TSTP Solution File: MGT029+1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : MGT029+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n024.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:06:05 EDT 2022

% Result   : Unknown 210.36s 210.58s
% Output   : None 
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----No solution output by system
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : MGT029+1 : TPTP v8.1.0. Released v2.0.0.
% 0.06/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n024.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 04:05:10 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.72/1.93  ----- Otter 3.3f, August 2004 -----
% 1.72/1.93  The process was started by sandbox on n024.cluster.edu,
% 1.72/1.93  Wed Jul 27 04:05:10 2022
% 1.72/1.93  The command was "./otter".  The process ID is 8156.
% 1.72/1.93  
% 1.72/1.93  set(prolog_style_variables).
% 1.72/1.93  set(auto).
% 1.72/1.93     dependent: set(auto1).
% 1.72/1.93     dependent: set(process_input).
% 1.72/1.93     dependent: clear(print_kept).
% 1.72/1.93     dependent: clear(print_new_demod).
% 1.72/1.93     dependent: clear(print_back_demod).
% 1.72/1.93     dependent: clear(print_back_sub).
% 1.72/1.93     dependent: set(control_memory).
% 1.72/1.93     dependent: assign(max_mem, 12000).
% 1.72/1.93     dependent: assign(pick_given_ratio, 4).
% 1.72/1.93     dependent: assign(stats_level, 1).
% 1.72/1.93     dependent: assign(max_seconds, 10800).
% 1.72/1.93  clear(print_given).
% 1.72/1.93  
% 1.72/1.93  formula_list(usable).
% 1.72/1.93  all A (A=A).
% 1.72/1.93  all X Y Z (greater(X,Y)&greater(Y,Z)->greater(X,Z)).
% 1.72/1.93  all E T1 T2 (in_environment(E,T1)&in_environment(E,T2)->greater(T2,T1)|T2=T1|greater(T1,T2)).
% 1.72/1.93  all X Y (greater_or_e_qual(X,Y)<->greater(X,Y)|X=Y).
% 1.72/1.93  all E T (environment(E)&subpopulations(first_movers,efficient_producers,E,T)&greater_or_e_qual(T,e_quilibrium(E))->growth_rate(first_movers,T)=zero&growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)&greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero)&greater(zero,growth_rate(first_movers,T))).
% 1.72/1.93  all E (environment(E)&stable(E)-> (exists To (in_environment(E,To)& (all T (subpopulations(first_movers,efficient_producers,E,T)&greater_or_e_qual(T,To)->greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T))))))).
% 1.72/1.93  all E (environment(E)&stable(E)-> (exists T (in_environment(E,T)&greater_or_e_qual(T,e_quilibrium(E))))).
% 1.72/1.93  -(all E (environment(E)&stable(E)-> (exists To (in_environment(E,To)& (all T (subpopulations(first_movers,efficient_producers,E,T)&greater_or_e_qual(T,To)->greater(growth_rate(efficient_producers,T),zero)&greater(zero,growth_rate(first_movers,T)))))))).
% 1.72/1.93  end_of_list.
% 1.72/1.93  
% 1.72/1.93  -------> usable clausifies to:
% 1.72/1.93  
% 1.72/1.93  list(usable).
% 1.72/1.93  0 [] A=A.
% 1.72/1.93  0 [] -greater(X,Y)| -greater(Y,Z)|greater(X,Z).
% 1.72/1.93  0 [] -in_environment(E,T1)| -in_environment(E,T2)|greater(T2,T1)|T2=T1|greater(T1,T2).
% 1.72/1.93  0 [] -greater_or_e_qual(X,Y)|greater(X,Y)|X=Y.
% 1.72/1.93  0 [] greater_or_e_qual(X,Y)| -greater(X,Y).
% 1.72/1.93  0 [] greater_or_e_qual(X,Y)|X!=Y.
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(first_movers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(growth_rate(efficient_producers,T),zero).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(first_movers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(zero,growth_rate(first_movers,T)).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(first_movers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(first_movers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(zero,growth_rate(first_movers,T)).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(growth_rate(efficient_producers,T),zero).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(efficient_producers,T)=zero|greater(growth_rate(first_movers,T),zero)|greater(zero,growth_rate(first_movers,T)).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(efficient_producers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(growth_rate(efficient_producers,T),zero).
% 1.72/1.93  0 [] -environment(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,e_quilibrium(E))|growth_rate(efficient_producers,T)=zero|greater(zero,growth_rate(efficient_producers,T))|greater(zero,growth_rate(first_movers,T)).
% 1.72/1.93  0 [] -environment(E)| -stable(E)|in_environment(E,$f1(E)).
% 1.72/1.93  0 [] -environment(E)| -stable(E)| -subpopulations(first_movers,efficient_producers,E,T)| -greater_or_e_qual(T,$f1(E))|greater(growth_rate(efficient_producers,T),growth_rate(first_movers,T)).
% 1.72/1.93  0 [] -environment(E)| -stable(E)|in_environment(E,$f2(E)).
% 1.72/1.93  0 [] -environment(E)| -stable(E)|greater_or_e_qual($f2(E),e_quilibrium(E)).
% 1.72/1.93  0 [] environment($c1).
% 1.72/1.93  0 [] stable($c1).
% 1.72/1.93  0 [] -in_environment($c1,To)|subpopulations(first_movers,efficient_producers,$c1,$f3(To)).
% 1.72/1.93  0 [] -in_environment($c1,To)|greater_or_e_qual($f3(To),To).
% 1.72/1.93  0 [] -in_environment($c1,To)| -greater(growth_rate(efficient_producers,$f3(To)),zero)| -greater(zero,growth_rate(first_movers,$f3(To))).
% 1.72/1.93  end_of_list.
% 1.72/1.93  
% 1.72/1.93  SCAN INPUT: prop=0, horn=0, equality=1, symmetry=0, max_lits=6.
% 1.72/1.93  
% 1.72/1.93  This ia a non-Horn set with equality.  The strategy will be
% 1.72/1.93  Knuth-Bendix, ordered hyper_res, factoring, and unit
% 1.72/1.93  deletion, with positive clauses in sos and nonpositive
% 1.72/1.93  clauses in usable.
% 1.72/1.93  
% 1.72/1.93     dependent: set(knuth_bendix).
% 1.72/1.93     dependent: set(anl_eq).
% 1.72/1.93     dependent: set(para_from).
% 1.72/1.93     dependent: set(para_into).
% 1.72/1.93     dependent: clear(para_from_right).
% 1.72/1.93     dependent: clear(para_into_right).
% 1.72/1.93     dependent: set(para_from_vars).
% 1.72/1.93     dependent: set(eq_units_both_ways).
% 1.72/1.93     dependent: set(dynamic_demod_all).
% 1.72/1.93     dependent: set(dynamic_demod).
% 1.72/1.93     dependent: set(order_eq).
% 1.72/1.93     dependent: set(back_demod).
% 1.72/1.93     dependent: set(lrpo).
% 1.72/1.93     dependent: set(hyper_res).
% 1.72/1.93     dependent: set(unit_deletion).
% 1.72/1.93     dependent: set(factor).
% 1.72/1.93  
% 1.72/1.93  ------------> process usable:
% 1.72/1.93  ** KEPT (pick-wt=9): 1 [] -greater(A,B)| -greater(B,C)|greater(A,C).
% 1.72/1.93  ** KEPT (pick-wt=15): 2 [] -in_environment(A,B)| -in_environment(A,C)|greater(C,B)|C=B|greater(B,C).
% 1.72/1.93  ** KEPT (pick-wt=9): 3 [] -greater_or_e_qual(A,B)|greater(A,B)|A=B.
% 1.72/1.93  ** KEPT (pick-wt=6): 4 [] greater_or_e_qual(A,B)| -greater(A,B).
% 1.72/1.93  ** KEPT (pick-wt=6): 5 [] greater_or_e_qual(A,B)|A!=B.
% 1.72/1.93  ** KEPT (pick-wt=26): 6 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(first_movers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(growth_rate(efficient_producers,B),zero).
% 1.72/1.93  ** KEPT (pick-wt=26): 7 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(first_movers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(zero,growth_rate(first_movers,B)).
% 1.72/1.93  ** KEPT (pick-wt=26): 8 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(first_movers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(growth_rate(efficient_producers,B),zero).
% 1.72/1.93  ** KEPT (pick-wt=26): 9 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(first_movers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(zero,growth_rate(first_movers,B)).
% 1.72/1.93  ** KEPT (pick-wt=26): 10 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(efficient_producers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(growth_rate(efficient_producers,B),zero).
% 1.72/1.93  ** KEPT (pick-wt=26): 11 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(efficient_producers,B)=zero|greater(growth_rate(first_movers,B),zero)|greater(zero,growth_rate(first_movers,B)).
% 1.72/1.93  ** KEPT (pick-wt=26): 12 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(efficient_producers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(growth_rate(efficient_producers,B),zero).
% 1.72/1.93  ** KEPT (pick-wt=26): 13 [] -environment(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,e_quilibrium(A))|growth_rate(efficient_producers,B)=zero|greater(zero,growth_rate(efficient_producers,B))|greater(zero,growth_rate(first_movers,B)).
% 1.72/1.93  ** KEPT (pick-wt=8): 14 [] -environment(A)| -stable(A)|in_environment(A,$f1(A)).
% 210.36/210.58  ** KEPT (pick-wt=20): 15 [] -environment(A)| -stable(A)| -subpopulations(first_movers,efficient_producers,A,B)| -greater_or_e_qual(B,$f1(A))|greater(growth_rate(efficient_producers,B),growth_rate(first_movers,B)).
% 210.36/210.58  ** KEPT (pick-wt=8): 16 [] -environment(A)| -stable(A)|in_environment(A,$f2(A)).
% 210.36/210.58  ** KEPT (pick-wt=9): 17 [] -environment(A)| -stable(A)|greater_or_e_qual($f2(A),e_quilibrium(A)).
% 210.36/210.58  ** KEPT (pick-wt=9): 18 [] -in_environment($c1,A)|subpopulations(first_movers,efficient_producers,$c1,$f3(A)).
% 210.36/210.58  ** KEPT (pick-wt=7): 19 [] -in_environment($c1,A)|greater_or_e_qual($f3(A),A).
% 210.36/210.58  ** KEPT (pick-wt=15): 20 [] -in_environment($c1,A)| -greater(growth_rate(efficient_producers,$f3(A)),zero)| -greater(zero,growth_rate(first_movers,$f3(A))).
% 210.36/210.58  
% 210.36/210.58  ------------> process sos:
% 210.36/210.58  ** KEPT (pick-wt=3): 22 [] A=A.
% 210.36/210.58  ** KEPT (pick-wt=2): 23 [] environment($c1).
% 210.36/210.58  ** KEPT (pick-wt=2): 24 [] stable($c1).
% 210.36/210.58    Following clause subsumed by 22 during input processing: 0 [copy,22,flip.1] A=A.
% 210.36/210.58  22 back subsumes 21.
% 210.36/210.58  
% 210.36/210.58  ======= end of input processing =======
% 210.36/210.58  
% 210.36/210.58  =========== start of search ===========
% 210.36/210.58  
% 210.36/210.58  
% 210.36/210.58  Resetting weight limit to 18.
% 210.36/210.58  
% 210.36/210.58  
% 210.36/210.58  Resetting weight limit to 18.
% 210.36/210.58  
% 210.36/210.58  sos_size=2996
% 210.36/210.58  
% 210.36/210.58  Search stopped because sos empty.
% 210.36/210.58  
% 210.36/210.58  
% 210.36/210.58  Search stopped because sos empty.
% 210.36/210.58  
% 210.36/210.58  ============ end of search ============
% 210.36/210.58  
% 210.36/210.58  -------------- statistics -------------
% 210.36/210.58  clauses given               3297
% 210.36/210.58  clauses generated        1697606
% 210.36/210.58  clauses kept                3547
% 210.36/210.58  clauses forward subsumed   13342
% 210.36/210.58  clauses back subsumed        278
% 210.36/210.58  Kbytes malloced             5859
% 210.36/210.58  
% 210.36/210.58  ----------- times (seconds) -----------
% 210.36/210.58  user CPU time        208.61          (0 hr, 3 min, 28 sec)
% 210.36/210.58  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 210.36/210.58  wall-clock time      210             (0 hr, 3 min, 30 sec)
% 210.36/210.58  
% 210.36/210.58  Process 8156 finished Wed Jul 27 04:08:40 2022
% 210.36/210.58  Otter interrupted
% 210.36/210.58  PROOF NOT FOUND
%------------------------------------------------------------------------------