TSTP Solution File: MGT020-1 by Gandalf---c-2.6

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Gandalf---c-2.6
% Problem  : MGT020-1 : TPTP v3.4.2. Released v2.4.0.
% Transfm  : add_equality:r
% Format   : otter:hypothesis:set(auto),clear(print_given)
% Command  : gandalf-wrapper -time %d %s

% Computer : art07.cs.miami.edu
% Model    : i686 unknown
% CPU      : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory   : 1000MB
% OS       : Linux 2.4.22-21mdk-i686-up-4GB
% CPULimit : 600s

% Result   : Unsatisfiable 0.0s
% Output   : Assurance 0.0s
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 
% Gandalf c-2.6 r1 starting to prove: /home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/MGT/MGT020-1+eq_r.in
% Using automatic strategy selection.
% Time limit in seconds: 600
% 
% prove-all-passes started
% 
% detected problem class: neq
% detected subclass: medium
% 
% strategies selected: 
% (hyper 25 #f 3 13)
% (binary-unit 9 #f 3 13)
% (binary-double 9 #f 3 13)
% (binary-double 15 #f)
% (binary-double 15 #t)
% (binary 50 #t 3 13)
% (binary-order 25 #f 3 13)
% (binary-posweight-order 101 #f)
% (binary-posweight-lex-big-order 25 #f)
% (binary-posweight-lex-small-order 9 #f)
% (binary-order-sos 50 #t)
% (binary-unit-uniteq 25 #f)
% (binary-weightorder 50 #f)
% (binary-order 50 #f)
% (hyper-order 30 #f)
% (binary 112 #t)
% 
% 
% ********* EMPTY CLAUSE DERIVED *********
% 
% 
% timer checkpoints: c(15,40,0,30,0,0,139,50,0,154,0,0)
% 
% 
% START OF PROOF
% 141 [] -decreases(difference(disbanding_rate(first_movers,X),disbanding_rate(efficient_producers,X))) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 142 [] subpopulations(first_movers,efficient_producers,X,initial_^f^m_^e^p(X)) | -in_environment(X,initial_^f^m_^e^p(X)) | -environment(X).
% 143 [] greater_or_equal(X,initial_^f^m_^e^p(Y)) | -subpopulations(first_movers,efficient_producers,Y,X) | -environment(Y).
% 144 [] decreases(difference(disbanding_rate(first_movers,X),disbanding_rate(efficient_producers,X))) | -greater(disbanding_rate(first_movers,Y),disbanding_rate(efficient_producers,Y)) | greater(disbanding_rate(first_movers,Z),disbanding_rate(efficient_producers,Z)) | -subpopulations(first_movers,efficient_producers,U,Z) | -greater_or_equal(X,Y) | -greater_or_equal(Z,X) | -environment(U).
% 145 [] -subpopulations(first_movers,efficient_producers,X,Y) | in_environment(X,Y) | -environment(X).
% 146 [] greater_or_equal(initial_^f^m_^e^p(X),start_time(X)) | -environment(X).
% 147 [] -greater_or_equal(X,start_time(Y)) | -greater(Z,X) | -in_environment(Y,Z) | in_environment(Y,X) | -environment(Y).
% 149 [] -greater_or_equal(X,Y) | greater(X,Y) | equal(X,Y).
% 150 [] greater(disbanding_rate(first_movers,initial_^f^m_^e^p(X)),disbanding_rate(efficient_producers,initial_^f^m_^e^p(X))) | -environment(X).
% 152 [] environment(sk1).
% 153 [] subpopulations(first_movers,efficient_producers,sk1,sk2).
% 154 [] -greater(disbanding_rate(first_movers,sk2),disbanding_rate(efficient_producers,sk2)).
% 155 [hyper:150,152] greater(disbanding_rate(first_movers,initial_^f^m_^e^p(sk1)),disbanding_rate(efficient_producers,initial_^f^m_^e^p(sk1))).
% 162 [hyper:146,152] greater_or_equal(initial_^f^m_^e^p(sk1),start_time(sk1)).
% 174 [hyper:143,153,cut:152] greater_or_equal(sk2,initial_^f^m_^e^p(sk1)).
% 176 [hyper:145,153,cut:152] in_environment(sk1,sk2).
% 189 [hyper:149,174] greater(sk2,initial_^f^m_^e^p(sk1)) | equal(sk2,initial_^f^m_^e^p(sk1)).
% 193 [hyper:147,189,162,cut:176,cut:152] in_environment(sk1,initial_^f^m_^e^p(sk1)) | equal(sk2,initial_^f^m_^e^p(sk1)).
% 213 [hyper:142,193,cut:152] subpopulations(first_movers,efficient_producers,sk1,initial_^f^m_^e^p(sk1)) | equal(sk2,initial_^f^m_^e^p(sk1)).
% 237 [hyper:143,213,cut:152] greater_or_equal(initial_^f^m_^e^p(sk1),initial_^f^m_^e^p(sk1)) | equal(sk2,initial_^f^m_^e^p(sk1)).
% 275 [hyper:144,237,153,cut:155,cut:174,cut:152,cut:154] decreases(difference(disbanding_rate(first_movers,initial_^f^m_^e^p(sk1)),disbanding_rate(efficient_producers,initial_^f^m_^e^p(sk1)))) | equal(sk2,initial_^f^m_^e^p(sk1)).
% 277 [hyper:141,275,213,cut:152] equal(sk2,initial_^f^m_^e^p(sk1)).
% 280 [para:277.1.2,155.1.1.2,demod:277,cut:154] contradiction
% END OF PROOF
% 
% Proof found by the following strategy:
% 
% using hyperresolution
% not using sos strategy
% using positive unit paramodulation strategy
% using dynamic demodulation
% using ordered paramodulation
% using kb ordering for equality
% preferring bigger arities for lex ordering
% clause length limited to 13
% clause depth limited to 4
% seconds given: 25
% 
% 
% ***GANDALF_FOUND_A_REFUTATION***
% 
% Global statistics over all passes: 
% 
%  given clauses:    52
%  derived clauses:   324
%  kept clauses:      24
%  kept size sum:     190
%  kept mid-nuclei:   175
%  kept new demods:   1
%  forw unit-subs:    35
%  forw double-subs: 18
%  forw overdouble-subs: 5
%  backward subs:     6
%  fast unit cutoff:  81
%  full unit cutoff:  0
%  dbl  unit cutoff:  0
%  real runtime  :  0.2
%  process. runtime:  0.1
% specific non-discr-tree subsumption statistics: 
%  tried:           47
%  length fails:    0
%  strength fails:  19
%  predlist fails:  11
%  aux str. fails:  4
%  by-lit fails:    0
%  full subs tried: 8
%  full subs fail:  8
% 
% ; program args: ("/home/graph/tptp/Systems/Gandalf---c-2.6/gandalf" "-time" "600" "/home/graph/tptp/TSTP/PreparedTPTP/otter:hypothesis:set(auto),clear(print_given)---add_equality:r/MGT/MGT020-1+eq_r.in")
% 
%------------------------------------------------------------------------------