TSTP Solution File: LDA002-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : LDA002-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n022.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:05:47 EDT 2022

% Result   : Unsatisfiable 1.69s 1.96s
% Output   : Refutation 1.69s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   12
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   66 (  66 unt;   0 nHn;  50 RR)
%            Number of literals    :   66 (  65 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    4 (   1 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   12 (  12 usr;  11 con; 0-2 aty)
%            Number of variables   :   20 (   0 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    f(a,v) != f(b,v),
    file('LDA002-1.p',unknown),
    [] ).

cnf(2,plain,
    f(b,v) != f(a,v),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[1])]),
    [iquote('copy,1,flip.1')] ).

cnf(4,axiom,
    f(A,f(B,C)) = f(f(A,B),f(A,C)),
    file('LDA002-1.p',unknown),
    [] ).

cnf(5,plain,
    f(f(A,B),f(A,C)) = f(A,f(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[4])]),
    [iquote('copy,4,flip.1')] ).

cnf(7,axiom,
    n2 = f(n1,n1),
    file('LDA002-1.p',unknown),
    [] ).

cnf(9,plain,
    f(n1,n1) = n2,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[7])]),
    [iquote('copy,7,flip.1')] ).

cnf(10,axiom,
    n3 = f(n2,n1),
    file('LDA002-1.p',unknown),
    [] ).

cnf(11,plain,
    f(n2,n1) = n3,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(13,axiom,
    u = f(n2,n2),
    file('LDA002-1.p',unknown),
    [] ).

cnf(15,plain,
    f(n2,n2) = u,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[13])]),
    [iquote('copy,13,flip.1')] ).

cnf(16,axiom,
    u1 = f(u,n1),
    file('LDA002-1.p',unknown),
    [] ).

cnf(17,plain,
    f(u,n1) = u1,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[16])]),
    [iquote('copy,16,flip.1')] ).

cnf(19,axiom,
    u2 = f(u,n2),
    file('LDA002-1.p',unknown),
    [] ).

cnf(20,plain,
    f(u,n2) = u2,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[19])]),
    [iquote('copy,19,flip.1')] ).

cnf(22,axiom,
    u3 = f(u,n3),
    file('LDA002-1.p',unknown),
    [] ).

cnf(23,plain,
    f(u,n3) = u3,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[22])]),
    [iquote('copy,22,flip.1')] ).

cnf(25,axiom,
    uu = f(u,u),
    file('LDA002-1.p',unknown),
    [] ).

cnf(27,plain,
    f(u,u) = uu,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[25])]),
    [iquote('copy,25,flip.1')] ).

cnf(28,axiom,
    a = f(f(n3,n2),u2),
    file('LDA002-1.p',unknown),
    [] ).

cnf(29,plain,
    f(f(n3,n2),u2) = a,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[28])]),
    [iquote('copy,28,flip.1')] ).

cnf(31,axiom,
    b = f(u1,u3),
    file('LDA002-1.p',unknown),
    [] ).

cnf(32,plain,
    f(u1,u3) = b,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[31])]),
    [iquote('copy,31,flip.1')] ).

cnf(34,axiom,
    v = f(uu,uu),
    file('LDA002-1.p',unknown),
    [] ).

cnf(36,plain,
    f(uu,uu) = v,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[34])]),
    [iquote('copy,34,flip.1')] ).

cnf(37,plain,
    f(u1,f(u,A)) = f(u,f(n1,A)),
    inference(para_into,[status(thm),theory(equality)],[5,17]),
    [iquote('para_into,5.1.1.1,17.1.1')] ).

cnf(40,plain,
    f(u,f(n2,A)) = f(n2,f(n2,A)),
    inference(para_into,[status(thm),theory(equality)],[5,15]),
    [iquote('para_into,5.1.1.1,14.1.1')] ).

cnf(41,plain,
    f(n3,f(n2,A)) = f(n2,f(n1,A)),
    inference(para_into,[status(thm),theory(equality)],[5,11]),
    [iquote('para_into,5.1.1.1,11.1.1')] ).

cnf(44,plain,
    f(n2,f(n1,A)) = f(n1,f(n1,A)),
    inference(para_into,[status(thm),theory(equality)],[5,9]),
    [iquote('para_into,5.1.1.1,8.1.1')] ).

cnf(49,plain,
    f(f(n2,A),u) = f(n2,f(A,n2)),
    inference(para_into,[status(thm),theory(equality)],[5,15]),
    [iquote('para_into,5.1.1.2,14.1.1')] ).

cnf(57,plain,
    f(n3,f(n2,A)) = f(n1,f(n1,A)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[41]),44]),
    [iquote('back_demod,41,demod,44')] ).

cnf(61,plain,
    f(u2,f(u,A)) = f(n2,f(n2,A)),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[20,5]),40]),
    [iquote('para_from,20.1.1,5.1.1.1,demod,40')] ).

cnf(67,plain,
    f(f(u,A),uu) = f(u,f(A,u)),
    inference(para_from,[status(thm),theory(equality)],[27,5]),
    [iquote('para_from,26.1.1,5.1.1.2')] ).

cnf(73,plain,
    f(u1,f(u3,A)) = f(b,f(u1,A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[32,5])]),
    [iquote('para_from,32.1.1,5.1.1.1,flip.1')] ).

cnf(77,plain,
    f(f(n3,n2),f(u2,A)) = f(a,f(f(n3,n2),A)),
    inference(flip,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[29,5])]),
    [iquote('para_from,29.1.1,5.1.1.1,flip.1')] ).

cnf(83,plain,
    f(u1,uu) = f(u,f(n1,u)),
    inference(para_into,[status(thm),theory(equality)],[37,27]),
    [iquote('para_into,37.1.1.2,26.1.1')] ).

cnf(106,plain,
    f(n2,u) = uu,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[40,15]),27,15])]),
    [iquote('para_into,39.1.1.2,14.1.1,demod,27,15,flip.1')] ).

cnf(116,plain,
    f(u,uu) = f(n2,uu),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[106,40]),106]),
    [iquote('para_from,105.1.1,39.1.1.2,demod,106')] ).

cnf(127,plain,
    f(u1,f(n2,uu)) = f(u,f(n1,uu)),
    inference(para_from,[status(thm),theory(equality)],[116,37]),
    [iquote('para_from,115.1.1,37.1.1.2')] ).

cnf(140,plain,
    f(n1,n2) = u,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[44,9]),15,9])]),
    [iquote('para_into,43.1.1.2,8.1.1,demod,15,9,flip.1')] ).

cnf(152,plain,
    f(n1,u) = uu,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[140,44]),106,140])]),
    [iquote('para_from,139.1.1,43.1.1.2,demod,106,140,flip.1')] ).

cnf(156,plain,
    f(u,f(n1,A)) = f(n1,f(n2,A)),
    inference(para_from,[status(thm),theory(equality)],[140,5]),
    [iquote('para_from,139.1.1,5.1.1.1')] ).

cnf(157,plain,
    f(u1,uu) = f(n2,uu),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[83]),152,116]),
    [iquote('back_demod,83,demod,152,116')] ).

cnf(161,plain,
    f(u1,f(n2,uu)) = f(n1,f(n2,uu)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[127]),156]),
    [iquote('back_demod,127,demod,156')] ).

cnf(178,plain,
    f(n2,uu) = f(n1,uu),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[152,44]),152]),
    [iquote('para_from,151.1.1,43.1.1.2,demod,152')] ).

cnf(183,plain,
    f(u1,f(n1,uu)) = f(n1,f(n1,uu)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[161]),178,178]),
    [iquote('back_demod,161,demod,178,178')] ).

cnf(185,plain,
    f(u1,uu) = f(n1,uu),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[157]),178]),
    [iquote('back_demod,157,demod,178')] ).

cnf(192,plain,
    f(u,uu) = f(n1,uu),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[116]),178]),
    [iquote('back_demod,115,demod,178')] ).

cnf(362,plain,
    f(n3,u) = uu,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[49,11]),140,106]),
    [iquote('para_into,49.1.1.1,11.1.1,demod,140,106')] ).

cnf(380,plain,
    f(f(n3,A),uu) = f(n3,f(A,u)),
    inference(para_from,[status(thm),theory(equality)],[362,5]),
    [iquote('para_from,361.1.1,5.1.1.2')] ).

cnf(673,plain,
    f(n3,f(n1,uu)) = f(n1,f(n1,uu)),
    inference(para_into,[status(thm),theory(equality)],[57,178]),
    [iquote('para_into,57.1.1.2,177.1.1')] ).

cnf(677,plain,
    f(n3,uu) = f(n1,uu),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[57,106]),152]),
    [iquote('para_into,57.1.1.2,105.1.1,demod,152')] ).

cnf(703,plain,
    f(f(n3,A),f(n1,uu)) = f(n3,f(A,uu)),
    inference(para_from,[status(thm),theory(equality)],[677,5]),
    [iquote('para_from,677.1.1,5.1.1.2')] ).

cnf(739,plain,
    f(u2,uu) = f(n1,uu),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[61,27]),106,178]),
    [iquote('para_into,61.1.1.2,26.1.1,demod,106,178')] ).

cnf(858,plain,
    f(n1,uu) = v,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[67,27]),36,27,192])]),
    [iquote('para_into,67.1.1.1,26.1.1,demod,36,27,192,flip.1')] ).

cnf(859,plain,
    f(u3,uu) = v,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[67,23]),362,192,858]),
    [iquote('para_into,67.1.1.1,23.1.1,demod,362,192,858')] ).

cnf(875,plain,
    f(u2,uu) = v,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[739]),858]),
    [iquote('back_demod,739,demod,858')] ).

cnf(886,plain,
    f(f(n3,A),v) = f(n3,f(A,uu)),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[703]),858]),
    [iquote('back_demod,703,demod,858')] ).

cnf(890,plain,
    f(n3,uu) = v,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[677]),858]),
    [iquote('back_demod,677,demod,858')] ).

cnf(891,plain,
    f(n3,v) = f(n1,v),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[673]),858,858]),
    [iquote('back_demod,673,demod,858,858')] ).

cnf(936,plain,
    f(u1,uu) = v,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[185]),858]),
    [iquote('back_demod,185,demod,858')] ).

cnf(938,plain,
    f(u1,v) = f(n1,v),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[183]),858,858]),
    [iquote('back_demod,183,demod,858,858')] ).

cnf(940,plain,
    f(n2,uu) = v,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[178]),858]),
    [iquote('back_demod,177,demod,858')] ).

cnf(1078,plain,
    f(n1,v) = f(b,v),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[73,859]),938,936]),
    [iquote('para_into,73.1.1.2,859.1.1,demod,938,936')] ).

cnf(1148,plain,
    f(n3,v) = f(b,v),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[891]),1078]),
    [iquote('back_demod,891,demod,1078')] ).

cnf(1243,plain,
    f(b,v) = f(a,v),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[77,875]),886,940,1148,380,106,890]),
    [iquote('para_into,77.1.1.2,875.1.1,demod,886,940,1148,380,106,890')] ).

cnf(1245,plain,
    $false,
    inference(binary,[status(thm)],[1243,2]),
    [iquote('binary,1243.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : LDA002-1 : TPTP v8.1.0. Released v1.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n022.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 02:06:05 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.69/1.95  ----- Otter 3.3f, August 2004 -----
% 1.69/1.95  The process was started by sandbox2 on n022.cluster.edu,
% 1.69/1.95  Wed Jul 27 02:06:05 2022
% 1.69/1.95  The command was "./otter".  The process ID is 21436.
% 1.69/1.95  
% 1.69/1.95  set(prolog_style_variables).
% 1.69/1.95  set(auto).
% 1.69/1.95     dependent: set(auto1).
% 1.69/1.95     dependent: set(process_input).
% 1.69/1.95     dependent: clear(print_kept).
% 1.69/1.95     dependent: clear(print_new_demod).
% 1.69/1.95     dependent: clear(print_back_demod).
% 1.69/1.95     dependent: clear(print_back_sub).
% 1.69/1.95     dependent: set(control_memory).
% 1.69/1.95     dependent: assign(max_mem, 12000).
% 1.69/1.95     dependent: assign(pick_given_ratio, 4).
% 1.69/1.95     dependent: assign(stats_level, 1).
% 1.69/1.95     dependent: assign(max_seconds, 10800).
% 1.69/1.95  clear(print_given).
% 1.69/1.95  
% 1.69/1.95  list(usable).
% 1.69/1.95  0 [] A=A.
% 1.69/1.95  0 [] f(X,f(Y,Z))=f(f(X,Y),f(X,Z)).
% 1.69/1.95  0 [] n2=f(n1,n1).
% 1.69/1.95  0 [] n3=f(n2,n1).
% 1.69/1.95  0 [] u=f(n2,n2).
% 1.69/1.95  0 [] u1=f(u,n1).
% 1.69/1.95  0 [] u2=f(u,n2).
% 1.69/1.95  0 [] u3=f(u,n3).
% 1.69/1.95  0 [] uu=f(u,u).
% 1.69/1.95  0 [] a=f(f(n3,n2),u2).
% 1.69/1.95  0 [] b=f(u1,u3).
% 1.69/1.95  0 [] v=f(uu,uu).
% 1.69/1.95  0 [] f(a,v)!=f(b,v).
% 1.69/1.95  end_of_list.
% 1.69/1.95  
% 1.69/1.95  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.69/1.95  
% 1.69/1.95  All clauses are units, and equality is present; the
% 1.69/1.96  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.69/1.96  
% 1.69/1.96     dependent: set(knuth_bendix).
% 1.69/1.96     dependent: set(anl_eq).
% 1.69/1.96     dependent: set(para_from).
% 1.69/1.96     dependent: set(para_into).
% 1.69/1.96     dependent: clear(para_from_right).
% 1.69/1.96     dependent: clear(para_into_right).
% 1.69/1.96     dependent: set(para_from_vars).
% 1.69/1.96     dependent: set(eq_units_both_ways).
% 1.69/1.96     dependent: set(dynamic_demod_all).
% 1.69/1.96     dependent: set(dynamic_demod).
% 1.69/1.96     dependent: set(order_eq).
% 1.69/1.96     dependent: set(back_demod).
% 1.69/1.96     dependent: set(lrpo).
% 1.69/1.96  
% 1.69/1.96  ------------> process usable:
% 1.69/1.96  ** KEPT (pick-wt=7): 2 [copy,1,flip.1] f(b,v)!=f(a,v).
% 1.69/1.96  
% 1.69/1.96  ------------> process sos:
% 1.69/1.96  ** KEPT (pick-wt=3): 3 [] A=A.
% 1.69/1.96  ** KEPT (pick-wt=13): 5 [copy,4,flip.1] f(f(A,B),f(A,C))=f(A,f(B,C)).
% 1.69/1.96  ---> New Demodulator: 6 [new_demod,5] f(f(A,B),f(A,C))=f(A,f(B,C)).
% 1.69/1.96  ** KEPT (pick-wt=5): 8 [copy,7,flip.1] f(n1,n1)=n2.
% 1.69/1.96  ---> New Demodulator: 9 [new_demod,8] f(n1,n1)=n2.
% 1.69/1.96  ** KEPT (pick-wt=5): 11 [copy,10,flip.1] f(n2,n1)=n3.
% 1.69/1.96  ---> New Demodulator: 12 [new_demod,11] f(n2,n1)=n3.
% 1.69/1.96  ** KEPT (pick-wt=5): 14 [copy,13,flip.1] f(n2,n2)=u.
% 1.69/1.96  ---> New Demodulator: 15 [new_demod,14] f(n2,n2)=u.
% 1.69/1.96  ** KEPT (pick-wt=5): 17 [copy,16,flip.1] f(u,n1)=u1.
% 1.69/1.96  ---> New Demodulator: 18 [new_demod,17] f(u,n1)=u1.
% 1.69/1.96  ** KEPT (pick-wt=5): 20 [copy,19,flip.1] f(u,n2)=u2.
% 1.69/1.96  ---> New Demodulator: 21 [new_demod,20] f(u,n2)=u2.
% 1.69/1.96  ** KEPT (pick-wt=5): 23 [copy,22,flip.1] f(u,n3)=u3.
% 1.69/1.96  ---> New Demodulator: 24 [new_demod,23] f(u,n3)=u3.
% 1.69/1.96  ** KEPT (pick-wt=5): 26 [copy,25,flip.1] f(u,u)=uu.
% 1.69/1.96  ---> New Demodulator: 27 [new_demod,26] f(u,u)=uu.
% 1.69/1.96  ** KEPT (pick-wt=7): 29 [copy,28,flip.1] f(f(n3,n2),u2)=a.
% 1.69/1.96  ---> New Demodulator: 30 [new_demod,29] f(f(n3,n2),u2)=a.
% 1.69/1.96  ** KEPT (pick-wt=5): 32 [copy,31,flip.1] f(u1,u3)=b.
% 1.69/1.96  ---> New Demodulator: 33 [new_demod,32] f(u1,u3)=b.
% 1.69/1.96  ** KEPT (pick-wt=5): 35 [copy,34,flip.1] f(uu,uu)=v.
% 1.69/1.96  ---> New Demodulator: 36 [new_demod,35] f(uu,uu)=v.
% 1.69/1.96    Following clause subsumed by 3 during input processing: 0 [copy,3,flip.1] A=A.
% 1.69/1.96  >>>> Starting back demodulation with 6.
% 1.69/1.96  >>>> Starting back demodulation with 9.
% 1.69/1.96  >>>> Starting back demodulation with 12.
% 1.69/1.96  >>>> Starting back demodulation with 15.
% 1.69/1.96  >>>> Starting back demodulation with 18.
% 1.69/1.96  >>>> Starting back demodulation with 21.
% 1.69/1.96  >>>> Starting back demodulation with 24.
% 1.69/1.96  >>>> Starting back demodulation with 27.
% 1.69/1.96  >>>> Starting back demodulation with 30.
% 1.69/1.96  >>>> Starting back demodulation with 33.
% 1.69/1.96  >>>> Starting back demodulation with 36.
% 1.69/1.96  
% 1.69/1.96  ======= end of input processing =======
% 1.69/1.96  
% 1.69/1.96  =========== start of search ===========
% 1.69/1.96  
% 1.69/1.96  -------- PROOF -------- 
% 1.69/1.96  
% 1.69/1.96  ----> UNIT CONFLICT at   0.03 sec ----> 1245 [binary,1243.1,2.1] $F.
% 1.69/1.96  
% 1.69/1.96  Length of proof is 53.  Level of proof is 11.
% 1.69/1.96  
% 1.69/1.96  ---------------- PROOF ----------------
% 1.69/1.96  % SZS status Unsatisfiable
% 1.69/1.96  % SZS output start Refutation
% See solution above
% 1.69/1.96  ------------ end of proof -------------
% 1.69/1.96  
% 1.69/1.96  
% 1.69/1.96  Search stopped by max_proofs option.
% 1.69/1.96  
% 1.69/1.96  
% 1.69/1.96  Search stopped by max_proofs option.
% 1.69/1.96  
% 1.69/1.96  ============ end of search ============
% 1.69/1.96  
% 1.69/1.96  -------------- statistics -------------
% 1.69/1.96  clauses given                 91
% 1.69/1.96  clauses generated            892
% 1.69/1.96  clauses kept                 621
% 1.69/1.96  clauses forward subsumed     419
% 1.69/1.96  clauses back subsumed          0
% 1.69/1.96  Kbytes malloced             2929
% 1.69/1.96  
% 1.69/1.96  ----------- times (seconds) -----------
% 1.69/1.96  user CPU time          0.03          (0 hr, 0 min, 0 sec)
% 1.69/1.96  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.69/1.96  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.69/1.96  
% 1.69/1.96  That finishes the proof of the theorem.
% 1.69/1.96  
% 1.69/1.96  Process 21436 finished Wed Jul 27 02:06:07 2022
% 1.69/1.96  Otter interrupted
% 1.69/1.96  PROOF FOUND
%------------------------------------------------------------------------------