TSTP Solution File: LCL533+1 by E-SAT---3.1.00

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E-SAT---3.1.00
% Problem  : LCL533+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Sat May  4 08:27:49 EDT 2024

% Result   : Theorem 2.17s 0.76s
% Output   : CNFRefutation 2.17s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   22
%            Number of leaves      :   38
% Syntax   : Number of formulae    :  181 ( 100 unt;   0 def)
%            Number of atoms       :  316 (  70 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  228 (  93   ~;  92   |;  20   &)
%                                         (  15 <=>;   8  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   2 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :   23 (  21 usr;  21 prp; 0-2 aty)
%            Number of functors    :   34 (  34 usr;  26 con; 0-2 aty)
%            Number of variables   :  234 (  17 sgn  70   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',modus_ponens) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',and_3) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',substitution_of_equivalents) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',op_equiv) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_modus_ponens) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_and_3) ).

fof(substitution_of_equivalents_001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',substitution_of_equivalents) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_op_equiv) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',implies_1) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',implies_2) ).

fof(necessitation,axiom,
    ( necessitation
  <=> ! [X1] :
        ( is_a_theorem(X1)
       => is_a_theorem(necessarily(X1)) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',necessitation) ).

fof(op_strict_implies,axiom,
    ( op_strict_implies
   => ! [X1,X2] : strict_implies(X1,X2) = necessarily(implies(X1,X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',op_strict_implies) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_implies_1) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_implies_2) ).

fof(km5_necessitation,axiom,
    necessitation,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',km5_necessitation) ).

fof(s1_0_op_strict_implies,axiom,
    op_strict_implies,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',s1_0_op_strict_implies) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',and_1) ).

fof(axiom_m4,axiom,
    ( axiom_m4
  <=> ! [X1] : is_a_theorem(strict_implies(X1,and(X1,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',axiom_m4) ).

fof(axiom_m2,axiom,
    ( axiom_m2
  <=> ! [X1,X2] : is_a_theorem(strict_implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',axiom_m2) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_and_1) ).

fof(axiom_M,axiom,
    ( axiom_M
  <=> ! [X1] : is_a_theorem(implies(necessarily(X1),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',axiom_M) ).

fof(km5_axiom_M,axiom,
    axiom_M,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',km5_axiom_M) ).

fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',op_implies_and) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_op_implies_and) ).

fof(or_3,axiom,
    ( or_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X3),implies(implies(X2,X3),implies(or(X1,X2),X3)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',or_3) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_op_or) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',and_2) ).

fof(hilbert_or_3,axiom,
    or_3,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_or_3) ).

fof(hilbert_and_2,axiom,
    and_2,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_and_2) ).

fof(op_possibly,axiom,
    ( op_possibly
   => ! [X1] : possibly(X1) = not(necessarily(not(X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',op_possibly) ).

fof(km5_op_possibly,axiom,
    op_possibly,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',km5_op_possibly) ).

fof(axiom_5,axiom,
    ( axiom_5
  <=> ! [X1] : is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',axiom_5) ).

fof(km5_axiom_5,axiom,
    axiom_5,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',km5_axiom_5) ).

fof(modus_tollens,axiom,
    ( modus_tollens
  <=> ! [X1,X2] : is_a_theorem(implies(implies(not(X2),not(X1)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',modus_tollens) ).

fof(s1_0_m6s3m9b_axiom_m6,conjecture,
    axiom_m6,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',s1_0_m6s3m9b_axiom_m6) ).

fof(hilbert_modus_tollens,axiom,
    modus_tollens,
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',hilbert_modus_tollens) ).

fof(axiom_m6,axiom,
    ( axiom_m6
  <=> ! [X1] : is_a_theorem(strict_implies(X1,possibly(X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p',axiom_m6) ).

fof(c_0_38,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])])]) ).

fof(c_0_39,plain,
    ! [X41,X42] :
      ( ( ~ and_3
        | is_a_theorem(implies(X41,implies(X42,and(X41,X42)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])])]) ).

fof(c_0_40,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])])]) ).

fof(c_0_41,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])])]) ).

cnf(c_0_42,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_43,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_44,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_45,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

cnf(c_0_46,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_47,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents]) ).

cnf(c_0_48,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_41]) ).

cnf(c_0_49,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_50,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_42,c_0_43])]) ).

cnf(c_0_51,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_44,c_0_45])]) ).

fof(c_0_52,plain,
    ! [X19,X20] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X19,implies(X20,X19))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])])]) ).

fof(c_0_53,plain,
    ! [X23,X24] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X23,implies(X23,X24)),implies(X23,X24))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])])]) ).

fof(c_0_54,plain,
    ! [X127] :
      ( ( ~ necessitation
        | ~ is_a_theorem(X127)
        | is_a_theorem(necessarily(X127)) )
      & ( is_a_theorem(esk56_0)
        | necessitation )
      & ( ~ is_a_theorem(necessarily(esk56_0))
        | necessitation ) ),
    inference(distribute,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[necessitation])])])])])]) ).

fof(c_0_55,plain,
    ! [X207,X208] :
      ( ~ op_strict_implies
      | strict_implies(X207,X208) = necessarily(implies(X207,X208)) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_strict_implies])])])]) ).

cnf(c_0_56,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_46,c_0_47])]) ).

cnf(c_0_57,plain,
    equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_48,c_0_49])]) ).

cnf(c_0_58,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_50,c_0_51]) ).

cnf(c_0_59,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_52]) ).

cnf(c_0_60,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_61,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_53]) ).

cnf(c_0_62,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

cnf(c_0_63,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ necessitation
    | ~ is_a_theorem(X1) ),
    inference(split_conjunct,[status(thm)],[c_0_54]) ).

cnf(c_0_64,plain,
    necessitation,
    inference(split_conjunct,[status(thm)],[km5_necessitation]) ).

cnf(c_0_65,plain,
    ( strict_implies(X1,X2) = necessarily(implies(X1,X2))
    | ~ op_strict_implies ),
    inference(split_conjunct,[status(thm)],[c_0_55]) ).

cnf(c_0_66,plain,
    op_strict_implies,
    inference(split_conjunct,[status(thm)],[s1_0_op_strict_implies]) ).

fof(c_0_67,plain,
    ! [X33,X34] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X33,X34),X33)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])])]) ).

cnf(c_0_68,plain,
    ( X1 = X2
    | ~ is_a_theorem(and(implies(X1,X2),implies(X2,X1))) ),
    inference(rw,[status(thm)],[c_0_56,c_0_57]) ).

cnf(c_0_69,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_50,c_0_58]) ).

cnf(c_0_70,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_59,c_0_60])]) ).

fof(c_0_71,plain,
    ! [X183] :
      ( ( ~ axiom_m4
        | is_a_theorem(strict_implies(X183,and(X183,X183))) )
      & ( ~ is_a_theorem(strict_implies(esk84_0,and(esk84_0,esk84_0)))
        | axiom_m4 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m4])])])])]) ).

cnf(c_0_72,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_61,c_0_62])]) ).

fof(c_0_73,plain,
    ! [X173,X174] :
      ( ( ~ axiom_m2
        | is_a_theorem(strict_implies(and(X173,X174),X173)) )
      & ( ~ is_a_theorem(strict_implies(and(esk79_0,esk80_0),esk79_0))
        | axiom_m2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m2])])])])]) ).

cnf(c_0_74,plain,
    ( is_a_theorem(necessarily(X1))
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_63,c_0_64])]) ).

cnf(c_0_75,plain,
    necessarily(implies(X1,X2)) = strict_implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_65,c_0_66])]) ).

cnf(c_0_76,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_67]) ).

cnf(c_0_77,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_78,plain,
    ! [X145] :
      ( ( ~ axiom_M
        | is_a_theorem(implies(necessarily(X145),X145)) )
      & ( ~ is_a_theorem(implies(necessarily(esk65_0),esk65_0))
        | axiom_M ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_M])])])])]) ).

cnf(c_0_79,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_68,c_0_69]) ).

cnf(c_0_80,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_50,c_0_70]) ).

cnf(c_0_81,plain,
    ( is_a_theorem(strict_implies(X1,and(X1,X1)))
    | ~ axiom_m4 ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_82,plain,
    ( axiom_m4
    | ~ is_a_theorem(strict_implies(esk84_0,and(esk84_0,esk84_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_83,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_50,c_0_72]) ).

cnf(c_0_84,plain,
    ( axiom_m2
    | ~ is_a_theorem(strict_implies(and(esk79_0,esk80_0),esk79_0)) ),
    inference(split_conjunct,[status(thm)],[c_0_73]) ).

cnf(c_0_85,plain,
    ( is_a_theorem(strict_implies(X1,X2))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_74,c_0_75]) ).

cnf(c_0_86,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_76,c_0_77])]) ).

cnf(c_0_87,plain,
    ( is_a_theorem(implies(necessarily(X1),X1))
    | ~ axiom_M ),
    inference(split_conjunct,[status(thm)],[c_0_78]) ).

cnf(c_0_88,plain,
    axiom_M,
    inference(split_conjunct,[status(thm)],[km5_axiom_M]) ).

fof(c_0_89,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])])]) ).

cnf(c_0_90,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_79,c_0_80]) ).

cnf(c_0_91,plain,
    ( is_a_theorem(strict_implies(X1,and(X1,X1)))
    | ~ is_a_theorem(strict_implies(esk84_0,and(esk84_0,esk84_0))) ),
    inference(spm,[status(thm)],[c_0_81,c_0_82]) ).

cnf(c_0_92,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(spm,[status(thm)],[c_0_83,c_0_51]) ).

cnf(c_0_93,plain,
    ( is_a_theorem(strict_implies(and(X1,X2),X1))
    | ~ axiom_m2 ),
    inference(split_conjunct,[status(thm)],[c_0_73]) ).

cnf(c_0_94,plain,
    axiom_m2,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_84,c_0_85]),c_0_86])]) ).

cnf(c_0_95,plain,
    is_a_theorem(implies(necessarily(X1),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_87,c_0_88])]) ).

fof(c_0_96,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])])]) ).

cnf(c_0_97,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_89]) ).

cnf(c_0_98,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_99,plain,
    ( implies(X1,X2) = X2
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_90,c_0_70]) ).

cnf(c_0_100,plain,
    is_a_theorem(strict_implies(X1,and(X1,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_91,c_0_85]),c_0_92])]) ).

cnf(c_0_101,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_92]),c_0_86])]) ).

cnf(c_0_102,plain,
    is_a_theorem(strict_implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_93,c_0_94])]) ).

cnf(c_0_103,plain,
    ( necessarily(X1) = X1
    | ~ is_a_theorem(implies(X1,necessarily(X1))) ),
    inference(spm,[status(thm)],[c_0_79,c_0_95]) ).

fof(c_0_104,plain,
    ! [X53,X54,X55] :
      ( ( ~ or_3
        | is_a_theorem(implies(implies(X53,X55),implies(implies(X54,X55),implies(or(X53,X54),X55)))) )
      & ( ~ is_a_theorem(implies(implies(esk24_0,esk26_0),implies(implies(esk25_0,esk26_0),implies(or(esk24_0,esk25_0),esk26_0))))
        | or_3 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_3])])])])]) ).

cnf(c_0_105,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_96]) ).

cnf(c_0_106,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_97,c_0_98])]) ).

cnf(c_0_107,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

cnf(c_0_108,plain,
    implies(X1,strict_implies(X2,X2)) = strict_implies(X2,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99,c_0_100]),c_0_101]),c_0_101]) ).

cnf(c_0_109,plain,
    is_a_theorem(strict_implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_102,c_0_101]) ).

fof(c_0_110,plain,
    ! [X37,X38] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X37,X38),X38)) )
      & ( ~ is_a_theorem(implies(and(esk16_0,esk17_0),esk17_0))
        | and_2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_2])])])])]) ).

cnf(c_0_111,plain,
    ( necessarily(X1) = X1
    | ~ is_a_theorem(necessarily(X1)) ),
    inference(spm,[status(thm)],[c_0_103,c_0_80]) ).

cnf(c_0_112,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(or(X1,X3),X2))))
    | ~ or_3 ),
    inference(split_conjunct,[status(thm)],[c_0_104]) ).

cnf(c_0_113,plain,
    or(X1,X2) = implies(not(X1),X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_105,c_0_106]),c_0_107])]) ).

cnf(c_0_114,plain,
    or_3,
    inference(split_conjunct,[status(thm)],[hilbert_or_3]) ).

cnf(c_0_115,plain,
    ( strict_implies(X1,X1) = X2
    | ~ is_a_theorem(implies(strict_implies(X1,X1),X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_108]),c_0_109])]) ).

cnf(c_0_116,plain,
    ( is_a_theorem(implies(and(X1,X2),X2))
    | ~ and_2 ),
    inference(split_conjunct,[status(thm)],[c_0_110]) ).

cnf(c_0_117,plain,
    and_2,
    inference(split_conjunct,[status(thm)],[hilbert_and_2]) ).

cnf(c_0_118,plain,
    ( necessarily(X1) = X1
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_111,c_0_74]) ).

cnf(c_0_119,plain,
    necessarily(strict_implies(X1,X1)) = strict_implies(X2,strict_implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_75,c_0_108]) ).

cnf(c_0_120,plain,
    ( X1 = strict_implies(X2,X2)
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_90,c_0_108]),c_0_109])]) ).

cnf(c_0_121,plain,
    implies(X1,implies(X2,X2)) = implies(X2,X2),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_99,c_0_92]),c_0_101]),c_0_101]) ).

cnf(c_0_122,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_83,c_0_70]) ).

cnf(c_0_123,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(implies(not(X1),X3),X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_112,c_0_113]),c_0_114])]) ).

cnf(c_0_124,plain,
    implies(X1,and(strict_implies(X2,X2),X1)) = strict_implies(X2,X2),
    inference(spm,[status(thm)],[c_0_115,c_0_51]) ).

cnf(c_0_125,plain,
    is_a_theorem(implies(and(X1,X2),X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_116,c_0_117])]) ).

cnf(c_0_126,plain,
    strict_implies(X1,strict_implies(X2,X2)) = strict_implies(X2,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_118,c_0_119]),c_0_109])]) ).

cnf(c_0_127,plain,
    implies(X1,X1) = strict_implies(X2,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_120,c_0_92]),c_0_101]) ).

cnf(c_0_128,plain,
    ( implies(X1,X1) = X2
    | ~ is_a_theorem(implies(implies(X1,X1),X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_121]),c_0_122])]) ).

cnf(c_0_129,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(not(X1),X1),X2))),
    inference(spm,[status(thm)],[c_0_83,c_0_123]) ).

cnf(c_0_130,plain,
    and(strict_implies(X1,X1),X2) = X2,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_124]),c_0_109]),c_0_125])]) ).

cnf(c_0_131,plain,
    strict_implies(X1,implies(X2,X2)) = implies(X2,X2),
    inference(spm,[status(thm)],[c_0_126,c_0_127]) ).

fof(c_0_132,plain,
    ! [X205] :
      ( ~ op_possibly
      | possibly(X205) = not(necessarily(not(X205))) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_possibly])])])]) ).

cnf(c_0_133,plain,
    not(and(X1,implies(X2,X3))) = implies(X1,and(X2,not(X3))),
    inference(spm,[status(thm)],[c_0_106,c_0_106]) ).

cnf(c_0_134,plain,
    implies(implies(not(X1),X1),X1) = implies(X1,X1),
    inference(spm,[status(thm)],[c_0_128,c_0_129]) ).

cnf(c_0_135,plain,
    and(implies(X1,X1),X2) = X2,
    inference(spm,[status(thm)],[c_0_130,c_0_131]) ).

cnf(c_0_136,plain,
    ( possibly(X1) = not(necessarily(not(X1)))
    | ~ op_possibly ),
    inference(split_conjunct,[status(thm)],[c_0_132]) ).

cnf(c_0_137,plain,
    op_possibly,
    inference(split_conjunct,[status(thm)],[km5_op_possibly]) ).

fof(c_0_138,plain,
    ! [X151] :
      ( ( ~ axiom_5
        | is_a_theorem(implies(possibly(X151),necessarily(possibly(X151)))) )
      & ( ~ is_a_theorem(implies(possibly(esk68_0),necessarily(possibly(esk68_0))))
        | axiom_5 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_5])])])])]) ).

cnf(c_0_139,plain,
    not(implies(X1,X2)) = implies(implies(X1,X2),and(X1,not(X2))),
    inference(spm,[status(thm)],[c_0_133,c_0_101]) ).

cnf(c_0_140,plain,
    implies(not(X1),X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_68,c_0_134]),c_0_135]),c_0_70])]) ).

cnf(c_0_141,plain,
    not(necessarily(not(X1))) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_136,c_0_137])]) ).

cnf(c_0_142,plain,
    ( is_a_theorem(implies(possibly(X1),necessarily(possibly(X1))))
    | ~ axiom_5 ),
    inference(split_conjunct,[status(thm)],[c_0_138]) ).

cnf(c_0_143,plain,
    axiom_5,
    inference(split_conjunct,[status(thm)],[km5_axiom_5]) ).

cnf(c_0_144,plain,
    implies(X1,not(X1)) = not(X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_139,c_0_140]),c_0_101]) ).

cnf(c_0_145,plain,
    not(strict_implies(X1,X2)) = possibly(and(X1,not(X2))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_141,c_0_106]),c_0_75]) ).

cnf(c_0_146,plain,
    strict_implies(not(X1),X1) = necessarily(X1),
    inference(spm,[status(thm)],[c_0_75,c_0_140]) ).

cnf(c_0_147,plain,
    is_a_theorem(implies(possibly(X1),necessarily(possibly(X1)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_142,c_0_143])]) ).

fof(c_0_148,plain,
    ! [X15,X16] :
      ( ( ~ modus_tollens
        | is_a_theorem(implies(implies(not(X16),not(X15)),implies(X15,X16))) )
      & ( ~ is_a_theorem(implies(implies(not(esk6_0),not(esk5_0)),implies(esk5_0,esk6_0)))
        | modus_tollens ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_tollens])])])])]) ).

cnf(c_0_149,plain,
    necessarily(not(X1)) = strict_implies(X1,not(X1)),
    inference(spm,[status(thm)],[c_0_75,c_0_144]) ).

cnf(c_0_150,plain,
    not(necessarily(X1)) = possibly(not(X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_145,c_0_146]),c_0_101]) ).

cnf(c_0_151,plain,
    necessarily(possibly(X1)) = possibly(X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_79,c_0_147]),c_0_95])]) ).

cnf(c_0_152,plain,
    not(and(X1,possibly(X2))) = implies(X1,necessarily(not(X2))),
    inference(spm,[status(thm)],[c_0_106,c_0_141]) ).

cnf(c_0_153,plain,
    implies(X1,implies(necessarily(X2),X2)) = implies(necessarily(X2),X2),
    inference(spm,[status(thm)],[c_0_99,c_0_95]) ).

fof(c_0_154,negated_conjecture,
    ~ axiom_m6,
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[s1_0_m6s3m9b_axiom_m6])]) ).

cnf(c_0_155,plain,
    ( is_a_theorem(implies(implies(not(X1),not(X2)),implies(X2,X1)))
    | ~ modus_tollens ),
    inference(split_conjunct,[status(thm)],[c_0_148]) ).

cnf(c_0_156,plain,
    modus_tollens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_tollens]) ).

cnf(c_0_157,plain,
    strict_implies(necessarily(X1),possibly(not(X1))) = possibly(not(X1)),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_149,c_0_150]),c_0_151]) ).

cnf(c_0_158,plain,
    not(possibly(X1)) = implies(possibly(X1),necessarily(not(X1))),
    inference(spm,[status(thm)],[c_0_152,c_0_101]) ).

cnf(c_0_159,plain,
    not(not(X1)) = implies(not(X1),X1),
    inference(spm,[status(thm)],[c_0_106,c_0_101]) ).

cnf(c_0_160,plain,
    implies(possibly(not(X1)),necessarily(X1)) = necessarily(X1),
    inference(spm,[status(thm)],[c_0_140,c_0_150]) ).

cnf(c_0_161,plain,
    strict_implies(X1,implies(necessarily(X2),X2)) = implies(necessarily(X2),X2),
    inference(spm,[status(thm)],[c_0_131,c_0_153]) ).

fof(c_0_162,plain,
    ! [X191] :
      ( ( ~ axiom_m6
        | is_a_theorem(strict_implies(X191,possibly(X191))) )
      & ( ~ is_a_theorem(strict_implies(esk88_0,possibly(esk88_0)))
        | axiom_m6 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[axiom_m6])])])])]) ).

fof(c_0_163,negated_conjecture,
    ~ axiom_m6,
    inference(fof_nnf,[status(thm)],[c_0_154]) ).

cnf(c_0_164,plain,
    is_a_theorem(implies(implies(not(X1),not(X2)),implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_155,c_0_156])]) ).

cnf(c_0_165,plain,
    possibly(necessarily(X1)) = necessarily(X1),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_145,c_0_157]),c_0_158]),c_0_159]),c_0_140]),c_0_160]),c_0_158]),c_0_159]),c_0_140]),c_0_160]),c_0_101]) ).

cnf(c_0_166,plain,
    and(implies(necessarily(X1),X1),X2) = X2,
    inference(spm,[status(thm)],[c_0_130,c_0_161]) ).

cnf(c_0_167,plain,
    ( axiom_m6
    | ~ is_a_theorem(strict_implies(esk88_0,possibly(esk88_0))) ),
    inference(split_conjunct,[status(thm)],[c_0_162]) ).

cnf(c_0_168,negated_conjecture,
    ~ axiom_m6,
    inference(split_conjunct,[status(thm)],[c_0_163]) ).

cnf(c_0_169,plain,
    is_a_theorem(implies(implies(possibly(X1),not(X2)),implies(X2,necessarily(not(X1))))),
    inference(spm,[status(thm)],[c_0_164,c_0_141]) ).

cnf(c_0_170,plain,
    possibly(strict_implies(X1,X2)) = strict_implies(X1,X2),
    inference(spm,[status(thm)],[c_0_165,c_0_75]) ).

cnf(c_0_171,plain,
    implies(necessarily(X1),X1) = strict_implies(X2,X2),
    inference(spm,[status(thm)],[c_0_120,c_0_95]) ).

cnf(c_0_172,plain,
    implies(implies(necessarily(X1),X1),X2) = X2,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_106,c_0_166]),c_0_159]),c_0_140]) ).

cnf(c_0_173,plain,
    necessarily(strict_implies(X1,X1)) = strict_implies(X1,X1),
    inference(rw,[status(thm)],[c_0_119,c_0_126]) ).

cnf(c_0_174,plain,
    ~ is_a_theorem(strict_implies(esk88_0,possibly(esk88_0))),
    inference(sr,[status(thm)],[c_0_167,c_0_168]) ).

cnf(c_0_175,plain,
    is_a_theorem(implies(implies(strict_implies(X1,X2),not(X3)),implies(X3,possibly(and(X1,not(X2)))))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_169,c_0_145]),c_0_151]),c_0_170]) ).

cnf(c_0_176,plain,
    implies(strict_implies(X1,not(X1)),not(X1)) = strict_implies(X2,X2),
    inference(spm,[status(thm)],[c_0_171,c_0_149]) ).

cnf(c_0_177,plain,
    implies(strict_implies(X1,X1),X2) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_172,c_0_173]),c_0_108]) ).

cnf(c_0_178,plain,
    ~ is_a_theorem(implies(esk88_0,possibly(esk88_0))),
    inference(spm,[status(thm)],[c_0_174,c_0_85]) ).

cnf(c_0_179,plain,
    is_a_theorem(implies(X1,possibly(X1))),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_175,c_0_176]),c_0_159]),c_0_140]),c_0_101]),c_0_177]) ).

cnf(c_0_180,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_178,c_0_179])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem    : LCL533+1 : TPTP v8.1.2. Released v3.3.0.
% 0.03/0.14  % Command    : run_E %s %d THM
% 0.13/0.35  % Computer : n007.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Fri May  3 08:44:20 EDT 2024
% 0.13/0.35  % CPUTime    : 
% 0.21/0.50  Running first-order model finding
% 0.21/0.50  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --satauto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.pMg88E2GWt/E---3.1_26276.p
% 2.17/0.76  # Version: 3.1.0
% 2.17/0.76  # Preprocessing class: FSLSSLSSSSSNFFN.
% 2.17/0.76  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 2.17/0.76  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 1500s (5) cores
% 2.17/0.76  # Starting new_bool_3 with 300s (1) cores
% 2.17/0.76  # Starting new_bool_1 with 300s (1) cores
% 2.17/0.76  # Starting sh5l with 300s (1) cores
% 2.17/0.76  # H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with pid 26393 completed with status 0
% 2.17/0.76  # Result found by H----_102_C18_F1_PI_AE_CS_SP_PS_S2S
% 2.17/0.76  # Preprocessing class: FSLSSLSSSSSNFFN.
% 2.17/0.76  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 2.17/0.76  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 1500s (5) cores
% 2.17/0.76  # No SInE strategy applied
% 2.17/0.76  # Search class: FGUSF-FFMM21-MFFFFFNN
% 2.17/0.76  # Scheduled 7 strats onto 5 cores with 1500 seconds (1500 total)
% 2.17/0.76  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 675s (1) cores
% 2.17/0.76  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 151s (1) cores
% 2.17/0.76  # Starting H----_047_C09_12_F1_AE_ND_CS_SP_S5PRR_S2S with 136s (1) cores
% 2.17/0.76  # Starting U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 2.17/0.76  # Starting G-E--_208_C09_12_F1_SE_CS_SP_PS_S5PRR_S04AN with 136s (1) cores
% 2.17/0.76  # U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with pid 26412 completed with status 0
% 2.17/0.76  # Result found by U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN
% 2.17/0.76  # Preprocessing class: FSLSSLSSSSSNFFN.
% 2.17/0.76  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 2.17/0.76  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 1500s (5) cores
% 2.17/0.76  # No SInE strategy applied
% 2.17/0.76  # Search class: FGUSF-FFMM21-MFFFFFNN
% 2.17/0.76  # Scheduled 7 strats onto 5 cores with 1500 seconds (1500 total)
% 2.17/0.76  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 675s (1) cores
% 2.17/0.76  # Starting H----_102_C18_F1_PI_AE_CS_SP_PS_S2S with 151s (1) cores
% 2.17/0.76  # Starting H----_047_C09_12_F1_AE_ND_CS_SP_S5PRR_S2S with 136s (1) cores
% 2.17/0.76  # Starting U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 136s (1) cores
% 2.17/0.76  # Preprocessing time       : 0.003 s
% 2.17/0.76  # Presaturation interreduction done
% 2.17/0.76  
% 2.17/0.76  # Proof found!
% 2.17/0.76  # SZS status Theorem
% 2.17/0.76  # SZS output start CNFRefutation
% See solution above
% 2.17/0.76  # Parsed axioms                        : 88
% 2.17/0.76  # Removed by relevancy pruning/SinE    : 0
% 2.17/0.76  # Initial clauses                      : 146
% 2.17/0.76  # Removed in clause preprocessing      : 0
% 2.17/0.76  # Initial clauses in saturation        : 146
% 2.17/0.76  # Processed clauses                    : 2201
% 2.17/0.76  # ...of these trivial                  : 249
% 2.17/0.76  # ...subsumed                          : 1272
% 2.17/0.76  # ...remaining for further processing  : 680
% 2.17/0.76  # Other redundant clauses eliminated   : 0
% 2.17/0.76  # Clauses deleted for lack of memory   : 0
% 2.17/0.76  # Backward-subsumed                    : 16
% 2.17/0.76  # Backward-rewritten                   : 99
% 2.17/0.76  # Generated clauses                    : 22529
% 2.17/0.76  # ...of the previous two non-redundant : 14639
% 2.17/0.76  # ...aggressively subsumed             : 0
% 2.17/0.76  # Contextual simplify-reflections      : 7
% 2.17/0.76  # Paramodulations                      : 22529
% 2.17/0.76  # Factorizations                       : 0
% 2.17/0.76  # NegExts                              : 0
% 2.17/0.76  # Equation resolutions                 : 0
% 2.17/0.76  # Disequality decompositions           : 0
% 2.17/0.76  # Total rewrite steps                  : 41333
% 2.17/0.76  # ...of those cached                   : 36126
% 2.17/0.76  # Propositional unsat checks           : 0
% 2.17/0.76  #    Propositional check models        : 0
% 2.17/0.76  #    Propositional check unsatisfiable : 0
% 2.17/0.76  #    Propositional clauses             : 0
% 2.17/0.76  #    Propositional clauses after purity: 0
% 2.17/0.76  #    Propositional unsat core size     : 0
% 2.17/0.76  #    Propositional preprocessing time  : 0.000
% 2.17/0.76  #    Propositional encoding time       : 0.000
% 2.17/0.76  #    Propositional solver time         : 0.000
% 2.17/0.76  #    Success case prop preproc time    : 0.000
% 2.17/0.76  #    Success case prop encoding time   : 0.000
% 2.17/0.76  #    Success case prop solver time     : 0.000
% 2.17/0.76  # Current number of processed clauses  : 452
% 2.17/0.76  #    Positive orientable unit clauses  : 236
% 2.17/0.76  #    Positive unorientable unit clauses: 19
% 2.17/0.76  #    Negative unit clauses             : 4
% 2.17/0.76  #    Non-unit-clauses                  : 193
% 2.17/0.76  # Current number of unprocessed clauses: 12356
% 2.17/0.76  # ...number of literals in the above   : 17098
% 2.17/0.76  # Current number of archived formulas  : 0
% 2.17/0.76  # Current number of archived clauses   : 228
% 2.17/0.76  # Clause-clause subsumption calls (NU) : 10925
% 2.17/0.76  # Rec. Clause-clause subsumption calls : 7929
% 2.17/0.76  # Non-unit clause-clause subsumptions  : 540
% 2.17/0.76  # Unit Clause-clause subsumption calls : 1622
% 2.17/0.76  # Rewrite failures with RHS unbound    : 0
% 2.17/0.76  # BW rewrite match attempts            : 3459
% 2.17/0.76  # BW rewrite match successes           : 157
% 2.17/0.76  # Condensation attempts                : 0
% 2.17/0.76  # Condensation successes               : 0
% 2.17/0.76  # Termbank termtop insertions          : 290367
% 2.17/0.76  # Search garbage collected termcells   : 2059
% 2.17/0.76  
% 2.17/0.76  # -------------------------------------------------
% 2.17/0.76  # User time                : 0.229 s
% 2.17/0.76  # System time              : 0.015 s
% 2.17/0.76  # Total time               : 0.244 s
% 2.17/0.76  # Maximum resident set size: 2244 pages
% 2.17/0.76  
% 2.17/0.76  # -------------------------------------------------
% 2.17/0.76  # User time                : 1.122 s
% 2.17/0.76  # System time              : 0.078 s
% 2.17/0.76  # Total time               : 1.201 s
% 2.17/0.76  # Maximum resident set size: 1776 pages
% 2.17/0.76  % E---3.1 exiting
%------------------------------------------------------------------------------