TSTP Solution File: MGT021+1 by Metis---2.4

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Metis---2.4
% Problem  : MGT021+1 : TPTP v8.1.0. Released v2.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : metis --show proof --show saturation %s

% Computer : n026.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 22:18:54 EDT 2022

% Result   : Theorem 0.13s 0.35s
% Output   : CNFRefutation 0.13s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   16
%            Number of leaves      :    6
% Syntax   : Number of formulae    :   67 (  14 unt;   0 def)
%            Number of atoms       :  215 (   0 equ)
%            Maximal formula atoms :   10 (   3 avg)
%            Number of connectives :  277 ( 129   ~; 116   |;  20   &)
%                                         (   0 <=>;  12  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    9 (   4 avg)
%            Maximal term depth    :    3 (   1 avg)
%            Number of predicates  :    8 (   7 usr;   1 prp; 0-4 aty)
%            Number of functors    :   10 (  10 usr;   5 con; 0-2 aty)
%            Number of variables   :   62 (   0 sgn  45   !;   2   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(mp_time_point_in_environment,axiom,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => in_environment(E,T) ) ).

fof(mp_environment_not_empty,axiom,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => greater(number_of_organizations(E,T),zero) ) ).

fof(mp_increase_not_decrease,axiom,
    ! [X] :
      ( increases(X)
     => ~ decreases(X) ) ).

fof(a3,hypothesis,
    ! [E,T] :
      ( ( environment(E)
        & in_environment(E,T)
        & greater(number_of_organizations(E,T),zero) )
     => ( ( greater(equilibrium(E),T)
         => decreases(resources(E,T)) )
        & ( ~ greater(equilibrium(E),T)
         => constant(resources(E,T)) ) ) ) ).

fof(l4,hypothesis,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => ( ( decreases(resources(E,T))
         => increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) )
        & ( constant(resources(E,T))
         => ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ) ) ).

fof(prove_l3,conjecture,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ).

fof(subgoal_0,plain,
    ! [E,T] :
      ( ( environment(E)
        & subpopulations(first_movers,efficient_producers,E,T) )
     => ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ),
    inference(strip,[],[prove_l3]) ).

fof(negate_0_0,plain,
    ~ ! [E,T] :
        ( ( environment(E)
          & subpopulations(first_movers,efficient_producers,E,T) )
       => ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ),
    inference(negate,[],[subgoal_0]) ).

fof(normalize_0_0,plain,
    ! [X] :
      ( ~ decreases(X)
      | ~ increases(X) ),
    inference(canonicalize,[],[mp_increase_not_decrease]) ).

fof(normalize_0_1,plain,
    ! [X] :
      ( ~ decreases(X)
      | ~ increases(X) ),
    inference(specialize,[],[normalize_0_0]) ).

fof(normalize_0_2,plain,
    ? [E,T] :
      ( decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))
      & environment(E)
      & subpopulations(first_movers,efficient_producers,E,T) ),
    inference(canonicalize,[],[negate_0_0]) ).

fof(normalize_0_3,plain,
    ( decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T)))
    & environment(skolemFOFtoCNF_E)
    & subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T) ),
    inference(skolemize,[],[normalize_0_2]) ).

fof(normalize_0_4,plain,
    subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T),
    inference(conjunct,[],[normalize_0_3]) ).

fof(normalize_0_5,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | ( ( ~ constant(resources(E,T))
          | ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) )
        & ( ~ decreases(resources(E,T))
          | increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ) ),
    inference(canonicalize,[],[l4]) ).

fof(normalize_0_6,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | ( ( ~ constant(resources(E,T))
          | ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) )
        & ( ~ decreases(resources(E,T))
          | increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ) ),
    inference(specialize,[],[normalize_0_5]) ).

fof(normalize_0_7,plain,
    ! [E,T] :
      ( ( ~ constant(resources(E,T))
        | ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))
        | ~ environment(E)
        | ~ subpopulations(first_movers,efficient_producers,E,T) )
      & ( ~ decreases(resources(E,T))
        | ~ environment(E)
        | ~ subpopulations(first_movers,efficient_producers,E,T)
        | increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ) ),
    inference(clausify,[],[normalize_0_6]) ).

fof(normalize_0_8,plain,
    ! [E,T] :
      ( ~ decreases(resources(E,T))
      | ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ),
    inference(conjunct,[],[normalize_0_7]) ).

fof(normalize_0_9,plain,
    environment(skolemFOFtoCNF_E),
    inference(conjunct,[],[normalize_0_3]) ).

fof(normalize_0_10,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | greater(number_of_organizations(E,T),zero) ),
    inference(canonicalize,[],[mp_environment_not_empty]) ).

fof(normalize_0_11,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | greater(number_of_organizations(E,T),zero) ),
    inference(specialize,[],[normalize_0_10]) ).

fof(normalize_0_12,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ greater(number_of_organizations(E,T),zero)
      | ~ in_environment(E,T)
      | ( ( ~ greater(equilibrium(E),T)
          | decreases(resources(E,T)) )
        & ( constant(resources(E,T))
          | greater(equilibrium(E),T) ) ) ),
    inference(canonicalize,[],[a3]) ).

fof(normalize_0_13,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ greater(number_of_organizations(E,T),zero)
      | ~ in_environment(E,T)
      | ( ( ~ greater(equilibrium(E),T)
          | decreases(resources(E,T)) )
        & ( constant(resources(E,T))
          | greater(equilibrium(E),T) ) ) ),
    inference(specialize,[],[normalize_0_12]) ).

fof(normalize_0_14,plain,
    ! [E,T] :
      ( ( ~ environment(E)
        | ~ greater(equilibrium(E),T)
        | ~ greater(number_of_organizations(E,T),zero)
        | ~ in_environment(E,T)
        | decreases(resources(E,T)) )
      & ( ~ environment(E)
        | ~ greater(number_of_organizations(E,T),zero)
        | ~ in_environment(E,T)
        | constant(resources(E,T))
        | greater(equilibrium(E),T) ) ),
    inference(clausify,[],[normalize_0_13]) ).

fof(normalize_0_15,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ greater(equilibrium(E),T)
      | ~ greater(number_of_organizations(E,T),zero)
      | ~ in_environment(E,T)
      | decreases(resources(E,T)) ),
    inference(conjunct,[],[normalize_0_14]) ).

fof(normalize_0_16,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | in_environment(E,T) ),
    inference(canonicalize,[],[mp_time_point_in_environment]) ).

fof(normalize_0_17,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T)
      | in_environment(E,T) ),
    inference(specialize,[],[normalize_0_16]) ).

fof(normalize_0_18,plain,
    ! [E,T] :
      ( ~ environment(E)
      | ~ greater(number_of_organizations(E,T),zero)
      | ~ in_environment(E,T)
      | constant(resources(E,T))
      | greater(equilibrium(E),T) ),
    inference(conjunct,[],[normalize_0_14]) ).

fof(normalize_0_19,plain,
    decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))),
    inference(conjunct,[],[normalize_0_3]) ).

fof(normalize_0_20,plain,
    ! [E,T] :
      ( ~ constant(resources(E,T))
      | ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))
      | ~ environment(E)
      | ~ subpopulations(first_movers,efficient_producers,E,T) ),
    inference(conjunct,[],[normalize_0_7]) ).

cnf(refute_0_0,plain,
    ( ~ decreases(X)
    | ~ increases(X) ),
    inference(canonicalize,[],[normalize_0_1]) ).

cnf(refute_0_1,plain,
    ( ~ decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T)))
    | ~ increases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) ),
    inference(subst,[],[refute_0_0:[bind(X,$fot(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))))]]) ).

cnf(refute_0_2,plain,
    subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T),
    inference(canonicalize,[],[normalize_0_4]) ).

cnf(refute_0_3,plain,
    ( ~ decreases(resources(E,T))
    | ~ environment(E)
    | ~ subpopulations(first_movers,efficient_producers,E,T)
    | increases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T))) ),
    inference(canonicalize,[],[normalize_0_8]) ).

cnf(refute_0_4,plain,
    ( ~ decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | ~ environment(skolemFOFtoCNF_E)
    | ~ subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | increases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) ),
    inference(subst,[],[refute_0_3:[bind(E,$fot(skolemFOFtoCNF_E)),bind(T,$fot(skolemFOFtoCNF_T))]]) ).

cnf(refute_0_5,plain,
    ( ~ decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | ~ environment(skolemFOFtoCNF_E)
    | increases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) ),
    inference(resolve,[$cnf( subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T) )],[refute_0_2,refute_0_4]) ).

cnf(refute_0_6,plain,
    environment(skolemFOFtoCNF_E),
    inference(canonicalize,[],[normalize_0_9]) ).

cnf(refute_0_7,plain,
    ( ~ decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | increases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) ),
    inference(resolve,[$cnf( environment(skolemFOFtoCNF_E) )],[refute_0_6,refute_0_5]) ).

cnf(refute_0_8,plain,
    ( ~ environment(E)
    | ~ subpopulations(first_movers,efficient_producers,E,T)
    | greater(number_of_organizations(E,T),zero) ),
    inference(canonicalize,[],[normalize_0_11]) ).

cnf(refute_0_9,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | ~ subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero) ),
    inference(subst,[],[refute_0_8:[bind(E,$fot(skolemFOFtoCNF_E)),bind(T,$fot(skolemFOFtoCNF_T))]]) ).

cnf(refute_0_10,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero) ),
    inference(resolve,[$cnf( subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T) )],[refute_0_2,refute_0_9]) ).

cnf(refute_0_11,plain,
    greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero),
    inference(resolve,[$cnf( environment(skolemFOFtoCNF_E) )],[refute_0_6,refute_0_10]) ).

cnf(refute_0_12,plain,
    ( ~ environment(E)
    | ~ greater(equilibrium(E),T)
    | ~ greater(number_of_organizations(E,T),zero)
    | ~ in_environment(E,T)
    | decreases(resources(E,T)) ),
    inference(canonicalize,[],[normalize_0_15]) ).

cnf(refute_0_13,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | ~ greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T)
    | ~ greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero)
    | ~ in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)) ),
    inference(subst,[],[refute_0_12:[bind(E,$fot(skolemFOFtoCNF_E)),bind(T,$fot(skolemFOFtoCNF_T))]]) ).

cnf(refute_0_14,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | ~ greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T)
    | ~ in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)) ),
    inference(resolve,[$cnf( greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero) )],[refute_0_11,refute_0_13]) ).

cnf(refute_0_15,plain,
    ( ~ greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T)
    | ~ in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)) ),
    inference(resolve,[$cnf( environment(skolemFOFtoCNF_E) )],[refute_0_6,refute_0_14]) ).

cnf(refute_0_16,plain,
    ( ~ environment(E)
    | ~ subpopulations(first_movers,efficient_producers,E,T)
    | in_environment(E,T) ),
    inference(canonicalize,[],[normalize_0_17]) ).

cnf(refute_0_17,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | ~ subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T) ),
    inference(subst,[],[refute_0_16:[bind(E,$fot(skolemFOFtoCNF_E)),bind(T,$fot(skolemFOFtoCNF_T))]]) ).

cnf(refute_0_18,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T) ),
    inference(resolve,[$cnf( subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T) )],[refute_0_2,refute_0_17]) ).

cnf(refute_0_19,plain,
    in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T),
    inference(resolve,[$cnf( environment(skolemFOFtoCNF_E) )],[refute_0_6,refute_0_18]) ).

cnf(refute_0_20,plain,
    ( ~ greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T)
    | decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)) ),
    inference(resolve,[$cnf( in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T) )],[refute_0_19,refute_0_15]) ).

cnf(refute_0_21,plain,
    ( ~ environment(E)
    | ~ greater(number_of_organizations(E,T),zero)
    | ~ in_environment(E,T)
    | constant(resources(E,T))
    | greater(equilibrium(E),T) ),
    inference(canonicalize,[],[normalize_0_18]) ).

cnf(refute_0_22,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | ~ greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero)
    | ~ in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T) ),
    inference(subst,[],[refute_0_21:[bind(E,$fot(skolemFOFtoCNF_E)),bind(T,$fot(skolemFOFtoCNF_T))]]) ).

cnf(refute_0_23,plain,
    ( ~ environment(skolemFOFtoCNF_E)
    | ~ in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T) ),
    inference(resolve,[$cnf( greater(number_of_organizations(skolemFOFtoCNF_E,skolemFOFtoCNF_T),zero) )],[refute_0_11,refute_0_22]) ).

cnf(refute_0_24,plain,
    ( ~ in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T)
    | constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T) ),
    inference(resolve,[$cnf( environment(skolemFOFtoCNF_E) )],[refute_0_6,refute_0_23]) ).

cnf(refute_0_25,plain,
    ( constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T) ),
    inference(resolve,[$cnf( in_environment(skolemFOFtoCNF_E,skolemFOFtoCNF_T) )],[refute_0_19,refute_0_24]) ).

cnf(refute_0_26,plain,
    decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))),
    inference(canonicalize,[],[normalize_0_19]) ).

cnf(refute_0_27,plain,
    ( ~ constant(resources(E,T))
    | ~ decreases(difference(disbanding_rate(first_movers,T),disbanding_rate(efficient_producers,T)))
    | ~ environment(E)
    | ~ subpopulations(first_movers,efficient_producers,E,T) ),
    inference(canonicalize,[],[normalize_0_20]) ).

cnf(refute_0_28,plain,
    ( ~ constant(resources(X_7,skolemFOFtoCNF_T))
    | ~ decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T)))
    | ~ environment(X_7)
    | ~ subpopulations(first_movers,efficient_producers,X_7,skolemFOFtoCNF_T) ),
    inference(subst,[],[refute_0_27:[bind(E,$fot(X_7)),bind(T,$fot(skolemFOFtoCNF_T))]]) ).

cnf(refute_0_29,plain,
    ( ~ constant(resources(X_7,skolemFOFtoCNF_T))
    | ~ environment(X_7)
    | ~ subpopulations(first_movers,efficient_producers,X_7,skolemFOFtoCNF_T) ),
    inference(resolve,[$cnf( decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) )],[refute_0_26,refute_0_28]) ).

cnf(refute_0_30,plain,
    ( ~ constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | ~ environment(skolemFOFtoCNF_E)
    | ~ subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T) ),
    inference(subst,[],[refute_0_29:[bind(X_7,$fot(skolemFOFtoCNF_E))]]) ).

cnf(refute_0_31,plain,
    ( ~ constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T))
    | ~ environment(skolemFOFtoCNF_E) ),
    inference(resolve,[$cnf( subpopulations(first_movers,efficient_producers,skolemFOFtoCNF_E,skolemFOFtoCNF_T) )],[refute_0_2,refute_0_30]) ).

cnf(refute_0_32,plain,
    ~ constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)),
    inference(resolve,[$cnf( environment(skolemFOFtoCNF_E) )],[refute_0_6,refute_0_31]) ).

cnf(refute_0_33,plain,
    greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T),
    inference(resolve,[$cnf( constant(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)) )],[refute_0_25,refute_0_32]) ).

cnf(refute_0_34,plain,
    decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)),
    inference(resolve,[$cnf( greater(equilibrium(skolemFOFtoCNF_E),skolemFOFtoCNF_T) )],[refute_0_33,refute_0_20]) ).

cnf(refute_0_35,plain,
    increases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))),
    inference(resolve,[$cnf( decreases(resources(skolemFOFtoCNF_E,skolemFOFtoCNF_T)) )],[refute_0_34,refute_0_7]) ).

cnf(refute_0_36,plain,
    ~ decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))),
    inference(resolve,[$cnf( increases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) )],[refute_0_35,refute_0_1]) ).

cnf(refute_0_37,plain,
    $false,
    inference(resolve,[$cnf( decreases(difference(disbanding_rate(first_movers,skolemFOFtoCNF_T),disbanding_rate(efficient_producers,skolemFOFtoCNF_T))) )],[refute_0_26,refute_0_36]) ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.06/0.12  % Problem  : MGT021+1 : TPTP v8.1.0. Released v2.0.0.
% 0.06/0.13  % Command  : metis --show proof --show saturation %s
% 0.13/0.34  % Computer : n026.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Thu Jun  9 10:27:17 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 0.13/0.34  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 0.13/0.35  % SZS status Theorem for /export/starexec/sandbox/benchmark/theBenchmark.p
% 0.13/0.35  
% 0.13/0.35  % SZS output start CNFRefutation for /export/starexec/sandbox/benchmark/theBenchmark.p
% See solution above
% 0.13/0.36  
%------------------------------------------------------------------------------