | | | |          $i(all_106_0) & $i(all_106_1) & greater(all_106_1,
% 40.65/6.29  | | | | | | | |            all_106_0)
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (300), (301), (315),
% 40.65/6.29  | | | | | | | |            (316), (mp_greater_transitivity) are inconsistent by
% 40.65/6.29  | | | | | | | |            sub-proof #7.
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | Case 2:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | |   (317)  all_38_0 = all_38_1
% 40.65/6.29  | | | | | | | |   (318)  growth_rate(first_movers, all_29_2) = all_38_1
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | COMBINE_EQS: (217), (317) imply:
% 40.65/6.29  | | | | | | | |   (319)  all_38_1 = all_29_0
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | REDUCE: (219), (319) imply:
% 40.65/6.29  | | | | | | | |   (320)   ~ (all_29_0 = zero)
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | REDUCE: (49), (319) imply:
% 40.65/6.29  | | | | | | | |   (321)  growth_rate(efficient_producers, all_29_2) = all_29_0
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | BETA: splitting (51) gives:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | |   (322)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.29  | | | | | | | | |            growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.29  | | | | | | | | |            growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.29  | | | | | | | | |          (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.29  | | | | | | | | |            greater_or_equal(all_29_2, all_41_2))
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | BETA: splitting (322) gives:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | |   (323)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.29  | | | | | | | | | |          growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.29  | | | | | | | | | |          growth_rate(first_movers, all_29_2) = zero
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | ALPHA: (323) implies:
% 40.65/6.29  | | | | | | | | | |   (324)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | REF_CLOSE: (8), (320), (321), (324) are inconsistent by
% 40.65/6.29  | | | | | | | | | |            sub-proof #2.
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | Case 2:
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | |   (325)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) & 
% 40.65/6.29  | | | | | | | | | |          ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | ALPHA: (325) implies:
% 40.65/6.29  | | | | | | | | | |   (326)  $i(all_41_2)
% 40.65/6.29  | | | | | | | | | |   (327)  equilibrium(all_11_0) = all_41_2
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | GROUND_INST: instantiating (7) with all_19_1, all_41_2,
% 40.65/6.29  | | | | | | | | | |              all_11_0, simplifying with (21), (327) gives:
% 40.65/6.29  | | | | | | | | | |   (328)  all_41_2 = all_19_1
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | GROUND_INST: instantiating (1) with all_31_2, all_19_1,
% 40.65/6.29  | | | | | | | | | |              simplifying with (19), (38), (314) gives:
% 40.65/6.29  | | | | | | | | | |   (329)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | DELTA: instantiating (304) with fresh symbols all_106_0,
% 40.65/6.29  | | | | | | | | | |        all_106_1 gives:
% 40.65/6.29  | | | | | | | | | |   (330)  growth_rate(efficient_producers, all_31_2) =
% 40.65/6.29  | | | | | | | | | |          all_106_1 & growth_rate(first_movers, all_31_2) =
% 40.65/6.29  | | | | | | | | | |          all_106_0 & $i(all_106_0) & $i(all_106_1) &
% 40.65/6.29  | | | | | | | | | |          greater(all_106_1, all_106_0)
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | REF_CLOSE: (5), (7), (8), (21), (50), (300), (301), (329),
% 40.65/6.29  | | | | | | | | | |            (330), (mp_greater_transitivity) are inconsistent
% 40.65/6.29  | | | | | | | | | |            by sub-proof #7.
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | End of split
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | Case 2:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | |   (331)  (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.29  | | | | | | | | |            all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.29  | | | | | | | | |            all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.29  | | | | | | | | |            greater(all_41_0, zero) & greater(zero, all_41_1))
% 40.65/6.29  | | | | | | | | |          | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.29  | | | | | | | | |            all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.29  | | | | | | | | |            all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.29  | | | | | | | | |            greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | BETA: splitting (331) gives:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | |   (332)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.29  | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.29  | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.29  | | | | | | | | | |          greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | ALPHA: (332) implies:
% 40.65/6.29  | | | | | | | | | |   (333)  greater(zero, all_41_1)
% 40.65/6.29  | | | | | | | | | |   (334)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | REF_CLOSE: (8), (215), (216), (333), (334) are inconsistent
% 40.65/6.29  | | | | | | | | | |            by sub-proof #4.
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | Case 2:
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | |   (335)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.29  | | | | | | | | | |          all_41_0 & growth_rate(first_movers, all_29_2) =
% 40.65/6.29  | | | | | | | | | |          all_41_1 & $i(all_41_0) & $i(all_41_1) &
% 40.65/6.29  | | | | | | | | | |          greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | ALPHA: (335) implies:
% 40.65/6.29  | | | | | | | | | |   (336)  greater(zero, all_41_0)
% 40.65/6.29  | | | | | | | | | |   (337)  growth_rate(efficient_producers, all_29_2) =
% 40.65/6.29  | | | | | | | | | |          all_41_0
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | | REF_CLOSE: (8), (215), (321), (336), (337) are inconsistent
% 40.65/6.29  | | | | | | | | | |            by sub-proof #1.
% 40.65/6.29  | | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | End of split
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | End of split
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | End of split
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | Case 2:
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | |   (338)  all_31_2 = all_19_0
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | REDUCE: (309), (338) imply:
% 40.65/6.29  | | | | | | |   (339)  growth_rate(efficient_producers, all_19_0) = all_106_1
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | REDUCE: (301), (338) imply:
% 40.65/6.29  | | | | | | |   (340)  growth_rate(first_movers, all_19_0) = all_31_0
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | BETA: splitting (50) gives:
% 40.65/6.29  | | | | | | | 
% 40.65/6.29  | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | |   (341)  (all_40_0 = zero & all_40_1 = zero &
% 40.65/6.29  | | | | | | | |            growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.29  | | | | | | | |            growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.29  | | | | | | | |          (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.29  | | | | | | | |            greater_or_equal(all_31_2, all_40_2))
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | BETA: splitting (341) gives:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | |   (342)  all_40_0 = zero & all_40_1 = zero &
% 40.65/6.29  | | | | | | | | |          growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.29  | | | | | | | | |          growth_rate(first_movers, all_31_2) = zero
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | ALPHA: (342) implies:
% 40.65/6.29  | | | | | | | | |   (343)  growth_rate(efficient_producers, all_31_2) = zero
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | REDUCE: (338), (343) imply:
% 40.65/6.29  | | | | | | | | |   (344)  growth_rate(efficient_producers, all_19_0) = zero
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | GROUND_INST: instantiating (8) with zero, all_106_1, all_19_0,
% 40.65/6.29  | | | | | | | | |              efficient_producers, simplifying with (339), (344)
% 40.65/6.29  | | | | | | | | |              gives:
% 40.65/6.29  | | | | | | | | |   (345)  all_106_1 = zero
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | REDUCE: (312), (345) imply:
% 40.65/6.29  | | | | | | | | |   (346)  $false
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | CLOSE: (346) is inconsistent.
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | Case 2:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | |   (347)  equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.29  | | | | | | | | |          greater_or_equal(all_31_2, all_40_2)
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | ALPHA: (347) implies:
% 40.65/6.29  | | | | | | | | |   (348)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.65/6.29  | | | | | | | | |   (349)  equilibrium(all_11_0) = all_40_2
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | REDUCE: (338), (348) imply:
% 40.65/6.29  | | | | | | | | |   (350)   ~ greater_or_equal(all_19_0, all_40_2)
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | | REF_CLOSE: (7), (18), (21), (349), (350) are inconsistent by
% 40.65/6.29  | | | | | | | | |            sub-proof #9.
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.29  | | | | | | | | End of split
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | Case 2:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | |   (351)  (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.29  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.29  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.65/6.29  | | | | | | | |            & greater(zero, all_40_1)) |
% 40.65/6.29  | | | | | | | |          (growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.29  | | | | | | | |            & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.29  | | | | | | | |            $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.65/6.29  | | | | | | | |            & greater(zero, all_40_0))
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | BETA: splitting (351) gives:
% 40.65/6.29  | | | | | | | | 
% 40.65/6.29  | | | | | | | | Case 1:
% 40.65/6.29  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | |   (352)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.30  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.30  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_0, zero)
% 40.65/6.30  | | | | | | | | |          & greater(zero, all_40_1)
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | ALPHA: (352) implies:
% 40.65/6.30  | | | | | | | | |   (353)  greater(zero, all_40_1)
% 40.65/6.30  | | | | | | | | |   (354)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | REF_CLOSE: (8), (300), (301), (353), (354) are inconsistent by
% 40.65/6.30  | | | | | | | | |            sub-proof #8.
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | Case 2:
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | |   (355)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.30  | | | | | | | | |          & growth_rate(first_movers, all_31_2) = all_40_1 &
% 40.65/6.30  | | | | | | | | |          $i(all_40_0) & $i(all_40_1) & greater(all_40_1, zero)
% 40.65/6.30  | | | | | | | | |          & greater(zero, all_40_0)
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | ALPHA: (355) implies:
% 40.65/6.30  | | | | | | | | |   (356)  greater(zero, all_40_0)
% 40.65/6.30  | | | | | | | | |   (357)  $i(all_40_1)
% 40.65/6.30  | | | | | | | | |   (358)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.30  | | | | | | | | |   (359)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | REDUCE: (338), (359) imply:
% 40.65/6.30  | | | | | | | | |   (360)  growth_rate(efficient_producers, all_19_0) = all_40_0
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | REDUCE: (338), (358) imply:
% 40.65/6.30  | | | | | | | | |   (361)  growth_rate(first_movers, all_19_0) = all_40_1
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | GROUND_INST: instantiating (8) with all_31_0, all_40_1,
% 40.65/6.30  | | | | | | | | |              all_19_0, first_movers, simplifying with (340),
% 40.65/6.30  | | | | | | | | |              (361) gives:
% 40.65/6.30  | | | | | | | | |   (362)  all_40_1 = all_31_0
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | GROUND_INST: instantiating (8) with all_40_0, all_106_1,
% 40.65/6.30  | | | | | | | | |              all_19_0, efficient_producers, simplifying with
% 40.65/6.30  | | | | | | | | |              (339), (360) gives:
% 40.65/6.30  | | | | | | | | |   (363)  all_106_1 = all_40_0
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | REDUCE: (307), (363) imply:
% 40.65/6.30  | | | | | | | | |   (364)  $i(all_40_0)
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | REDUCE: (357), (362) imply:
% 40.65/6.30  | | | | | | | | |   (365)  $i(all_31_0)
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | REDUCE: (311), (363) imply:
% 40.65/6.30  | | | | | | | | |   (366)  greater(all_40_0, all_31_0)
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | GROUND_INST: instantiating (mp_greater_transitivity) with zero,
% 40.65/6.30  | | | | | | | | |              all_40_0, all_31_0, simplifying with (5), (300),
% 40.65/6.30  | | | | | | | | |              (356), (364), (365), (366) gives:
% 40.65/6.30  | | | | | | | | |   (367)  $false
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | | CLOSE: (367) is inconsistent.
% 40.65/6.30  | | | | | | | | | 
% 40.65/6.30  | | | | | | | | End of split
% 40.65/6.30  | | | | | | | | 
% 40.65/6.30  | | | | | | | End of split
% 40.65/6.30  | | | | | | | 
% 40.65/6.30  | | | | | | End of split
% 40.65/6.30  | | | | | | 
% 40.65/6.30  | | | | | End of split
% 40.65/6.30  | | | | | 
% 40.65/6.30  | | | | End of split
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | End of split
% 40.65/6.30  | | | 
% 40.65/6.30  | | Case 2:
% 40.65/6.30  | | | 
% 40.65/6.30  | | |   (368)  all_19_0 = all_19_1
% 40.65/6.30  | | | 
% 40.65/6.30  | | | REDUCE: (36), (368) imply:
% 40.65/6.30  | | |   (369)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.30  | | | 
% 40.65/6.30  | | | BETA: splitting (27) gives:
% 40.65/6.30  | | | 
% 40.65/6.30  | | | Case 1:
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | |   (370)  greater(all_21_0, all_19_0)
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | | REDUCE: (368), (370) imply:
% 40.65/6.30  | | | |   (371)  greater(all_21_0, all_19_1)
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | | REF_CLOSE: (1), (5), (7), (8), (19), (21), (24), (33), (40), (49), (51),
% 40.65/6.30  | | | |            (215), (216), (218), (219), (371), (mp_greater_transitivity)
% 40.65/6.30  | | | |            are inconsistent by sub-proof #3.
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | Case 2:
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | |   (372)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | | REF_CLOSE: (1), (5), (7), (8), (19), (21), (24), (38), (39), (41), (45),
% 40.65/6.30  | | | |            (50), (368), (369), (372), (mp_greater_transitivity) are
% 40.65/6.30  | | | |            inconsistent by sub-proof #5.
% 40.65/6.30  | | | | 
% 40.65/6.30  | | | End of split
% 40.65/6.30  | | | 
% 40.65/6.30  | | End of split
% 40.65/6.30  | | 
% 40.65/6.30  | End of split
% 40.65/6.30  | 
% 40.65/6.30  End of proof
% 40.65/6.30  
% 40.65/6.30  Sub-proof #1 shows that the following formulas are inconsistent:
% 40.65/6.30  ----------------------------------------------------------------
% 40.65/6.30    (1)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.30    (2)  greater(zero, all_41_0)
% 40.65/6.30    (3)  growth_rate(efficient_producers, all_29_2) = all_29_0
% 40.65/6.30    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.30           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.30    (5)   ~ greater(zero, all_29_0)
% 40.65/6.30  
% 40.65/6.30  Begin of proof
% 40.65/6.30  | 
% 40.65/6.30  | PRED_UNIFY: (2), (5) imply:
% 40.65/6.30  |   (6)   ~ (all_41_0 = all_29_0)
% 40.65/6.30  | 
% 40.65/6.30  | GROUND_INST: instantiating (4) with all_29_0, all_41_0, all_29_2,
% 40.65/6.30  |              efficient_producers, simplifying with (1), (3) gives:
% 40.65/6.30  |   (7)  all_41_0 = all_29_0
% 40.65/6.30  | 
% 40.65/6.30  | REDUCE: (6), (7) imply:
% 40.65/6.30  |   (8)  $false
% 40.65/6.30  | 
% 40.65/6.30  | CLOSE: (8) is inconsistent.
% 40.65/6.30  | 
% 40.65/6.30  End of proof
% 40.65/6.30  
% 40.65/6.30  Sub-proof #2 shows that the following formulas are inconsistent:
% 40.65/6.30  ----------------------------------------------------------------
% 40.65/6.30    (1)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.30           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.30    (2)  growth_rate(efficient_producers, all_29_2) = all_29_0
% 40.65/6.30    (3)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.30    (4)   ~ (all_29_0 = zero)
% 40.65/6.30  
% 40.65/6.30  Begin of proof
% 40.65/6.30  | 
% 40.65/6.30  | GROUND_INST: instantiating (1) with zero, all_29_0, all_29_2,
% 40.65/6.30  |              efficient_producers, simplifying with (2), (3) gives:
% 40.65/6.30  |   (5)  all_29_0 = zero
% 40.65/6.30  | 
% 40.65/6.30  | REDUCE: (4), (5) imply:
% 40.65/6.30  |   (6)  $false
% 40.65/6.30  | 
% 40.65/6.30  | CLOSE: (6) is inconsistent.
% 40.65/6.30  | 
% 40.65/6.30  End of proof
% 40.65/6.30  
% 40.65/6.30  Sub-proof #3 shows that the following formulas are inconsistent:
% 40.65/6.30  ----------------------------------------------------------------
% 40.65/6.30    (1)  growth_rate(first_movers, all_29_2) = all_29_0
% 40.65/6.30    (2)   ~ (all_38_1 = zero)
% 40.65/6.30    (3)  $i(all_21_0)
% 40.65/6.30    (4)  greater(all_21_0, all_19_1)
% 40.65/6.30    (5)  (all_41_0 = zero & all_41_1 = zero & growth_rate(efficient_producers,
% 40.65/6.30             all_29_2) = zero & growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.30         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.30           greater_or_equal(all_29_2, all_41_2)) |
% 40.65/6.30         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.30           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.30           $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)) |
% 40.65/6.30         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.30           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.30           $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.65/6.30    (6)  $i(all_19_1)
% 40.65/6.30    (7)  all_29_2 = all_21_0 | greater(all_29_2, all_21_0)
% 40.65/6.30    (8)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.30           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.30    (9)  greater(all_38_1, all_29_0)
% 40.65/6.30    (10)  $i(zero)
% 40.65/6.30    (11)  $i(all_29_2)
% 40.65/6.30    (12)  growth_rate(efficient_producers, all_29_2) = all_38_1
% 40.65/6.30    (13)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.30              = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.30    (14)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1)
% 40.65/6.30            | greater_or_equal(v0, v1))
% 40.65/6.30    (15)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.30            (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.30    (16)   ~ greater(zero, all_29_0)
% 40.65/6.30    (17)  equilibrium(all_11_0) = all_19_1
% 40.65/6.30  
% 40.65/6.30  Begin of proof
% 40.65/6.30  | 
% 40.65/6.30  | GROUND_INST: instantiating (14) with all_21_0, all_19_1, simplifying with (3),
% 40.65/6.30  |              (4), (6) gives:
% 40.65/6.30  |   (18)  greater_or_equal(all_21_0, all_19_1)
% 40.65/6.30  | 
% 40.65/6.30  | BETA: splitting (7) gives:
% 40.65/6.30  | 
% 40.65/6.30  | Case 1:
% 40.65/6.30  | | 
% 40.65/6.30  | |   (19)  greater(all_29_2, all_21_0)
% 40.65/6.30  | | 
% 40.65/6.30  | | GROUND_INST: instantiating (8) with all_29_2, all_21_0, all_19_1,
% 40.65/6.30  | |              simplifying with (3), (4), (6), (11), (19) gives:
% 40.65/6.31  | |   (20)  greater(all_29_2, all_19_1)
% 40.65/6.31  | | 
% 40.65/6.31  | | BETA: splitting (5) gives:
% 40.65/6.31  | | 
% 40.65/6.31  | | Case 1:
% 40.65/6.31  | | | 
% 40.65/6.31  | | |   (21)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.31  | | |           growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.31  | | |           growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.31  | | |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.31  | | |           greater_or_equal(all_29_2, all_41_2))
% 40.65/6.31  | | | 
% 40.65/6.31  | | | BETA: splitting (21) gives:
% 40.65/6.31  | | | 
% 40.65/6.31  | | | Case 1:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (22)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.31  | | | |         growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.31  | | | |         growth_rate(first_movers, all_29_2) = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (22) implies:
% 40.65/6.31  | | | |   (23)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with all_38_1, zero, all_29_2,
% 40.65/6.31  | | | |              efficient_producers, simplifying with (12), (23) gives:
% 40.65/6.31  | | | |   (24)  all_38_1 = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (2), (24) imply:
% 40.65/6.31  | | | |   (25)  $false
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | CLOSE: (25) is inconsistent.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | Case 2:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (26)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.31  | | | |         greater_or_equal(all_29_2, all_41_2)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (26) implies:
% 40.65/6.31  | | | |   (27)   ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.31  | | | |   (28)  $i(all_41_2)
% 40.65/6.31  | | | |   (29)  equilibrium(all_11_0) = all_41_2
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REF_CLOSE: (11), (13), (14), (17), (20), (27), (28), (29) are
% 40.65/6.31  | | | |            inconsistent by sub-proof #20.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | End of split
% 40.65/6.31  | | | 
% 40.65/6.31  | | Case 2:
% 40.65/6.31  | | | 
% 40.65/6.31  | | |   (30)  (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.31  | | |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.31  | | |           $i(all_41_1) & greater(all_41_0, zero) & greater(zero,
% 40.65/6.31  | | |             all_41_1)) | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.31  | | |           all_41_0 & growth_rate(first_movers, all_29_2) = all_41_1 &
% 40.65/6.31  | | |           $i(all_41_0) & $i(all_41_1) & greater(all_41_1, zero) &
% 40.65/6.31  | | |           greater(zero, all_41_0))
% 40.65/6.31  | | | 
% 40.65/6.31  | | | BETA: splitting (30) gives:
% 40.65/6.31  | | | 
% 40.65/6.31  | | | Case 1:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (31)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.31  | | | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.31  | | | |         $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (31) implies:
% 40.65/6.31  | | | |   (32)  greater(zero, all_41_1)
% 40.65/6.31  | | | |   (33)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REF_CLOSE: (1), (15), (16), (32), (33) are inconsistent by sub-proof #4.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | Case 2:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (34)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.31  | | | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.31  | | | |         $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (34) implies:
% 40.65/6.31  | | | |   (35)  greater(zero, all_41_0)
% 40.65/6.31  | | | |   (36)  $i(all_41_1)
% 40.65/6.31  | | | |   (37)  $i(all_41_0)
% 40.65/6.31  | | | |   (38)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.31  | | | |   (39)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with all_29_0, all_41_1, all_29_2,
% 40.65/6.31  | | | |              first_movers, simplifying with (1), (38) gives:
% 40.65/6.31  | | | |   (40)  all_41_1 = all_29_0
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with all_38_1, all_41_0, all_29_2,
% 40.65/6.31  | | | |              efficient_producers, simplifying with (12), (39) gives:
% 40.65/6.31  | | | |   (41)  all_41_0 = all_38_1
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (37), (41) imply:
% 40.65/6.31  | | | |   (42)  $i(all_38_1)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (36), (40) imply:
% 40.65/6.31  | | | |   (43)  $i(all_29_0)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (35), (41) imply:
% 40.65/6.31  | | | |   (44)  greater(zero, all_38_1)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (8) with zero, all_38_1, all_29_0,
% 40.65/6.31  | | | |              simplifying with (9), (10), (16), (42), (43), (44) gives:
% 40.65/6.31  | | | |   (45)  $false
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | CLOSE: (45) is inconsistent.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | End of split
% 40.65/6.31  | | | 
% 40.65/6.31  | | End of split
% 40.65/6.31  | | 
% 40.65/6.31  | Case 2:
% 40.65/6.31  | | 
% 40.65/6.31  | |   (46)  all_29_2 = all_21_0
% 40.65/6.31  | | 
% 40.65/6.31  | | REDUCE: (12), (46) imply:
% 40.65/6.31  | |   (47)  growth_rate(efficient_producers, all_21_0) = all_38_1
% 40.65/6.31  | | 
% 40.65/6.31  | | REDUCE: (1), (46) imply:
% 40.65/6.31  | |   (48)  growth_rate(first_movers, all_21_0) = all_29_0
% 40.65/6.31  | | 
% 40.65/6.31  | | BETA: splitting (5) gives:
% 40.65/6.31  | | 
% 40.65/6.31  | | Case 1:
% 40.65/6.31  | | | 
% 40.65/6.31  | | |   (49)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.31  | | |           growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.31  | | |           growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.31  | | |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.31  | | |           greater_or_equal(all_29_2, all_41_2))
% 40.65/6.31  | | | 
% 40.65/6.31  | | | BETA: splitting (49) gives:
% 40.65/6.31  | | | 
% 40.65/6.31  | | | Case 1:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (50)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.31  | | | |         growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.31  | | | |         growth_rate(first_movers, all_29_2) = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (50) implies:
% 40.65/6.31  | | | |   (51)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (46), (51) imply:
% 40.65/6.31  | | | |   (52)  growth_rate(efficient_producers, all_21_0) = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with zero, all_38_1, all_21_0,
% 40.65/6.31  | | | |              efficient_producers, simplifying with (47), (52) gives:
% 40.65/6.31  | | | |   (53)  all_38_1 = zero
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (2), (53) imply:
% 40.65/6.31  | | | |   (54)  $false
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | CLOSE: (54) is inconsistent.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | Case 2:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (55)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.31  | | | |         greater_or_equal(all_29_2, all_41_2)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (55) implies:
% 40.65/6.31  | | | |   (56)   ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.31  | | | |   (57)  equilibrium(all_11_0) = all_41_2
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (46), (56) imply:
% 40.65/6.31  | | | |   (58)   ~ greater_or_equal(all_21_0, all_41_2)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REF_CLOSE: (13), (17), (18), (57), (58) are inconsistent by sub-proof
% 40.65/6.31  | | | |            #16.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | End of split
% 40.65/6.31  | | | 
% 40.65/6.31  | | Case 2:
% 40.65/6.31  | | | 
% 40.65/6.31  | | |   (59)  (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.31  | | |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.31  | | |           $i(all_41_1) & greater(all_41_0, zero) & greater(zero,
% 40.65/6.31  | | |             all_41_1)) | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.31  | | |           all_41_0 & growth_rate(first_movers, all_29_2) = all_41_1 &
% 40.65/6.31  | | |           $i(all_41_0) & $i(all_41_1) & greater(all_41_1, zero) &
% 40.65/6.31  | | |           greater(zero, all_41_0))
% 40.65/6.31  | | | 
% 40.65/6.31  | | | BETA: splitting (59) gives:
% 40.65/6.31  | | | 
% 40.65/6.31  | | | Case 1:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (60)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.31  | | | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.31  | | | |         $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (60) implies:
% 40.65/6.31  | | | |   (61)  greater(zero, all_41_1)
% 40.65/6.31  | | | |   (62)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (46), (62) imply:
% 40.65/6.31  | | | |   (63)  growth_rate(first_movers, all_21_0) = all_41_1
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | PRED_UNIFY: (16), (61) imply:
% 40.65/6.31  | | | |   (64)   ~ (all_41_1 = all_29_0)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with all_29_0, all_41_1, all_21_0,
% 40.65/6.31  | | | |              first_movers, simplifying with (48), (63) gives:
% 40.65/6.31  | | | |   (65)  all_41_1 = all_29_0
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (64), (65) imply:
% 40.65/6.31  | | | |   (66)  $false
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | CLOSE: (66) is inconsistent.
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | Case 2:
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | |   (67)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.31  | | | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.31  | | | |         $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | ALPHA: (67) implies:
% 40.65/6.31  | | | |   (68)  greater(zero, all_41_0)
% 40.65/6.31  | | | |   (69)  $i(all_41_1)
% 40.65/6.31  | | | |   (70)  $i(all_41_0)
% 40.65/6.31  | | | |   (71)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.31  | | | |   (72)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (46), (72) imply:
% 40.65/6.31  | | | |   (73)  growth_rate(efficient_producers, all_21_0) = all_41_0
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (46), (71) imply:
% 40.65/6.31  | | | |   (74)  growth_rate(first_movers, all_21_0) = all_41_1
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with all_29_0, all_41_1, all_21_0,
% 40.65/6.31  | | | |              first_movers, simplifying with (48), (74) gives:
% 40.65/6.31  | | | |   (75)  all_41_1 = all_29_0
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | GROUND_INST: instantiating (15) with all_38_1, all_41_0, all_21_0,
% 40.65/6.31  | | | |              efficient_producers, simplifying with (47), (73) gives:
% 40.65/6.31  | | | |   (76)  all_41_0 = all_38_1
% 40.65/6.31  | | | | 
% 40.65/6.31  | | | | REDUCE: (70), (76) imply:
% 40.65/6.32  | | | |   (77)  $i(all_38_1)
% 40.65/6.32  | | | | 
% 40.65/6.32  | | | | REDUCE: (69), (75) imply:
% 40.65/6.32  | | | |   (78)  $i(all_29_0)
% 40.65/6.32  | | | | 
% 40.65/6.32  | | | | REDUCE: (68), (76) imply:
% 40.65/6.32  | | | |   (79)  greater(zero, all_38_1)
% 40.65/6.32  | | | | 
% 40.65/6.32  | | | | GROUND_INST: instantiating (8) with zero, all_38_1, all_29_0,
% 40.65/6.32  | | | |              simplifying with (9), (10), (16), (77), (78), (79) gives:
% 40.65/6.32  | | | |   (80)  $false
% 40.65/6.32  | | | | 
% 40.65/6.32  | | | | CLOSE: (80) is inconsistent.
% 40.65/6.32  | | | | 
% 40.65/6.32  | | | End of split
% 40.65/6.32  | | | 
% 40.65/6.32  | | End of split
% 40.65/6.32  | | 
% 40.65/6.32  | End of split
% 40.65/6.32  | 
% 40.65/6.32  End of proof
% 40.65/6.32  
% 40.65/6.32  Sub-proof #4 shows that the following formulas are inconsistent:
% 40.65/6.32  ----------------------------------------------------------------
% 40.65/6.32    (1)  growth_rate(first_movers, all_29_2) = all_29_0
% 40.65/6.32    (2)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.32    (3)  greater(zero, all_41_1)
% 40.65/6.32    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.32           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.32    (5)   ~ greater(zero, all_29_0)
% 40.65/6.32  
% 40.65/6.32  Begin of proof
% 40.65/6.32  | 
% 40.65/6.32  | PRED_UNIFY: (3), (5) imply:
% 40.65/6.32  |   (6)   ~ (all_41_1 = all_29_0)
% 40.65/6.32  | 
% 40.65/6.32  | GROUND_INST: instantiating (4) with all_29_0, all_41_1, all_29_2,
% 40.65/6.32  |              first_movers, simplifying with (1), (2) gives:
% 40.65/6.32  |   (7)  all_41_1 = all_29_0
% 40.65/6.32  | 
% 40.65/6.32  | REDUCE: (6), (7) imply:
% 40.65/6.32  |   (8)  $false
% 40.65/6.32  | 
% 40.65/6.32  | CLOSE: (8) is inconsistent.
% 40.65/6.32  | 
% 40.65/6.32  End of proof
% 40.65/6.32  
% 40.65/6.32  Sub-proof #5 shows that the following formulas are inconsistent:
% 40.65/6.32  ----------------------------------------------------------------
% 40.65/6.32    (1)   ~ greater_or_equal(all_31_2, all_21_0) |  ? [v0: $i] :  ? [v1: $i] :
% 40.65/6.32         (growth_rate(efficient_producers, all_31_2) = v0 &
% 40.65/6.32           growth_rate(first_movers, all_31_2) = v1 & $i(v1) & $i(v0) &
% 40.65/6.32           greater(v0, v1))
% 40.65/6.32    (2)  $i(all_21_0)
% 40.65/6.32    (3)  $i(all_31_2)
% 40.65/6.32    (4)  (growth_rate(efficient_producers, all_31_2) = all_31_1 & $i(all_31_1) & 
% 40.65/6.32           ~ greater(all_31_1, zero)) | (growth_rate(first_movers, all_31_2) =
% 40.65/6.32           all_31_0 & $i(all_31_0) &  ~ greater(zero, all_31_0))
% 40.65/6.32    (5)  $i(all_19_1)
% 40.65/6.32    (6)  (all_40_0 = zero & all_40_1 = zero & growth_rate(efficient_producers,
% 40.65/6.32             all_31_2) = zero & growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.32         (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.32           greater_or_equal(all_31_2, all_40_2)) |
% 40.65/6.32         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.32           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.32           $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1)) |
% 40.65/6.32         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.32           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.32           $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0))
% 40.65/6.32    (7)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.32           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.32    (8)  $i(zero)
% 40.65/6.32    (9)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.32    (10)  all_19_0 = all_19_1
% 40.65/6.32    (11)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.32              = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.32    (12)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1)
% 40.65/6.32            | greater_or_equal(v0, v1))
% 40.65/6.32    (13)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.65/6.32    (14)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.32            (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.32    (15)  equilibrium(all_11_0) = all_19_1
% 40.65/6.32    (16)  all_31_2 = all_19_0 | greater(all_31_2, all_19_0)
% 40.65/6.32  
% 40.65/6.32  Begin of proof
% 40.65/6.32  | 
% 40.65/6.32  | BETA: splitting (4) gives:
% 40.65/6.32  | 
% 40.65/6.32  | Case 1:
% 40.65/6.32  | | 
% 40.65/6.32  | |   (17)  growth_rate(efficient_producers, all_31_2) = all_31_1 & $i(all_31_1)
% 40.65/6.32  | |         &  ~ greater(all_31_1, zero)
% 40.65/6.32  | | 
% 40.65/6.32  | | ALPHA: (17) implies:
% 40.65/6.32  | |   (18)   ~ greater(all_31_1, zero)
% 40.65/6.32  | |   (19)  growth_rate(efficient_producers, all_31_2) = all_31_1
% 40.65/6.32  | | 
% 40.65/6.32  | | BETA: splitting (1) gives:
% 40.65/6.32  | | 
% 40.65/6.32  | | Case 1:
% 40.65/6.32  | | | 
% 40.65/6.32  | | |   (20)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.65/6.32  | | | 
% 40.65/6.32  | | | PRED_UNIFY: (9), (20) imply:
% 40.65/6.32  | | |   (21)   ~ (all_21_0 = all_19_1)
% 40.65/6.32  | | | 
% 40.65/6.32  | | | REF_CLOSE: (2), (3), (5), (7), (10), (12), (13), (16), (20), (21) are
% 40.65/6.32  | | |            inconsistent by sub-proof #6.
% 40.65/6.32  | | | 
% 40.65/6.32  | | Case 2:
% 40.65/6.32  | | | 
% 40.65/6.32  | | |   (22)   ? [v0: $i] :  ? [v1: $i] : (growth_rate(efficient_producers,
% 40.65/6.32  | | |             all_31_2) = v0 & growth_rate(first_movers, all_31_2) = v1 &
% 40.65/6.32  | | |           $i(v1) & $i(v0) & greater(v0, v1))
% 40.65/6.32  | | | 
% 40.65/6.32  | | | DELTA: instantiating (22) with fresh symbols all_106_0, all_106_1 gives:
% 40.65/6.32  | | |   (23)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.32  | | |         growth_rate(first_movers, all_31_2) = all_106_0 & $i(all_106_0) &
% 40.65/6.32  | | |         $i(all_106_1) & greater(all_106_1, all_106_0)
% 40.65/6.32  | | | 
% 40.65/6.32  | | | REF_CLOSE: (6), (7), (8), (9), (11), (14), (15), (18), (19), (23) are
% 40.65/6.32  | | |            inconsistent by sub-proof #11.
% 40.65/6.32  | | | 
% 40.65/6.32  | | End of split
% 40.65/6.32  | | 
% 40.65/6.32  | Case 2:
% 40.65/6.32  | | 
% 40.65/6.32  | |   (24)  growth_rate(first_movers, all_31_2) = all_31_0 & $i(all_31_0) &  ~
% 40.65/6.32  | |         greater(zero, all_31_0)
% 40.65/6.32  | | 
% 40.65/6.32  | | ALPHA: (24) implies:
% 40.65/6.32  | |   (25)   ~ greater(zero, all_31_0)
% 40.65/6.32  | |   (26)  growth_rate(first_movers, all_31_2) = all_31_0
% 40.65/6.32  | | 
% 40.65/6.32  | | BETA: splitting (1) gives:
% 40.65/6.32  | | 
% 40.65/6.32  | | Case 1:
% 40.65/6.32  | | | 
% 40.65/6.32  | | |   (27)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.65/6.32  | | | 
% 40.65/6.32  | | | PRED_UNIFY: (9), (27) imply:
% 40.65/6.32  | | |   (28)   ~ (all_21_0 = all_19_1)
% 40.65/6.32  | | | 
% 40.65/6.32  | | | REF_CLOSE: (2), (3), (5), (7), (10), (12), (13), (16), (27), (28) are
% 40.65/6.32  | | |            inconsistent by sub-proof #6.
% 40.65/6.32  | | | 
% 40.65/6.32  | | Case 2:
% 40.65/6.32  | | | 
% 40.65/6.32  | | |   (29)   ? [v0: $i] :  ? [v1: $i] : (growth_rate(efficient_producers,
% 40.65/6.32  | | |             all_31_2) = v0 & growth_rate(first_movers, all_31_2) = v1 &
% 40.65/6.32  | | |           $i(v1) & $i(v0) & greater(v0, v1))
% 40.65/6.32  | | | 
% 40.65/6.32  | | | DELTA: instantiating (29) with fresh symbols all_106_0, all_106_1 gives:
% 40.65/6.32  | | |   (30)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.32  | | |         growth_rate(first_movers, all_31_2) = all_106_0 & $i(all_106_0) &
% 40.65/6.32  | | |         $i(all_106_1) & greater(all_106_1, all_106_0)
% 40.65/6.32  | | | 
% 40.65/6.32  | | | REF_CLOSE: (6), (7), (8), (9), (11), (14), (15), (25), (26), (30) are
% 40.65/6.32  | | |            inconsistent by sub-proof #7.
% 40.65/6.32  | | | 
% 40.65/6.32  | | End of split
% 40.65/6.32  | | 
% 40.65/6.32  | End of split
% 40.65/6.32  | 
% 40.65/6.32  End of proof
% 40.65/6.32  
% 40.65/6.32  Sub-proof #6 shows that the following formulas are inconsistent:
% 40.65/6.32  ----------------------------------------------------------------
% 40.65/6.32    (1)  $i(all_21_0)
% 40.65/6.32    (2)  $i(all_31_2)
% 40.65/6.32    (3)  $i(all_19_1)
% 40.65/6.32    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.32           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.32    (5)  all_19_0 = all_19_1
% 40.65/6.32    (6)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1) |
% 40.65/6.32           greater_or_equal(v0, v1))
% 40.65/6.33    (7)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.65/6.33    (8)   ~ (all_21_0 = all_19_1)
% 40.65/6.33    (9)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.65/6.33    (10)  all_31_2 = all_19_0 | greater(all_31_2, all_19_0)
% 40.65/6.33  
% 40.65/6.33  Begin of proof
% 40.65/6.33  | 
% 40.65/6.33  | BETA: splitting (7) gives:
% 40.65/6.33  | 
% 40.65/6.33  | Case 1:
% 40.65/6.33  | | 
% 40.65/6.33  | |   (11)  greater(all_19_0, all_21_0)
% 40.65/6.33  | | 
% 40.65/6.33  | | REDUCE: (5), (11) imply:
% 40.65/6.33  | |   (12)  greater(all_19_1, all_21_0)
% 40.65/6.33  | | 
% 40.65/6.33  | | GROUND_INST: instantiating (6) with all_19_1, all_21_0, simplifying with
% 40.65/6.33  | |              (1), (3), (12) gives:
% 40.65/6.33  | |   (13)  greater_or_equal(all_19_1, all_21_0)
% 40.65/6.33  | | 
% 40.65/6.33  | | PRED_UNIFY: (9), (13) imply:
% 40.65/6.33  | |   (14)   ~ (all_31_2 = all_19_1)
% 40.65/6.33  | | 
% 40.65/6.33  | | BETA: splitting (10) gives:
% 40.65/6.33  | | 
% 40.65/6.33  | | Case 1:
% 40.65/6.33  | | | 
% 40.65/6.33  | | |   (15)  greater(all_31_2, all_19_0)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REDUCE: (5), (15) imply:
% 40.65/6.33  | | |   (16)  greater(all_31_2, all_19_1)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | GROUND_INST: instantiating (4) with all_31_2, all_19_1, all_21_0,
% 40.65/6.33  | | |              simplifying with (1), (2), (3), (12), (16) gives:
% 40.65/6.33  | | |   (17)  greater(all_31_2, all_21_0)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | GROUND_INST: instantiating (6) with all_31_2, all_21_0, simplifying with
% 40.65/6.33  | | |              (1), (2), (9), (17) gives:
% 40.65/6.33  | | |   (18)  $false
% 40.65/6.33  | | | 
% 40.65/6.33  | | | CLOSE: (18) is inconsistent.
% 40.65/6.33  | | | 
% 40.65/6.33  | | Case 2:
% 40.65/6.33  | | | 
% 40.65/6.33  | | |   (19)  all_31_2 = all_19_0
% 40.65/6.33  | | | 
% 40.65/6.33  | | | COMBINE_EQS: (5), (19) imply:
% 40.65/6.33  | | |   (20)  all_31_2 = all_19_1
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REDUCE: (14), (20) imply:
% 40.65/6.33  | | |   (21)  $false
% 40.65/6.33  | | | 
% 40.65/6.33  | | | CLOSE: (21) is inconsistent.
% 40.65/6.33  | | | 
% 40.65/6.33  | | End of split
% 40.65/6.33  | | 
% 40.65/6.33  | Case 2:
% 40.65/6.33  | | 
% 40.65/6.33  | |   (22)  all_21_0 = all_19_0
% 40.65/6.33  | | 
% 40.65/6.33  | | COMBINE_EQS: (5), (22) imply:
% 40.65/6.33  | |   (23)  all_21_0 = all_19_1
% 40.65/6.33  | | 
% 40.65/6.33  | | REDUCE: (8), (23) imply:
% 40.65/6.33  | |   (24)  $false
% 40.65/6.33  | | 
% 40.65/6.33  | | CLOSE: (24) is inconsistent.
% 40.65/6.33  | | 
% 40.65/6.33  | End of split
% 40.65/6.33  | 
% 40.65/6.33  End of proof
% 40.65/6.33  
% 40.65/6.33  Sub-proof #7 shows that the following formulas are inconsistent:
% 40.65/6.33  ----------------------------------------------------------------
% 40.65/6.33    (1)   ~ greater(zero, all_31_0)
% 40.65/6.33    (2)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.33         growth_rate(first_movers, all_31_2) = all_106_0 & $i(all_106_0) &
% 40.65/6.33         $i(all_106_1) & greater(all_106_1, all_106_0)
% 40.65/6.33    (3)  (all_40_0 = zero & all_40_1 = zero & growth_rate(efficient_producers,
% 40.65/6.33             all_31_2) = zero & growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.33         (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.33           greater_or_equal(all_31_2, all_40_2)) |
% 40.65/6.33         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.33           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.33           $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1)) |
% 40.65/6.33         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.33           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.33           $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0))
% 40.65/6.33    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.33           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.33    (5)  $i(zero)
% 40.65/6.33    (6)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.33    (7)  growth_rate(first_movers, all_31_2) = all_31_0
% 40.65/6.33    (8)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.33             = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.33    (9)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.33           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.33    (10)  equilibrium(all_11_0) = all_19_1
% 40.65/6.33  
% 40.65/6.33  Begin of proof
% 40.65/6.33  | 
% 40.65/6.33  | ALPHA: (2) implies:
% 40.65/6.33  |   (11)  greater(all_106_1, all_106_0)
% 40.65/6.33  |   (12)  $i(all_106_1)
% 40.65/6.33  |   (13)  growth_rate(first_movers, all_31_2) = all_106_0
% 40.65/6.33  |   (14)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.33  | 
% 40.65/6.33  | GROUND_INST: instantiating (9) with all_31_0, all_106_0, all_31_2,
% 40.65/6.33  |              first_movers, simplifying with (7), (13) gives:
% 40.65/6.33  |   (15)  all_106_0 = all_31_0
% 40.65/6.33  | 
% 40.65/6.33  | REDUCE: (11), (15) imply:
% 40.65/6.33  |   (16)  greater(all_106_1, all_31_0)
% 40.65/6.33  | 
% 40.65/6.33  | PRED_UNIFY: (1), (16) imply:
% 40.65/6.33  |   (17)   ~ (all_106_1 = zero)
% 40.65/6.33  | 
% 40.65/6.33  | BETA: splitting (3) gives:
% 40.65/6.33  | 
% 40.65/6.33  | Case 1:
% 40.65/6.33  | | 
% 40.65/6.33  | |   (18)  (all_40_0 = zero & all_40_1 = zero &
% 40.65/6.33  | |           growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.33  | |           growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.33  | |         (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.33  | |           greater_or_equal(all_31_2, all_40_2))
% 40.65/6.33  | | 
% 40.65/6.33  | | BETA: splitting (18) gives:
% 40.65/6.33  | | 
% 40.65/6.33  | | Case 1:
% 40.65/6.33  | | | 
% 40.65/6.33  | | |   (19)  all_40_0 = zero & all_40_1 = zero &
% 40.65/6.33  | | |         growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.33  | | |         growth_rate(first_movers, all_31_2) = zero
% 40.65/6.33  | | | 
% 40.65/6.33  | | | ALPHA: (19) implies:
% 40.65/6.33  | | |   (20)  growth_rate(efficient_producers, all_31_2) = zero
% 40.65/6.33  | | | 
% 40.65/6.33  | | | GROUND_INST: instantiating (9) with all_106_1, zero, all_31_2,
% 40.65/6.33  | | |              efficient_producers, simplifying with (14), (20) gives:
% 40.65/6.33  | | |   (21)  all_106_1 = zero
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REDUCE: (17), (21) imply:
% 40.65/6.33  | | |   (22)  $false
% 40.65/6.33  | | | 
% 40.65/6.33  | | | CLOSE: (22) is inconsistent.
% 40.65/6.33  | | | 
% 40.65/6.33  | | Case 2:
% 40.65/6.33  | | | 
% 40.65/6.33  | | |   (23)  equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.33  | | |         greater_or_equal(all_31_2, all_40_2)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | ALPHA: (23) implies:
% 40.65/6.33  | | |   (24)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.65/6.33  | | |   (25)  equilibrium(all_11_0) = all_40_2
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REF_CLOSE: (6), (8), (10), (24), (25) are inconsistent by sub-proof #13.
% 40.65/6.33  | | | 
% 40.65/6.33  | | End of split
% 40.65/6.33  | | 
% 40.65/6.33  | Case 2:
% 40.65/6.33  | | 
% 40.65/6.33  | |   (26)  (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.33  | |           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.33  | |           $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1))
% 40.65/6.33  | |         | (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.33  | |           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.33  | |           $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0))
% 40.65/6.33  | | 
% 40.65/6.33  | | BETA: splitting (26) gives:
% 40.65/6.33  | | 
% 40.65/6.33  | | Case 1:
% 40.65/6.33  | | | 
% 40.65/6.33  | | |   (27)  growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.33  | | |         growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.33  | | |         $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | ALPHA: (27) implies:
% 40.65/6.33  | | |   (28)  greater(zero, all_40_1)
% 40.65/6.33  | | |   (29)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REF_CLOSE: (1), (7), (9), (28), (29) are inconsistent by sub-proof #8.
% 40.65/6.33  | | | 
% 40.65/6.33  | | Case 2:
% 40.65/6.33  | | | 
% 40.65/6.33  | | |   (30)  growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.33  | | |         growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.33  | | |         $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | ALPHA: (30) implies:
% 40.65/6.33  | | |   (31)  greater(zero, all_40_0)
% 40.65/6.33  | | |   (32)  $i(all_40_1)
% 40.65/6.33  | | |   (33)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.33  | | |   (34)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.33  | | | 
% 40.65/6.33  | | | GROUND_INST: instantiating (9) with all_31_0, all_40_1, all_31_2,
% 40.65/6.33  | | |              first_movers, simplifying with (7), (33) gives:
% 40.65/6.33  | | |   (35)  all_40_1 = all_31_0
% 40.65/6.33  | | | 
% 40.65/6.33  | | | GROUND_INST: instantiating (9) with all_106_1, all_40_0, all_31_2,
% 40.65/6.33  | | |              efficient_producers, simplifying with (14), (34) gives:
% 40.65/6.33  | | |   (36)  all_106_1 = all_40_0
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REDUCE: (12), (36) imply:
% 40.65/6.33  | | |   (37)  $i(all_40_0)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REDUCE: (32), (35) imply:
% 40.65/6.33  | | |   (38)  $i(all_31_0)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | REDUCE: (16), (36) imply:
% 40.65/6.33  | | |   (39)  greater(all_40_0, all_31_0)
% 40.65/6.33  | | | 
% 40.65/6.33  | | | GROUND_INST: instantiating (4) with zero, all_40_0, all_31_0, simplifying
% 40.65/6.33  | | |              with (1), (5), (31), (37), (38), (39) gives:
% 40.65/6.33  | | |   (40)  $false
% 40.65/6.33  | | | 
% 40.65/6.33  | | | CLOSE: (40) is inconsistent.
% 40.65/6.33  | | | 
% 40.65/6.33  | | End of split
% 40.65/6.33  | | 
% 40.65/6.33  | End of split
% 40.65/6.33  | 
% 40.65/6.33  End of proof
% 40.65/6.33  
% 40.65/6.33  Sub-proof #8 shows that the following formulas are inconsistent:
% 40.65/6.33  ----------------------------------------------------------------
% 40.65/6.33    (1)   ~ greater(zero, all_31_0)
% 40.65/6.33    (2)  growth_rate(first_movers, all_31_2) = all_31_0
% 40.65/6.33    (3)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.33    (4)  greater(zero, all_40_1)
% 40.65/6.33    (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.33           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.33  
% 40.65/6.33  Begin of proof
% 40.65/6.33  | 
% 40.65/6.33  | PRED_UNIFY: (1), (4) imply:
% 40.65/6.34  |   (6)   ~ (all_40_1 = all_31_0)
% 40.65/6.34  | 
% 40.65/6.34  | GROUND_INST: instantiating (5) with all_31_0, all_40_1, all_31_2,
% 40.65/6.34  |              first_movers, simplifying with (2), (3) gives:
% 40.65/6.34  |   (7)  all_40_1 = all_31_0
% 40.65/6.34  | 
% 40.65/6.34  | REDUCE: (6), (7) imply:
% 40.65/6.34  |   (8)  $false
% 40.65/6.34  | 
% 40.65/6.34  | CLOSE: (8) is inconsistent.
% 40.65/6.34  | 
% 40.65/6.34  End of proof
% 40.65/6.34  
% 40.65/6.34  Sub-proof #9 shows that the following formulas are inconsistent:
% 40.65/6.34  ----------------------------------------------------------------
% 40.65/6.34    (1)  equilibrium(all_11_0) = all_40_2
% 40.65/6.34    (2)   ~ greater_or_equal(all_19_0, all_40_2)
% 40.65/6.34    (3)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.34             = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.34    (4)  greater_or_equal(all_19_0, all_19_1)
% 40.65/6.34    (5)  equilibrium(all_11_0) = all_19_1
% 40.65/6.34  
% 40.65/6.34  Begin of proof
% 40.65/6.34  | 
% 40.65/6.34  | GROUND_INST: instantiating (3) with all_19_1, all_40_2, all_11_0, simplifying
% 40.65/6.34  |              with (1), (5) gives:
% 40.65/6.34  |   (6)  all_40_2 = all_19_1
% 40.65/6.34  | 
% 40.65/6.34  | PRED_UNIFY: (2), (4) imply:
% 40.65/6.34  |   (7)   ~ (all_40_2 = all_19_1)
% 40.65/6.34  | 
% 40.65/6.34  | REDUCE: (6), (7) imply:
% 40.65/6.34  |   (8)  $false
% 40.65/6.34  | 
% 40.65/6.34  | CLOSE: (8) is inconsistent.
% 40.65/6.34  | 
% 40.65/6.34  End of proof
% 40.65/6.34  
% 40.65/6.34  Sub-proof #10 shows that the following formulas are inconsistent:
% 40.65/6.34  ----------------------------------------------------------------
% 40.65/6.34    (1)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.34           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.34    (2)  growth_rate(efficient_producers, all_29_2) = all_29_1
% 40.65/6.34    (3)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.34    (4)   ~ (all_29_1 = zero)
% 40.65/6.34  
% 40.65/6.34  Begin of proof
% 40.65/6.34  | 
% 40.65/6.34  | GROUND_INST: instantiating (1) with all_29_1, zero, all_29_2,
% 40.65/6.34  |              efficient_producers, simplifying with (2), (3) gives:
% 40.65/6.34  |   (5)  all_29_1 = zero
% 40.65/6.34  | 
% 40.65/6.34  | REDUCE: (4), (5) imply:
% 40.65/6.34  |   (6)  $false
% 40.65/6.34  | 
% 40.65/6.34  | CLOSE: (6) is inconsistent.
% 40.65/6.34  | 
% 40.65/6.34  End of proof
% 40.65/6.34  
% 40.65/6.34  Sub-proof #11 shows that the following formulas are inconsistent:
% 40.65/6.34  ----------------------------------------------------------------
% 40.65/6.34    (1)   ~ greater(all_31_1, zero)
% 40.65/6.34    (2)  (all_40_0 = zero & all_40_1 = zero & growth_rate(efficient_producers,
% 40.65/6.34             all_31_2) = zero & growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.34         (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.34           greater_or_equal(all_31_2, all_40_2)) |
% 40.65/6.34         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.34           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.34           $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1)) |
% 40.65/6.34         (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.34           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.34           $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0))
% 40.65/6.34    (3)  growth_rate(efficient_producers, all_31_2) = all_31_1
% 40.65/6.34    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.34           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.34    (5)  $i(zero)
% 40.65/6.34    (6)  growth_rate(efficient_producers, all_31_2) = all_106_1 &
% 40.65/6.34         growth_rate(first_movers, all_31_2) = all_106_0 & $i(all_106_0) &
% 40.65/6.34         $i(all_106_1) & greater(all_106_1, all_106_0)
% 40.65/6.34    (7)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.34    (8)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.34             = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.34    (9)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.34           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.34    (10)  equilibrium(all_11_0) = all_19_1
% 40.65/6.34  
% 40.65/6.34  Begin of proof
% 40.65/6.34  | 
% 40.65/6.34  | ALPHA: (6) implies:
% 40.65/6.34  |   (11)  greater(all_106_1, all_106_0)
% 40.65/6.34  |   (12)  $i(all_106_0)
% 40.65/6.34  |   (13)  growth_rate(first_movers, all_31_2) = all_106_0
% 40.65/6.34  |   (14)  growth_rate(efficient_producers, all_31_2) = all_106_1
% 40.65/6.34  | 
% 40.65/6.34  | GROUND_INST: instantiating (9) with all_31_1, all_106_1, all_31_2,
% 40.65/6.34  |              efficient_producers, simplifying with (3), (14) gives:
% 40.65/6.34  |   (15)  all_106_1 = all_31_1
% 40.65/6.34  | 
% 40.65/6.34  | REDUCE: (11), (15) imply:
% 40.65/6.34  |   (16)  greater(all_31_1, all_106_0)
% 40.65/6.34  | 
% 40.65/6.34  | PRED_UNIFY: (1), (16) imply:
% 40.65/6.34  |   (17)   ~ (all_106_0 = zero)
% 40.65/6.34  | 
% 40.65/6.34  | BETA: splitting (2) gives:
% 40.65/6.34  | 
% 40.65/6.34  | Case 1:
% 40.65/6.34  | | 
% 40.65/6.34  | |   (18)  (all_40_0 = zero & all_40_1 = zero &
% 40.65/6.34  | |           growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.34  | |           growth_rate(first_movers, all_31_2) = zero) |
% 40.65/6.34  | |         (equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.34  | |           greater_or_equal(all_31_2, all_40_2))
% 40.65/6.34  | | 
% 40.65/6.34  | | BETA: splitting (18) gives:
% 40.65/6.34  | | 
% 40.65/6.34  | | Case 1:
% 40.65/6.34  | | | 
% 40.65/6.34  | | |   (19)  all_40_0 = zero & all_40_1 = zero &
% 40.65/6.34  | | |         growth_rate(efficient_producers, all_31_2) = zero &
% 40.65/6.34  | | |         growth_rate(first_movers, all_31_2) = zero
% 40.65/6.34  | | | 
% 40.65/6.34  | | | ALPHA: (19) implies:
% 40.65/6.34  | | |   (20)  growth_rate(first_movers, all_31_2) = zero
% 40.65/6.34  | | | 
% 40.65/6.34  | | | GROUND_INST: instantiating (9) with all_106_0, zero, all_31_2,
% 40.65/6.34  | | |              first_movers, simplifying with (13), (20) gives:
% 40.65/6.34  | | |   (21)  all_106_0 = zero
% 40.65/6.34  | | | 
% 40.65/6.34  | | | REDUCE: (17), (21) imply:
% 40.65/6.34  | | |   (22)  $false
% 40.65/6.34  | | | 
% 40.65/6.34  | | | CLOSE: (22) is inconsistent.
% 40.65/6.34  | | | 
% 40.65/6.34  | | Case 2:
% 40.65/6.34  | | | 
% 40.65/6.34  | | |   (23)  equilibrium(all_11_0) = all_40_2 & $i(all_40_2) &  ~
% 40.65/6.34  | | |         greater_or_equal(all_31_2, all_40_2)
% 40.65/6.34  | | | 
% 40.65/6.34  | | | ALPHA: (23) implies:
% 40.65/6.34  | | |   (24)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.65/6.34  | | |   (25)  equilibrium(all_11_0) = all_40_2
% 40.65/6.34  | | | 
% 40.65/6.34  | | | REF_CLOSE: (7), (8), (10), (24), (25) are inconsistent by sub-proof #13.
% 40.65/6.34  | | | 
% 40.65/6.34  | | End of split
% 40.65/6.34  | | 
% 40.65/6.34  | Case 2:
% 40.65/6.34  | | 
% 40.65/6.34  | |   (26)  (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.34  | |           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.34  | |           $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1))
% 40.65/6.34  | |         | (growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.34  | |           growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.34  | |           $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0))
% 40.65/6.34  | | 
% 40.65/6.34  | | BETA: splitting (26) gives:
% 40.65/6.34  | | 
% 40.65/6.34  | | Case 1:
% 40.65/6.34  | | | 
% 40.65/6.34  | | |   (27)  growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.34  | | |         growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.34  | | |         $i(all_40_1) & greater(all_40_0, zero) & greater(zero, all_40_1)
% 40.65/6.34  | | | 
% 40.65/6.34  | | | ALPHA: (27) implies:
% 40.65/6.34  | | |   (28)  greater(all_40_0, zero)
% 40.65/6.34  | | |   (29)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.34  | | | 
% 40.65/6.34  | | | REF_CLOSE: (1), (3), (9), (28), (29) are inconsistent by sub-proof #12.
% 40.65/6.34  | | | 
% 40.65/6.34  | | Case 2:
% 40.65/6.34  | | | 
% 40.65/6.34  | | |   (30)  growth_rate(efficient_producers, all_31_2) = all_40_0 &
% 40.65/6.34  | | |         growth_rate(first_movers, all_31_2) = all_40_1 & $i(all_40_0) &
% 40.65/6.34  | | |         $i(all_40_1) & greater(all_40_1, zero) & greater(zero, all_40_0)
% 40.65/6.34  | | | 
% 40.65/6.34  | | | ALPHA: (30) implies:
% 40.65/6.34  | | |   (31)  greater(all_40_1, zero)
% 40.65/6.34  | | |   (32)  $i(all_40_0)
% 40.65/6.34  | | |   (33)  growth_rate(first_movers, all_31_2) = all_40_1
% 40.65/6.34  | | |   (34)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.34  | | | 
% 40.65/6.34  | | | GROUND_INST: instantiating (9) with all_106_0, all_40_1, all_31_2,
% 40.65/6.34  | | |              first_movers, simplifying with (13), (33) gives:
% 40.65/6.34  | | |   (35)  all_106_0 = all_40_1
% 40.65/6.34  | | | 
% 40.65/6.34  | | | GROUND_INST: instantiating (9) with all_31_1, all_40_0, all_31_2,
% 40.65/6.34  | | |              efficient_producers, simplifying with (3), (34) gives:
% 40.65/6.34  | | |   (36)  all_40_0 = all_31_1
% 40.65/6.34  | | | 
% 40.65/6.34  | | | REDUCE: (12), (35) imply:
% 40.65/6.34  | | |   (37)  $i(all_40_1)
% 40.65/6.34  | | | 
% 40.65/6.34  | | | REDUCE: (32), (36) imply:
% 40.65/6.34  | | |   (38)  $i(all_31_1)
% 40.65/6.34  | | | 
% 40.65/6.34  | | | REDUCE: (16), (35) imply:
% 40.65/6.34  | | |   (39)  greater(all_31_1, all_40_1)
% 40.65/6.34  | | | 
% 40.65/6.34  | | | GROUND_INST: instantiating (4) with all_31_1, all_40_1, zero, simplifying
% 40.65/6.34  | | |              with (1), (5), (31), (37), (38), (39) gives:
% 40.65/6.34  | | |   (40)  $false
% 40.65/6.34  | | | 
% 40.65/6.34  | | | CLOSE: (40) is inconsistent.
% 40.65/6.34  | | | 
% 40.65/6.34  | | End of split
% 40.65/6.34  | | 
% 40.65/6.34  | End of split
% 40.65/6.34  | 
% 40.65/6.34  End of proof
% 40.65/6.34  
% 40.65/6.34  Sub-proof #12 shows that the following formulas are inconsistent:
% 40.65/6.34  ----------------------------------------------------------------
% 40.65/6.34    (1)  growth_rate(efficient_producers, all_31_2) = all_40_0
% 40.65/6.34    (2)   ~ greater(all_31_1, zero)
% 40.65/6.34    (3)  growth_rate(efficient_producers, all_31_2) = all_31_1
% 40.65/6.34    (4)  greater(all_40_0, zero)
% 40.65/6.34    (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.34           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.34  
% 40.65/6.34  Begin of proof
% 40.65/6.34  | 
% 40.65/6.34  | PRED_UNIFY: (2), (4) imply:
% 40.65/6.34  |   (6)   ~ (all_40_0 = all_31_1)
% 40.65/6.34  | 
% 40.65/6.34  | GROUND_INST: instantiating (5) with all_31_1, all_40_0, all_31_2,
% 40.65/6.34  |              efficient_producers, simplifying with (1), (3) gives:
% 40.65/6.34  |   (7)  all_40_0 = all_31_1
% 40.65/6.34  | 
% 40.65/6.34  | REDUCE: (6), (7) imply:
% 40.65/6.34  |   (8)  $false
% 40.65/6.34  | 
% 40.65/6.34  | CLOSE: (8) is inconsistent.
% 40.65/6.34  | 
% 40.65/6.34  End of proof
% 40.65/6.35  
% 40.65/6.35  Sub-proof #13 shows that the following formulas are inconsistent:
% 40.65/6.35  ----------------------------------------------------------------
% 40.65/6.35    (1)  equilibrium(all_11_0) = all_40_2
% 40.65/6.35    (2)  greater_or_equal(all_31_2, all_19_1)
% 40.65/6.35    (3)   ~ greater_or_equal(all_31_2, all_40_2)
% 40.65/6.35    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.35             = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.35    (5)  equilibrium(all_11_0) = all_19_1
% 40.65/6.35  
% 40.65/6.35  Begin of proof
% 40.65/6.35  | 
% 40.65/6.35  | GROUND_INST: instantiating (4) with all_19_1, all_40_2, all_11_0, simplifying
% 40.65/6.35  |              with (1), (5) gives:
% 40.65/6.35  |   (6)  all_40_2 = all_19_1
% 40.65/6.35  | 
% 40.65/6.35  | PRED_UNIFY: (2), (3) imply:
% 40.65/6.35  |   (7)   ~ (all_40_2 = all_19_1)
% 40.65/6.35  | 
% 40.65/6.35  | REDUCE: (6), (7) imply:
% 40.65/6.35  |   (8)  $false
% 40.65/6.35  | 
% 40.65/6.35  | CLOSE: (8) is inconsistent.
% 40.65/6.35  | 
% 40.65/6.35  End of proof
% 40.65/6.35  
% 40.65/6.35  Sub-proof #14 shows that the following formulas are inconsistent:
% 40.65/6.35  ----------------------------------------------------------------
% 40.65/6.35    (1)  $i(all_21_0)
% 40.65/6.35    (2)  $i(all_31_2)
% 40.65/6.35    (3)  $i(all_19_0)
% 40.65/6.35    (4)   ~ (all_21_0 = all_19_0)
% 40.65/6.35    (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.35           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.35    (6)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1) |
% 40.65/6.35           greater_or_equal(v0, v1))
% 40.65/6.35    (7)  all_21_0 = all_19_0 | greater(all_19_0, all_21_0)
% 40.65/6.35    (8)   ~ greater_or_equal(all_31_2, all_21_0)
% 40.65/6.35    (9)  all_31_2 = all_19_0 | greater(all_31_2, all_19_0)
% 40.65/6.35  
% 40.65/6.35  Begin of proof
% 40.65/6.35  | 
% 40.65/6.35  | BETA: splitting (7) gives:
% 40.65/6.35  | 
% 40.65/6.35  | Case 1:
% 40.65/6.35  | | 
% 40.65/6.35  | |   (10)  greater(all_19_0, all_21_0)
% 40.65/6.35  | | 
% 40.65/6.35  | | GROUND_INST: instantiating (6) with all_19_0, all_21_0, simplifying with
% 40.65/6.35  | |              (1), (3), (10) gives:
% 40.65/6.35  | |   (11)  greater_or_equal(all_19_0, all_21_0)
% 40.65/6.35  | | 
% 40.65/6.35  | | PRED_UNIFY: (8), (11) imply:
% 40.65/6.35  | |   (12)   ~ (all_31_2 = all_19_0)
% 40.65/6.35  | | 
% 40.65/6.35  | | BETA: splitting (9) gives:
% 40.65/6.35  | | 
% 40.65/6.35  | | Case 1:
% 40.65/6.35  | | | 
% 40.65/6.35  | | |   (13)  greater(all_31_2, all_19_0)
% 40.65/6.35  | | | 
% 40.65/6.35  | | | GROUND_INST: instantiating (5) with all_31_2, all_19_0, all_21_0,
% 40.65/6.35  | | |              simplifying with (1), (2), (3), (10), (13) gives:
% 40.65/6.35  | | |   (14)  greater(all_31_2, all_21_0)
% 40.65/6.35  | | | 
% 40.65/6.35  | | | GROUND_INST: instantiating (6) with all_31_2, all_21_0, simplifying with
% 40.65/6.35  | | |              (1), (2), (8), (14) gives:
% 40.65/6.35  | | |   (15)  $false
% 40.65/6.35  | | | 
% 40.65/6.35  | | | CLOSE: (15) is inconsistent.
% 40.65/6.35  | | | 
% 40.65/6.35  | | Case 2:
% 40.65/6.35  | | | 
% 40.65/6.35  | | |   (16)  all_31_2 = all_19_0
% 40.65/6.35  | | | 
% 40.65/6.35  | | | REDUCE: (12), (16) imply:
% 40.65/6.35  | | |   (17)  $false
% 40.65/6.35  | | | 
% 40.65/6.35  | | | CLOSE: (17) is inconsistent.
% 40.65/6.35  | | | 
% 40.65/6.35  | | End of split
% 40.65/6.35  | | 
% 40.65/6.35  | Case 2:
% 40.65/6.35  | | 
% 40.65/6.35  | |   (18)  all_21_0 = all_19_0
% 40.65/6.35  | | 
% 40.65/6.35  | | REDUCE: (4), (18) imply:
% 40.65/6.35  | |   (19)  $false
% 40.65/6.35  | | 
% 40.65/6.35  | | CLOSE: (19) is inconsistent.
% 40.65/6.35  | | 
% 40.65/6.35  | End of split
% 40.65/6.35  | 
% 40.65/6.35  End of proof
% 40.65/6.35  
% 40.65/6.35  Sub-proof #15 shows that the following formulas are inconsistent:
% 40.65/6.35  ----------------------------------------------------------------
% 40.65/6.35    (1)  $i(all_21_0)
% 40.65/6.35    (2)  all_38_0 = all_38_1 |  ~ (growth_rate(first_movers, all_29_2) = all_38_1)
% 40.65/6.35    (3)  growth_rate(efficient_producers, all_29_2) = all_29_1
% 40.65/6.35    (4)  greater(all_21_0, all_19_1)
% 40.65/6.35    (5)  all_38_1 = all_29_1
% 40.65/6.35    (6)  (all_41_0 = zero & all_41_1 = zero & growth_rate(efficient_producers,
% 40.65/6.35             all_29_2) = zero & growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.35         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.35           greater_or_equal(all_29_2, all_41_2)) |
% 40.65/6.35         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.35           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.35           $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)) |
% 40.65/6.35         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.35           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.35           $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.65/6.35    (7)  $i(all_19_1)
% 40.65/6.35    (8)  all_29_2 = all_21_0 | greater(all_29_2, all_21_0)
% 40.65/6.35    (9)   ~ (all_38_0 = zero)
% 40.65/6.35    (10)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.35            $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.35    (11)  $i(zero)
% 40.65/6.35    (12)  $i(all_29_2)
% 40.65/6.35    (13)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.35              = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.35    (14)   ~ greater(all_29_1, zero)
% 40.65/6.35    (15)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1)
% 40.65/6.35            | greater_or_equal(v0, v1))
% 40.65/6.35    (16)  growth_rate(first_movers, all_29_2) = all_38_0
% 40.65/6.35    (17)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.35            (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.35    (18)  equilibrium(all_11_0) = all_19_1
% 40.65/6.35    (19)  greater(all_29_1, all_38_0)
% 40.65/6.35  
% 40.65/6.35  Begin of proof
% 40.65/6.35  | 
% 40.65/6.35  | GROUND_INST: instantiating (15) with all_21_0, all_19_1, simplifying with (1),
% 40.65/6.35  |              (4), (7) gives:
% 40.65/6.35  |   (20)  greater_or_equal(all_21_0, all_19_1)
% 40.65/6.35  | 
% 40.65/6.35  | BETA: splitting (8) gives:
% 40.65/6.35  | 
% 40.65/6.35  | Case 1:
% 40.65/6.35  | | 
% 40.65/6.35  | |   (21)  greater(all_29_2, all_21_0)
% 40.65/6.35  | | 
% 40.65/6.35  | | GROUND_INST: instantiating (10) with all_29_2, all_21_0, all_19_1,
% 40.65/6.35  | |              simplifying with (1), (4), (7), (12), (21) gives:
% 40.65/6.35  | |   (22)  greater(all_29_2, all_19_1)
% 40.65/6.35  | | 
% 40.65/6.35  | | BETA: splitting (2) gives:
% 40.65/6.35  | | 
% 40.65/6.35  | | Case 1:
% 40.65/6.35  | | | 
% 40.65/6.35  | | |   (23)   ~ (growth_rate(first_movers, all_29_2) = all_38_1)
% 40.65/6.35  | | | 
% 40.65/6.35  | | | REDUCE: (5), (23) imply:
% 40.65/6.35  | | |   (24)   ~ (growth_rate(first_movers, all_29_2) = all_29_1)
% 40.65/6.35  | | | 
% 40.65/6.35  | | | BETA: splitting (6) gives:
% 40.65/6.35  | | | 
% 40.65/6.35  | | | Case 1:
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | |   (25)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.35  | | | |           growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.35  | | | |           growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.35  | | | |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.35  | | | |           greater_or_equal(all_29_2, all_41_2))
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | | BETA: splitting (25) gives:
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | | Case 1:
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | |   (26)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.35  | | | | |         growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.35  | | | | |         growth_rate(first_movers, all_29_2) = zero
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | ALPHA: (26) implies:
% 40.65/6.35  | | | | |   (27)  growth_rate(first_movers, all_29_2) = zero
% 40.65/6.35  | | | | |   (28)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | PRED_UNIFY: (24), (27) imply:
% 40.65/6.35  | | | | |   (29)   ~ (all_29_1 = zero)
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | GROUND_INST: instantiating (17) with all_29_1, zero, all_29_2,
% 40.65/6.35  | | | | |              efficient_producers, simplifying with (3), (28) gives:
% 40.65/6.35  | | | | |   (30)  all_29_1 = zero
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | REDUCE: (29), (30) imply:
% 40.65/6.35  | | | | |   (31)  $false
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | CLOSE: (31) is inconsistent.
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | Case 2:
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | |   (32)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.35  | | | | |         greater_or_equal(all_29_2, all_41_2)
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | ALPHA: (32) implies:
% 40.65/6.35  | | | | |   (33)   ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.35  | | | | |   (34)  $i(all_41_2)
% 40.65/6.35  | | | | |   (35)  equilibrium(all_11_0) = all_41_2
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | REF_CLOSE: (12), (13), (15), (18), (22), (33), (34), (35) are
% 40.65/6.35  | | | | |            inconsistent by sub-proof #20.
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | End of split
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | Case 2:
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | |   (36)  (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.35  | | | |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0)
% 40.65/6.35  | | | |           & $i(all_41_1) & greater(all_41_0, zero) & greater(zero,
% 40.65/6.35  | | | |             all_41_1)) | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.35  | | | |           all_41_0 & growth_rate(first_movers, all_29_2) = all_41_1 &
% 40.65/6.35  | | | |           $i(all_41_0) & $i(all_41_1) & greater(all_41_1, zero) &
% 40.65/6.35  | | | |           greater(zero, all_41_0))
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | | BETA: splitting (36) gives:
% 40.65/6.35  | | | | 
% 40.65/6.35  | | | | Case 1:
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | |   (37)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.35  | | | | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0)
% 40.65/6.35  | | | | |         & $i(all_41_1) & greater(all_41_0, zero) & greater(zero,
% 40.65/6.35  | | | | |           all_41_1)
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | ALPHA: (37) implies:
% 40.65/6.35  | | | | |   (38)  greater(all_41_0, zero)
% 40.65/6.35  | | | | |   (39)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | | REF_CLOSE: (3), (14), (17), (38), (39) are inconsistent by sub-proof
% 40.65/6.35  | | | | |            #19.
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | Case 2:
% 40.65/6.35  | | | | | 
% 40.65/6.35  | | | | |   (40)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36  | | | | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0)
% 40.65/6.36  | | | | |         & $i(all_41_1) & greater(all_41_1, zero) & greater(zero,
% 40.65/6.36  | | | | |           all_41_0)
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | ALPHA: (40) implies:
% 40.65/6.36  | | | | |   (41)  greater(all_41_1, zero)
% 40.65/6.36  | | | | |   (42)  $i(all_41_1)
% 40.65/6.36  | | | | |   (43)  $i(all_41_0)
% 40.65/6.36  | | | | |   (44)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.36  | | | | |   (45)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | REF_CLOSE: (3), (10), (11), (14), (16), (17), (19), (41), (42), (43),
% 40.65/6.36  | | | | |            (44), (45) are inconsistent by sub-proof #18.
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | End of split
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | End of split
% 40.65/6.36  | | | 
% 40.65/6.36  | | Case 2:
% 40.65/6.36  | | | 
% 40.65/6.36  | | |   (46)  all_38_0 = all_38_1
% 40.65/6.36  | | | 
% 40.65/6.36  | | | COMBINE_EQS: (5), (46) imply:
% 40.65/6.36  | | |   (47)  all_38_0 = all_29_1
% 40.65/6.36  | | | 
% 40.65/6.36  | | | REDUCE: (9), (47) imply:
% 40.65/6.36  | | |   (48)   ~ (all_29_1 = zero)
% 40.65/6.36  | | | 
% 40.65/6.36  | | | BETA: splitting (6) gives:
% 40.65/6.36  | | | 
% 40.65/6.36  | | | Case 1:
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | |   (49)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.36  | | | |           growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.36  | | | |           growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.36  | | | |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.36  | | | |           greater_or_equal(all_29_2, all_41_2))
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | BETA: splitting (49) gives:
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | Case 1:
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | |   (50)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.36  | | | | |         growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.36  | | | | |         growth_rate(first_movers, all_29_2) = zero
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | ALPHA: (50) implies:
% 40.65/6.36  | | | | |   (51)  growth_rate(efficient_producers, all_29_2) = zero
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | GROUND_INST: instantiating (17) with all_29_1, zero, all_29_2,
% 40.65/6.36  | | | | |              efficient_producers, simplifying with (3), (51) gives:
% 40.65/6.36  | | | | |   (52)  all_29_1 = zero
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | REDUCE: (48), (52) imply:
% 40.65/6.36  | | | | |   (53)  $false
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | CLOSE: (53) is inconsistent.
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | Case 2:
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | |   (54)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.36  | | | | |         greater_or_equal(all_29_2, all_41_2)
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | ALPHA: (54) implies:
% 40.65/6.36  | | | | |   (55)   ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.36  | | | | |   (56)  $i(all_41_2)
% 40.65/6.36  | | | | |   (57)  equilibrium(all_11_0) = all_41_2
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | | REF_CLOSE: (12), (13), (15), (18), (22), (55), (56), (57) are
% 40.65/6.36  | | | | |            inconsistent by sub-proof #20.
% 40.65/6.36  | | | | | 
% 40.65/6.36  | | | | End of split
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | Case 2:
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | |   (58)  (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36  | | | |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0)
% 40.65/6.36  | | | |           & $i(all_41_1) & greater(all_41_0, zero) & greater(zero,
% 40.65/6.36  | | | |             all_41_1)) | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.36  | | | |           all_41_0 & growth_rate(first_movers, all_29_2) = all_41_1 &
% 40.65/6.36  | | | |           $i(all_41_0) & $i(all_41_1) & greater(all_41_1, zero) &
% 40.65/6.36  | | | |           greater(zero, all_41_0))
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | REF_CLOSE: (3), (10), (11), (14), (16), (17), (19), (58) are
% 40.65/6.36  | | | |            inconsistent by sub-proof #17.
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | End of split
% 40.65/6.36  | | | 
% 40.65/6.36  | | End of split
% 40.65/6.36  | | 
% 40.65/6.36  | Case 2:
% 40.65/6.36  | | 
% 40.65/6.36  | |   (59)  all_29_2 = all_21_0
% 40.65/6.36  | | 
% 40.65/6.36  | | REDUCE: (16), (59) imply:
% 40.65/6.36  | |   (60)  growth_rate(first_movers, all_21_0) = all_38_0
% 40.65/6.36  | | 
% 40.65/6.36  | | BETA: splitting (6) gives:
% 40.65/6.36  | | 
% 40.65/6.36  | | Case 1:
% 40.65/6.36  | | | 
% 40.65/6.36  | | |   (61)  (all_41_0 = zero & all_41_1 = zero &
% 40.65/6.36  | | |           growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.36  | | |           growth_rate(first_movers, all_29_2) = zero) |
% 40.65/6.36  | | |         (equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.36  | | |           greater_or_equal(all_29_2, all_41_2))
% 40.65/6.36  | | | 
% 40.65/6.36  | | | BETA: splitting (61) gives:
% 40.65/6.36  | | | 
% 40.65/6.36  | | | Case 1:
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | |   (62)  all_41_0 = zero & all_41_1 = zero &
% 40.65/6.36  | | | |         growth_rate(efficient_producers, all_29_2) = zero &
% 40.65/6.36  | | | |         growth_rate(first_movers, all_29_2) = zero
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | ALPHA: (62) implies:
% 40.65/6.36  | | | |   (63)  growth_rate(first_movers, all_29_2) = zero
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | REDUCE: (59), (63) imply:
% 40.65/6.36  | | | |   (64)  growth_rate(first_movers, all_21_0) = zero
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | GROUND_INST: instantiating (17) with zero, all_38_0, all_21_0,
% 40.65/6.36  | | | |              first_movers, simplifying with (60), (64) gives:
% 40.65/6.36  | | | |   (65)  all_38_0 = zero
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | REDUCE: (9), (65) imply:
% 40.65/6.36  | | | |   (66)  $false
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | CLOSE: (66) is inconsistent.
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | Case 2:
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | |   (67)  equilibrium(all_11_0) = all_41_2 & $i(all_41_2) &  ~
% 40.65/6.36  | | | |         greater_or_equal(all_29_2, all_41_2)
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | ALPHA: (67) implies:
% 40.65/6.36  | | | |   (68)   ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.36  | | | |   (69)  equilibrium(all_11_0) = all_41_2
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | REDUCE: (59), (68) imply:
% 40.65/6.36  | | | |   (70)   ~ greater_or_equal(all_21_0, all_41_2)
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | | REF_CLOSE: (13), (18), (20), (69), (70) are inconsistent by sub-proof
% 40.65/6.36  | | | |            #16.
% 40.65/6.36  | | | | 
% 40.65/6.36  | | | End of split
% 40.65/6.36  | | | 
% 40.65/6.36  | | Case 2:
% 40.65/6.36  | | | 
% 40.65/6.36  | | |   (71)  (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36  | | |           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.36  | | |           $i(all_41_1) & greater(all_41_0, zero) & greater(zero,
% 40.65/6.36  | | |             all_41_1)) | (growth_rate(efficient_producers, all_29_2) =
% 40.65/6.36  | | |           all_41_0 & growth_rate(first_movers, all_29_2) = all_41_1 &
% 40.65/6.36  | | |           $i(all_41_0) & $i(all_41_1) & greater(all_41_1, zero) &
% 40.65/6.36  | | |           greater(zero, all_41_0))
% 40.65/6.36  | | | 
% 40.65/6.36  | | | REF_CLOSE: (3), (10), (11), (14), (16), (17), (19), (71) are inconsistent
% 40.65/6.36  | | |            by sub-proof #17.
% 40.65/6.36  | | | 
% 40.65/6.36  | | End of split
% 40.65/6.36  | | 
% 40.65/6.36  | End of split
% 40.65/6.36  | 
% 40.65/6.36  End of proof
% 40.65/6.36  
% 40.65/6.36  Sub-proof #16 shows that the following formulas are inconsistent:
% 40.65/6.36  ----------------------------------------------------------------
% 40.65/6.36    (1)   ~ greater_or_equal(all_21_0, all_41_2)
% 40.65/6.36    (2)  greater_or_equal(all_21_0, all_19_1)
% 40.65/6.36    (3)  equilibrium(all_11_0) = all_41_2
% 40.65/6.36    (4)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.36             = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.36    (5)  equilibrium(all_11_0) = all_19_1
% 40.65/6.36  
% 40.65/6.36  Begin of proof
% 40.65/6.36  | 
% 40.65/6.36  | GROUND_INST: instantiating (4) with all_19_1, all_41_2, all_11_0, simplifying
% 40.65/6.36  |              with (3), (5) gives:
% 40.65/6.36  |   (6)  all_41_2 = all_19_1
% 40.65/6.36  | 
% 40.65/6.36  | PRED_UNIFY: (1), (2) imply:
% 40.65/6.36  |   (7)   ~ (all_41_2 = all_19_1)
% 40.65/6.36  | 
% 40.65/6.36  | REDUCE: (6), (7) imply:
% 40.65/6.36  |   (8)  $false
% 40.65/6.36  | 
% 40.65/6.36  | CLOSE: (8) is inconsistent.
% 40.65/6.36  | 
% 40.65/6.36  End of proof
% 40.65/6.36  
% 40.65/6.36  Sub-proof #17 shows that the following formulas are inconsistent:
% 40.65/6.36  ----------------------------------------------------------------
% 40.65/6.36    (1)  (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.36           $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)) |
% 40.65/6.36         (growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36           growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.36           $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0))
% 40.65/6.36    (2)  growth_rate(efficient_producers, all_29_2) = all_29_1
% 40.65/6.36    (3)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.36           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.36    (4)  $i(zero)
% 40.65/6.36    (5)   ~ greater(all_29_1, zero)
% 40.65/6.36    (6)  growth_rate(first_movers, all_29_2) = all_38_0
% 40.65/6.36    (7)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.36           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.36    (8)  greater(all_29_1, all_38_0)
% 40.65/6.36  
% 40.65/6.36  Begin of proof
% 40.65/6.36  | 
% 40.65/6.36  | BETA: splitting (1) gives:
% 40.65/6.36  | 
% 40.65/6.36  | Case 1:
% 40.65/6.36  | | 
% 40.65/6.36  | |   (9)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36  | |        growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.36  | |        $i(all_41_1) & greater(all_41_0, zero) & greater(zero, all_41_1)
% 40.65/6.36  | | 
% 40.65/6.36  | | ALPHA: (9) implies:
% 40.65/6.36  | |   (10)  greater(all_41_0, zero)
% 40.65/6.36  | |   (11)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.36  | | 
% 40.65/6.36  | | REF_CLOSE: (2), (5), (7), (10), (11) are inconsistent by sub-proof #19.
% 40.65/6.36  | | 
% 40.65/6.36  | Case 2:
% 40.65/6.36  | | 
% 40.65/6.36  | |   (12)  growth_rate(efficient_producers, all_29_2) = all_41_0 &
% 40.65/6.36  | |         growth_rate(first_movers, all_29_2) = all_41_1 & $i(all_41_0) &
% 40.65/6.36  | |         $i(all_41_1) & greater(all_41_1, zero) & greater(zero, all_41_0)
% 40.65/6.36  | | 
% 40.65/6.36  | | ALPHA: (12) implies:
% 40.65/6.36  | |   (13)  greater(all_41_1, zero)
% 40.65/6.36  | |   (14)  $i(all_41_1)
% 40.65/6.36  | |   (15)  $i(all_41_0)
% 40.65/6.36  | |   (16)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.36  | |   (17)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.36  | | 
% 40.65/6.36  | | REF_CLOSE: (2), (3), (4), (5), (6), (7), (8), (13), (14), (15), (16), (17)
% 40.65/6.36  | |            are inconsistent by sub-proof #18.
% 40.65/6.36  | | 
% 40.65/6.36  | End of split
% 40.65/6.36  | 
% 40.65/6.36  End of proof
% 40.65/6.36  
% 40.65/6.36  Sub-proof #18 shows that the following formulas are inconsistent:
% 40.65/6.36  ----------------------------------------------------------------
% 40.65/6.37    (1)  growth_rate(efficient_producers, all_29_2) = all_29_1
% 40.65/6.37    (2)  growth_rate(first_movers, all_29_2) = all_41_1
% 40.65/6.37    (3)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.37    (4)  $i(all_41_0)
% 40.65/6.37    (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : ( ~ $i(v2) |  ~ $i(v1) |  ~
% 40.65/6.37           $i(v0) |  ~ greater(v1, v2) |  ~ greater(v0, v1) | greater(v0, v2))
% 40.65/6.37    (6)  $i(zero)
% 40.65/6.37    (7)  $i(all_41_1)
% 40.65/6.37    (8)   ~ greater(all_29_1, zero)
% 40.65/6.37    (9)  growth_rate(first_movers, all_29_2) = all_38_0
% 40.65/6.37    (10)  greater(all_41_1, zero)
% 40.65/6.37    (11)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.37            (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.37    (12)  greater(all_29_1, all_38_0)
% 40.65/6.37  
% 40.65/6.37  Begin of proof
% 40.65/6.37  | 
% 40.65/6.37  | GROUND_INST: instantiating (11) with all_38_0, all_41_1, all_29_2,
% 40.65/6.37  |              first_movers, simplifying with (2), (9) gives:
% 40.65/6.37  |   (13)  all_41_1 = all_38_0
% 40.65/6.37  | 
% 40.65/6.37  | GROUND_INST: instantiating (11) with all_29_1, all_41_0, all_29_2,
% 40.65/6.37  |              efficient_producers, simplifying with (1), (3) gives:
% 40.65/6.37  |   (14)  all_41_0 = all_29_1
% 40.65/6.37  | 
% 40.65/6.37  | REDUCE: (4), (14) imply:
% 40.65/6.37  |   (15)  $i(all_29_1)
% 40.65/6.37  | 
% 40.65/6.37  | REDUCE: (7), (13) imply:
% 40.65/6.37  |   (16)  $i(all_38_0)
% 40.65/6.37  | 
% 40.65/6.37  | REDUCE: (10), (13) imply:
% 40.65/6.37  |   (17)  greater(all_38_0, zero)
% 40.65/6.37  | 
% 40.65/6.37  | GROUND_INST: instantiating (5) with all_29_1, all_38_0, zero, simplifying with
% 40.65/6.37  |              (6), (8), (12), (15), (16), (17) gives:
% 40.65/6.37  |   (18)  $false
% 40.65/6.37  | 
% 40.65/6.37  | CLOSE: (18) is inconsistent.
% 40.65/6.37  | 
% 40.65/6.37  End of proof
% 40.65/6.37  
% 40.65/6.37  Sub-proof #19 shows that the following formulas are inconsistent:
% 40.65/6.37  ----------------------------------------------------------------
% 40.65/6.37    (1)  growth_rate(efficient_producers, all_29_2) = all_29_1
% 40.65/6.37    (2)  growth_rate(efficient_producers, all_29_2) = all_41_0
% 40.65/6.37    (3)  greater(all_41_0, zero)
% 40.65/6.37    (4)   ~ greater(all_29_1, zero)
% 40.65/6.37    (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] :  ! [v3: $i] : (v1 = v0 |  ~
% 40.65/6.37           (growth_rate(v3, v2) = v1) |  ~ (growth_rate(v3, v2) = v0))
% 40.65/6.37  
% 40.65/6.37  Begin of proof
% 40.65/6.37  | 
% 40.65/6.37  | PRED_UNIFY: (3), (4) imply:
% 40.65/6.37  |   (6)   ~ (all_41_0 = all_29_1)
% 40.65/6.37  | 
% 40.65/6.37  | GROUND_INST: instantiating (5) with all_29_1, all_41_0, all_29_2,
% 40.65/6.37  |              efficient_producers, simplifying with (1), (2) gives:
% 40.65/6.37  |   (7)  all_41_0 = all_29_1
% 40.65/6.37  | 
% 40.65/6.37  | REDUCE: (6), (7) imply:
% 40.65/6.37  |   (8)  $false
% 40.65/6.37  | 
% 40.65/6.37  | CLOSE: (8) is inconsistent.
% 40.65/6.37  | 
% 40.65/6.37  End of proof
% 40.65/6.37  
% 40.65/6.37  Sub-proof #20 shows that the following formulas are inconsistent:
% 40.65/6.37  ----------------------------------------------------------------
% 40.65/6.37    (1)  greater(all_29_2, all_19_1)
% 40.65/6.37    (2)  equilibrium(all_11_0) = all_41_2
% 40.65/6.37    (3)   ~ greater_or_equal(all_29_2, all_41_2)
% 40.65/6.37    (4)  $i(all_29_2)
% 40.65/6.37    (5)   ! [v0: $i] :  ! [v1: $i] :  ! [v2: $i] : (v1 = v0 |  ~ (equilibrium(v2)
% 40.65/6.37             = v1) |  ~ (equilibrium(v2) = v0))
% 40.65/6.37    (6)   ! [v0: $i] :  ! [v1: $i] : ( ~ $i(v1) |  ~ $i(v0) |  ~ greater(v0, v1) |
% 40.65/6.37           greater_or_equal(v0, v1))
% 40.65/6.37    (7)  $i(all_41_2)
% 40.65/6.37    (8)  equilibrium(all_11_0) = all_19_1
% 40.65/6.37  
% 40.65/6.37  Begin of proof
% 40.65/6.37  | 
% 40.65/6.37  | GROUND_INST: instantiating (5) with all_19_1, all_41_2, all_11_0, simplifying
% 40.65/6.37  |              with (2), (8) gives:
% 40.65/6.37  |   (9)  all_41_2 = all_19_1
% 40.65/6.37  | 
% 40.65/6.37  | REDUCE: (7), (9) imply:
% 40.65/6.37  |   (10)  $i(all_19_1)
% 40.65/6.37  | 
% 40.65/6.37  | REDUCE: (3), (9) imply:
% 40.65/6.37  |   (11)   ~ greater_or_equal(all_29_2, all_19_1)
% 40.65/6.37  | 
% 40.65/6.37  | GROUND_INST: instantiating (6) with all_29_2, all_19_1, simplifying with (1),
% 40.65/6.37  |              (4), (10), (11) gives:
% 40.65/6.37  |   (12)  $false
% 40.65/6.37  | 
% 40.65/6.37  | CLOSE: (12) is inconsistent.
% 40.65/6.37  | 
% 40.65/6.37  End of proof
% 40.65/6.37  % SZS output end Proof for theBenchmark
% 40.65/6.37  
% 40.65/6.37  5758ms
%------------------------------------------------------------------------------