TSTP Solution File: LCL457+1 by E---3.1.00

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : E---3.1.00
% Problem  : LCL457+1 : TPTP v8.1.2. Released v3.3.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_E %s %d THM

% Computer : n007.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Sat May  4 08:18:57 EDT 2024

% Result   : Theorem 15.85s 2.50s
% Output   : CNFRefutation 15.85s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   23
%            Number of leaves      :   38
% Syntax   : Number of formulae    :  201 (  97 unt;   0 def)
%            Number of atoms       :  360 (  57 equ)
%            Maximal formula atoms :   10 (   1 avg)
%            Number of connectives :  281 ( 122   ~; 120   |;  18   &)
%                                         (  14 <=>;   7  =>;   0  <=;   0 <~>)
%            Maximal formula depth :    8 (   3 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :   22 (  20 usr;  20 prp; 0-2 aty)
%            Number of functors    :   36 (  36 usr;  31 con; 0-2 aty)
%            Number of variables   :  340 (  40 sgn  82   !;   0   ?)

% Comments : 
%------------------------------------------------------------------------------
fof(op_implies_and,axiom,
    ( op_implies_and
   => ! [X1,X2] : implies(X1,X2) = not(and(X1,not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',op_implies_and) ).

fof(modus_ponens,axiom,
    ( modus_ponens
  <=> ! [X1,X2] :
        ( ( is_a_theorem(X1)
          & is_a_theorem(implies(X1,X2)) )
       => is_a_theorem(X2) ) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',modus_ponens) ).

fof(op_or,axiom,
    ( op_or
   => ! [X1,X2] : or(X1,X2) = not(and(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',op_or) ).

fof(hilbert_op_implies_and,axiom,
    op_implies_and,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_op_implies_and) ).

fof(hilbert_modus_ponens,axiom,
    modus_ponens,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_modus_ponens) ).

fof(hilbert_op_or,axiom,
    op_or,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_op_or) ).

fof(op_implies_or,axiom,
    ( op_implies_or
   => ! [X1,X2] : implies(X1,X2) = or(not(X1),X2) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',op_implies_or) ).

fof(and_3,axiom,
    ( and_3
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,and(X1,X2)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',and_3) ).

fof(implies_2,axiom,
    ( implies_2
  <=> ! [X1,X2] : is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',implies_2) ).

fof(principia_op_implies_or,axiom,
    op_implies_or,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',principia_op_implies_or) ).

fof(hilbert_and_3,axiom,
    and_3,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_and_3) ).

fof(hilbert_implies_2,axiom,
    implies_2,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_implies_2) ).

fof(implies_1,axiom,
    ( implies_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,implies(X2,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',implies_1) ).

fof(and_1,axiom,
    ( and_1
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',and_1) ).

fof(op_equiv,axiom,
    ( op_equiv
   => ! [X1,X2] : equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1)) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',op_equiv) ).

fof(hilbert_implies_1,axiom,
    implies_1,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_implies_1) ).

fof(hilbert_and_1,axiom,
    and_1,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_and_1) ).

fof(substitution_of_equivalents,axiom,
    ( substitution_of_equivalents
  <=> ! [X1,X2] :
        ( is_a_theorem(equiv(X1,X2))
       => X1 = X2 ) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',substitution_of_equivalents) ).

fof(hilbert_op_equiv,axiom,
    op_equiv,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_op_equiv) ).

fof(substitution_of_equivalents_0001,axiom,
    substitution_of_equivalents,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',substitution_of_equivalents_0001) ).

fof(or_1,axiom,
    ( or_1
  <=> ! [X1,X2] : is_a_theorem(implies(X1,or(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',or_1) ).

fof(op_and,axiom,
    ( op_and
   => ! [X1,X2] : and(X1,X2) = not(or(not(X1),not(X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',op_and) ).

fof(modus_tollens,axiom,
    ( modus_tollens
  <=> ! [X1,X2] : is_a_theorem(implies(implies(not(X2),not(X1)),implies(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',modus_tollens) ).

fof(hilbert_or_1,axiom,
    or_1,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_or_1) ).

fof(principia_op_and,axiom,
    op_and,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',principia_op_and) ).

fof(hilbert_modus_tollens,axiom,
    modus_tollens,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_modus_tollens) ).

fof(and_2,axiom,
    ( and_2
  <=> ! [X1,X2] : is_a_theorem(implies(and(X1,X2),X2)) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',and_2) ).

fof(hilbert_and_2,axiom,
    and_2,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_and_2) ).

fof(implies_3,axiom,
    ( implies_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',implies_3) ).

fof(equivalence_2,axiom,
    ( equivalence_2
  <=> ! [X1,X2] : is_a_theorem(implies(equiv(X1,X2),implies(X2,X1))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',equivalence_2) ).

fof(hilbert_implies_3,axiom,
    implies_3,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_implies_3) ).

fof(hilbert_equivalence_2,axiom,
    equivalence_2,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_equivalence_2) ).

fof(or_2,axiom,
    ( or_2
  <=> ! [X1,X2] : is_a_theorem(implies(X2,or(X1,X2))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',or_2) ).

fof(hilbert_or_2,axiom,
    or_2,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_or_2) ).

fof(or_3,axiom,
    ( or_3
  <=> ! [X1,X2,X3] : is_a_theorem(implies(implies(X1,X3),implies(implies(X2,X3),implies(or(X1,X2),X3)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',or_3) ).

fof(principia_r4,conjecture,
    r4,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',principia_r4) ).

fof(hilbert_or_3,axiom,
    or_3,
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',hilbert_or_3) ).

fof(r4,axiom,
    ( r4
  <=> ! [X4,X5,X6] : is_a_theorem(implies(or(X4,or(X5,X6)),or(X5,or(X4,X6)))) ),
    file('/export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p',r4) ).

fof(c_0_38,plain,
    ! [X121,X122] :
      ( ~ op_implies_and
      | implies(X121,X122) = not(and(X121,not(X122))) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_and])])])]) ).

fof(c_0_39,plain,
    ! [X7,X8] :
      ( ( ~ modus_ponens
        | ~ is_a_theorem(X7)
        | ~ is_a_theorem(implies(X7,X8))
        | is_a_theorem(X8) )
      & ( is_a_theorem(esk1_0)
        | modus_ponens )
      & ( is_a_theorem(implies(esk1_0,esk2_0))
        | modus_ponens )
      & ( ~ is_a_theorem(esk2_0)
        | modus_ponens ) ),
    inference(distribute,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_ponens])])])])])]) ).

fof(c_0_40,plain,
    ! [X117,X118] :
      ( ~ op_or
      | or(X117,X118) = not(and(not(X117),not(X118))) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_or])])])]) ).

cnf(c_0_41,plain,
    ( implies(X1,X2) = not(and(X1,not(X2)))
    | ~ op_implies_and ),
    inference(split_conjunct,[status(thm)],[c_0_38]) ).

cnf(c_0_42,plain,
    op_implies_and,
    inference(split_conjunct,[status(thm)],[hilbert_op_implies_and]) ).

cnf(c_0_43,plain,
    ( is_a_theorem(X2)
    | ~ modus_ponens
    | ~ is_a_theorem(X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_39]) ).

cnf(c_0_44,plain,
    modus_ponens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_ponens]) ).

cnf(c_0_45,plain,
    ( or(X1,X2) = not(and(not(X1),not(X2)))
    | ~ op_or ),
    inference(split_conjunct,[status(thm)],[c_0_40]) ).

cnf(c_0_46,plain,
    not(and(X1,not(X2))) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_41,c_0_42])]) ).

cnf(c_0_47,plain,
    op_or,
    inference(split_conjunct,[status(thm)],[hilbert_op_or]) ).

fof(c_0_48,plain,
    ! [X123,X124] :
      ( ~ op_implies_or
      | implies(X123,X124) = or(not(X123),X124) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_implies_or])])])]) ).

fof(c_0_49,plain,
    ! [X41,X42] :
      ( ( ~ and_3
        | is_a_theorem(implies(X41,implies(X42,and(X41,X42)))) )
      & ( ~ is_a_theorem(implies(esk18_0,implies(esk19_0,and(esk18_0,esk19_0))))
        | and_3 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_3])])])])]) ).

fof(c_0_50,plain,
    ! [X23,X24] :
      ( ( ~ implies_2
        | is_a_theorem(implies(implies(X23,implies(X23,X24)),implies(X23,X24))) )
      & ( ~ is_a_theorem(implies(implies(esk9_0,implies(esk9_0,esk10_0)),implies(esk9_0,esk10_0)))
        | implies_2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_2])])])])]) ).

cnf(c_0_51,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(X2) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_43,c_0_44])]) ).

cnf(c_0_52,plain,
    implies(not(X1),X2) = or(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_45,c_0_46]),c_0_47])]) ).

cnf(c_0_53,plain,
    ( implies(X1,X2) = or(not(X1),X2)
    | ~ op_implies_or ),
    inference(split_conjunct,[status(thm)],[c_0_48]) ).

cnf(c_0_54,plain,
    op_implies_or,
    inference(split_conjunct,[status(thm)],[principia_op_implies_or]) ).

cnf(c_0_55,plain,
    ( is_a_theorem(implies(X1,implies(X2,and(X1,X2))))
    | ~ and_3 ),
    inference(split_conjunct,[status(thm)],[c_0_49]) ).

cnf(c_0_56,plain,
    and_3,
    inference(split_conjunct,[status(thm)],[hilbert_and_3]) ).

cnf(c_0_57,plain,
    ( is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2)))
    | ~ implies_2 ),
    inference(split_conjunct,[status(thm)],[c_0_50]) ).

cnf(c_0_58,plain,
    implies_2,
    inference(split_conjunct,[status(thm)],[hilbert_implies_2]) ).

fof(c_0_59,plain,
    ! [X19,X20] :
      ( ( ~ implies_1
        | is_a_theorem(implies(X19,implies(X20,X19))) )
      & ( ~ is_a_theorem(implies(esk7_0,implies(esk8_0,esk7_0)))
        | implies_1 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_1])])])])]) ).

cnf(c_0_60,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X2,X1))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_52]) ).

cnf(c_0_61,plain,
    or(not(X1),X2) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_53,c_0_54])]) ).

fof(c_0_62,plain,
    ! [X33,X34] :
      ( ( ~ and_1
        | is_a_theorem(implies(and(X33,X34),X33)) )
      & ( ~ is_a_theorem(implies(and(esk14_0,esk15_0),esk14_0))
        | and_1 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_1])])])])]) ).

cnf(c_0_63,plain,
    is_a_theorem(implies(X1,implies(X2,and(X1,X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_55,c_0_56])]) ).

fof(c_0_64,plain,
    ! [X125,X126] :
      ( ~ op_equiv
      | equiv(X125,X126) = and(implies(X125,X126),implies(X126,X125)) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_equiv])])])]) ).

cnf(c_0_65,plain,
    is_a_theorem(implies(implies(X1,implies(X1,X2)),implies(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_57,c_0_58])]) ).

cnf(c_0_66,plain,
    ( is_a_theorem(implies(X1,implies(X2,X1)))
    | ~ implies_1 ),
    inference(split_conjunct,[status(thm)],[c_0_59]) ).

cnf(c_0_67,plain,
    implies_1,
    inference(split_conjunct,[status(thm)],[hilbert_implies_1]) ).

cnf(c_0_68,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(not(not(X2)))
    | ~ is_a_theorem(implies(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_60,c_0_61]) ).

cnf(c_0_69,plain,
    ( is_a_theorem(implies(and(X1,X2),X1))
    | ~ and_1 ),
    inference(split_conjunct,[status(thm)],[c_0_62]) ).

cnf(c_0_70,plain,
    and_1,
    inference(split_conjunct,[status(thm)],[hilbert_and_1]) ).

fof(c_0_71,plain,
    ! [X11,X12] :
      ( ( ~ substitution_of_equivalents
        | ~ is_a_theorem(equiv(X11,X12))
        | X11 = X12 )
      & ( is_a_theorem(equiv(esk3_0,esk4_0))
        | substitution_of_equivalents )
      & ( esk3_0 != esk4_0
        | substitution_of_equivalents ) ),
    inference(distribute,[status(thm)],[inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[substitution_of_equivalents])])])])])]) ).

cnf(c_0_72,plain,
    ( is_a_theorem(implies(X1,and(X2,X1)))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_51,c_0_63]) ).

cnf(c_0_73,plain,
    ( equiv(X1,X2) = and(implies(X1,X2),implies(X2,X1))
    | ~ op_equiv ),
    inference(split_conjunct,[status(thm)],[c_0_64]) ).

cnf(c_0_74,plain,
    op_equiv,
    inference(split_conjunct,[status(thm)],[hilbert_op_equiv]) ).

cnf(c_0_75,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_51,c_0_65]) ).

cnf(c_0_76,plain,
    is_a_theorem(implies(X1,implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_66,c_0_67])]) ).

cnf(c_0_77,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(and(X2,not(X3)),X1))
    | ~ is_a_theorem(not(implies(X2,X3))) ),
    inference(spm,[status(thm)],[c_0_68,c_0_46]) ).

cnf(c_0_78,plain,
    is_a_theorem(implies(and(X1,X2),X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_69,c_0_70])]) ).

cnf(c_0_79,plain,
    ( X1 = X2
    | ~ substitution_of_equivalents
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(split_conjunct,[status(thm)],[c_0_71]) ).

cnf(c_0_80,plain,
    substitution_of_equivalents,
    inference(split_conjunct,[status(thm)],[substitution_of_equivalents_0001]) ).

cnf(c_0_81,plain,
    ( is_a_theorem(and(X1,X2))
    | ~ is_a_theorem(X2)
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_51,c_0_72]) ).

cnf(c_0_82,plain,
    and(implies(X1,X2),implies(X2,X1)) = equiv(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_73,c_0_74])]) ).

cnf(c_0_83,plain,
    is_a_theorem(implies(X1,X1)),
    inference(spm,[status(thm)],[c_0_75,c_0_76]) ).

fof(c_0_84,plain,
    ! [X45,X46] :
      ( ( ~ or_1
        | is_a_theorem(implies(X45,or(X45,X46))) )
      & ( ~ is_a_theorem(implies(esk20_0,or(esk20_0,esk21_0)))
        | or_1 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_1])])])])]) ).

cnf(c_0_85,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(not(implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_77,c_0_78]) ).

fof(c_0_86,plain,
    ! [X119,X120] :
      ( ~ op_and
      | and(X119,X120) = not(or(not(X119),not(X120))) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[op_and])])])]) ).

fof(c_0_87,plain,
    ! [X15,X16] :
      ( ( ~ modus_tollens
        | is_a_theorem(implies(implies(not(X16),not(X15)),implies(X15,X16))) )
      & ( ~ is_a_theorem(implies(implies(not(esk6_0),not(esk5_0)),implies(esk5_0,esk6_0)))
        | modus_tollens ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[modus_tollens])])])])]) ).

cnf(c_0_88,plain,
    ( X1 = X2
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_79,c_0_80])]) ).

cnf(c_0_89,plain,
    ( is_a_theorem(equiv(X1,X2))
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_81,c_0_82]) ).

cnf(c_0_90,plain,
    is_a_theorem(or(X1,not(X1))),
    inference(spm,[status(thm)],[c_0_83,c_0_52]) ).

cnf(c_0_91,plain,
    ( is_a_theorem(implies(X1,or(X1,X2)))
    | ~ or_1 ),
    inference(split_conjunct,[status(thm)],[c_0_84]) ).

cnf(c_0_92,plain,
    or_1,
    inference(split_conjunct,[status(thm)],[hilbert_or_1]) ).

cnf(c_0_93,plain,
    ( is_a_theorem(not(X1))
    | ~ is_a_theorem(not(or(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_85,c_0_52]) ).

cnf(c_0_94,plain,
    ( and(X1,X2) = not(or(not(X1),not(X2)))
    | ~ op_and ),
    inference(split_conjunct,[status(thm)],[c_0_86]) ).

cnf(c_0_95,plain,
    op_and,
    inference(split_conjunct,[status(thm)],[principia_op_and]) ).

cnf(c_0_96,plain,
    ( is_a_theorem(implies(implies(not(X1),not(X2)),implies(X2,X1)))
    | ~ modus_tollens ),
    inference(split_conjunct,[status(thm)],[c_0_87]) ).

cnf(c_0_97,plain,
    modus_tollens,
    inference(split_conjunct,[status(thm)],[hilbert_modus_tollens]) ).

cnf(c_0_98,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X2,X1))
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_88,c_0_89]) ).

cnf(c_0_99,plain,
    is_a_theorem(implies(X1,not(not(X1)))),
    inference(spm,[status(thm)],[c_0_90,c_0_61]) ).

cnf(c_0_100,plain,
    is_a_theorem(implies(X1,or(X1,X2))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_91,c_0_92])]) ).

cnf(c_0_101,plain,
    ( is_a_theorem(not(not(X1)))
    | ~ is_a_theorem(not(implies(X1,X2))) ),
    inference(spm,[status(thm)],[c_0_93,c_0_61]) ).

cnf(c_0_102,plain,
    not(implies(X1,not(X2))) = and(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_94,c_0_61]),c_0_95])]) ).

cnf(c_0_103,plain,
    is_a_theorem(implies(or(X1,not(X2)),implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[c_0_96,c_0_52]),c_0_97])]) ).

cnf(c_0_104,plain,
    not(not(X1)) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_99]),c_0_52]),c_0_61]),c_0_83])]) ).

fof(c_0_105,plain,
    ! [X37,X38] :
      ( ( ~ and_2
        | is_a_theorem(implies(and(X37,X38),X38)) )
      & ( ~ is_a_theorem(implies(and(esk16_0,esk17_0),esk17_0))
        | and_2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[and_2])])])])]) ).

cnf(c_0_106,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_51,c_0_100]) ).

cnf(c_0_107,plain,
    ( is_a_theorem(not(not(X1)))
    | ~ is_a_theorem(and(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_101,c_0_102]) ).

cnf(c_0_108,plain,
    is_a_theorem(implies(X1,and(X1,X1))),
    inference(spm,[status(thm)],[c_0_75,c_0_63]) ).

cnf(c_0_109,plain,
    is_a_theorem(implies(or(X1,X2),or(X2,X1))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_103,c_0_52]),c_0_104]) ).

cnf(c_0_110,plain,
    ( is_a_theorem(implies(and(X1,X2),X2))
    | ~ and_2 ),
    inference(split_conjunct,[status(thm)],[c_0_105]) ).

cnf(c_0_111,plain,
    and_2,
    inference(split_conjunct,[status(thm)],[hilbert_and_2]) ).

cnf(c_0_112,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(not(X1)) ),
    inference(spm,[status(thm)],[c_0_106,c_0_61]) ).

cnf(c_0_113,plain,
    ( is_a_theorem(not(not(implies(X1,X2))))
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_107,c_0_82]) ).

cnf(c_0_114,plain,
    ( is_a_theorem(and(X1,X1))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_51,c_0_108]) ).

cnf(c_0_115,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(implies(X2,not(X3)),X1))
    | ~ is_a_theorem(not(and(X2,X3))) ),
    inference(spm,[status(thm)],[c_0_68,c_0_102]) ).

cnf(c_0_116,plain,
    or(X1,X2) = or(X2,X1),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_109]),c_0_109])]) ).

cnf(c_0_117,plain,
    not(or(X1,not(X2))) = and(not(X1),X2),
    inference(spm,[status(thm)],[c_0_102,c_0_52]) ).

cnf(c_0_118,plain,
    is_a_theorem(implies(and(X1,X2),X2)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_110,c_0_111])]) ).

fof(c_0_119,plain,
    ! [X27,X28,X29] :
      ( ( ~ implies_3
        | is_a_theorem(implies(implies(X27,X28),implies(implies(X28,X29),implies(X27,X29)))) )
      & ( ~ is_a_theorem(implies(implies(esk11_0,esk12_0),implies(implies(esk12_0,esk13_0),implies(esk11_0,esk13_0))))
        | implies_3 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[implies_3])])])])]) ).

fof(c_0_120,plain,
    ! [X63,X64] :
      ( ( ~ equivalence_2
        | is_a_theorem(implies(equiv(X63,X64),implies(X64,X63))) )
      & ( ~ is_a_theorem(implies(equiv(esk29_0,esk30_0),implies(esk30_0,esk29_0)))
        | equivalence_2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[equivalence_2])])])])]) ).

cnf(c_0_121,plain,
    ( is_a_theorem(or(implies(X1,X2),X3))
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_112,c_0_113]),c_0_52]) ).

cnf(c_0_122,plain,
    is_a_theorem(equiv(X1,X1)),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_114,c_0_82]),c_0_83])]) ).

cnf(c_0_123,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(or(X2,not(X3)),X1))
    | ~ is_a_theorem(not(and(not(X2),X3))) ),
    inference(spm,[status(thm)],[c_0_115,c_0_52]) ).

cnf(c_0_124,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(not(X2)) ),
    inference(spm,[status(thm)],[c_0_60,c_0_116]) ).

cnf(c_0_125,plain,
    is_a_theorem(or(X1,implies(X2,and(not(X1),X2)))),
    inference(spm,[status(thm)],[c_0_63,c_0_52]) ).

cnf(c_0_126,plain,
    not(implies(X1,and(not(X2),X3))) = and(X1,or(X2,not(X3))),
    inference(spm,[status(thm)],[c_0_102,c_0_117]) ).

cnf(c_0_127,plain,
    or(X1,not(X2)) = implies(X2,X1),
    inference(spm,[status(thm)],[c_0_61,c_0_116]) ).

cnf(c_0_128,plain,
    ( and(X1,X2) = X2
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_72]),c_0_118])]) ).

cnf(c_0_129,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3))))
    | ~ implies_3 ),
    inference(split_conjunct,[status(thm)],[c_0_119]) ).

cnf(c_0_130,plain,
    implies_3,
    inference(split_conjunct,[status(thm)],[hilbert_implies_3]) ).

cnf(c_0_131,plain,
    ( is_a_theorem(implies(equiv(X1,X2),implies(X2,X1)))
    | ~ equivalence_2 ),
    inference(split_conjunct,[status(thm)],[c_0_120]) ).

cnf(c_0_132,plain,
    equivalence_2,
    inference(split_conjunct,[status(thm)],[hilbert_equivalence_2]) ).

cnf(c_0_133,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(or(X2,not(X1))) ),
    inference(spm,[status(thm)],[c_0_51,c_0_103]) ).

cnf(c_0_134,plain,
    is_a_theorem(or(implies(X1,X1),X2)),
    inference(spm,[status(thm)],[c_0_121,c_0_122]) ).

cnf(c_0_135,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(not(and(not(X2),X1))) ),
    inference(spm,[status(thm)],[c_0_123,c_0_103]) ).

cnf(c_0_136,plain,
    or(and(X1,not(X2)),X3) = implies(implies(X1,X2),X3),
    inference(spm,[status(thm)],[c_0_52,c_0_46]) ).

cnf(c_0_137,plain,
    or(and(X1,X2),X3) = implies(implies(X1,not(X2)),X3),
    inference(spm,[status(thm)],[c_0_61,c_0_102]) ).

fof(c_0_138,plain,
    ! [X49,X50] :
      ( ( ~ or_2
        | is_a_theorem(implies(X50,or(X49,X50))) )
      & ( ~ is_a_theorem(implies(esk23_0,or(esk22_0,esk23_0)))
        | or_2 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_2])])])])]) ).

cnf(c_0_139,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(and(X2,implies(X2,X1))) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_124,c_0_125]),c_0_126]),c_0_127]) ).

cnf(c_0_140,plain,
    and(implies(and(X1,X2),X1),X3) = X3,
    inference(spm,[status(thm)],[c_0_128,c_0_78]) ).

cnf(c_0_141,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X2,X3),implies(X1,X3)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_129,c_0_130])]) ).

cnf(c_0_142,plain,
    and(not(X1),X2) = not(implies(X2,X1)),
    inference(rw,[status(thm)],[c_0_117,c_0_127]) ).

cnf(c_0_143,plain,
    ( is_a_theorem(implies(implies(X1,X2),equiv(X2,X1)))
    | ~ is_a_theorem(implies(X2,X1)) ),
    inference(spm,[status(thm)],[c_0_72,c_0_82]) ).

cnf(c_0_144,plain,
    is_a_theorem(implies(equiv(X1,X2),implies(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_131,c_0_132])]) ).

cnf(c_0_145,plain,
    is_a_theorem(implies(X1,implies(X2,X2))),
    inference(spm,[status(thm)],[c_0_133,c_0_134]) ).

cnf(c_0_146,plain,
    and(implies(X1,X1),X2) = X2,
    inference(spm,[status(thm)],[c_0_128,c_0_83]) ).

cnf(c_0_147,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X2,X1)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_135,c_0_46]),c_0_52]),c_0_52]) ).

cnf(c_0_148,plain,
    ( is_a_theorem(or(X1,and(X2,not(X1))))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_72,c_0_52]) ).

cnf(c_0_149,plain,
    implies(implies(X1,not(not(X2))),X3) = implies(implies(X1,X2),X3),
    inference(rw,[status(thm)],[c_0_136,c_0_137]) ).

cnf(c_0_150,plain,
    ( is_a_theorem(implies(X1,or(X2,X1)))
    | ~ or_2 ),
    inference(split_conjunct,[status(thm)],[c_0_138]) ).

cnf(c_0_151,plain,
    or_2,
    inference(split_conjunct,[status(thm)],[hilbert_or_2]) ).

cnf(c_0_152,plain,
    ( is_a_theorem(X1)
    | ~ is_a_theorem(implies(implies(and(X2,X3),X2),X1)) ),
    inference(spm,[status(thm)],[c_0_139,c_0_140]) ).

cnf(c_0_153,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(X3,X2)))
    | ~ is_a_theorem(implies(X3,X1)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_141]) ).

cnf(c_0_154,plain,
    and(X1,X2) = and(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_142,c_0_104]),c_0_102]) ).

cnf(c_0_155,plain,
    ( equiv(X1,X2) = implies(X2,X1)
    | ~ is_a_theorem(implies(X1,X2)) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_143]),c_0_144])]) ).

cnf(c_0_156,plain,
    is_a_theorem(implies(X1,or(X2,not(X2)))),
    inference(spm,[status(thm)],[c_0_145,c_0_52]) ).

cnf(c_0_157,plain,
    implies(implies(X1,X1),X2) = X2,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_46,c_0_146]),c_0_104]) ).

cnf(c_0_158,plain,
    ( is_a_theorem(implies(implies(X1,X2),X2))
    | ~ is_a_theorem(X1) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_147,c_0_148]),c_0_137]),c_0_149]) ).

cnf(c_0_159,plain,
    is_a_theorem(implies(X1,or(X2,X1))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_150,c_0_151])]) ).

fof(c_0_160,plain,
    ! [X53,X54,X55] :
      ( ( ~ or_3
        | is_a_theorem(implies(implies(X53,X55),implies(implies(X54,X55),implies(or(X53,X54),X55)))) )
      & ( ~ is_a_theorem(implies(implies(esk24_0,esk26_0),implies(implies(esk25_0,esk26_0),implies(or(esk24_0,esk25_0),esk26_0))))
        | or_3 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[or_3])])])])]) ).

cnf(c_0_161,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(X1,and(X2,X3))) ),
    inference(spm,[status(thm)],[c_0_152,c_0_153]) ).

cnf(c_0_162,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X2) ),
    inference(spm,[status(thm)],[c_0_51,c_0_76]) ).

cnf(c_0_163,plain,
    equiv(X1,X2) = equiv(X2,X1),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_82,c_0_154]),c_0_82]) ).

cnf(c_0_164,plain,
    equiv(X1,implies(X2,X2)) = X1,
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_155,c_0_156]),c_0_127]),c_0_127]),c_0_157]) ).

cnf(c_0_165,plain,
    ( implies(X1,X2) = X2
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_158]),c_0_76])]) ).

cnf(c_0_166,plain,
    is_a_theorem(or(X1,or(X2,not(X1)))),
    inference(spm,[status(thm)],[c_0_159,c_0_52]) ).

fof(c_0_167,negated_conjecture,
    ~ r4,
    inference(fof_simplification,[status(thm)],[inference(assume_negation,[status(cth)],[principia_r4])]) ).

cnf(c_0_168,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(or(X1,X3),X2))))
    | ~ or_3 ),
    inference(split_conjunct,[status(thm)],[c_0_160]) ).

cnf(c_0_169,plain,
    or_3,
    inference(split_conjunct,[status(thm)],[hilbert_or_3]) ).

cnf(c_0_170,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(or(X1,and(X2,X3))) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_161,c_0_52]),c_0_52]) ).

cnf(c_0_171,plain,
    and(X1,not(X2)) = not(implies(X1,X2)),
    inference(spm,[status(thm)],[c_0_102,c_0_104]) ).

cnf(c_0_172,plain,
    ( X1 = X2
    | ~ is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_98,c_0_162]) ).

cnf(c_0_173,plain,
    equiv(implies(X1,X1),X2) = X2,
    inference(spm,[status(thm)],[c_0_163,c_0_164]) ).

cnf(c_0_174,plain,
    implies(or(X1,implies(X1,X2)),X3) = X3,
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_165,c_0_166]),c_0_127]) ).

fof(c_0_175,plain,
    ! [X105,X106,X107] :
      ( ( ~ r4
        | is_a_theorem(implies(or(X105,or(X106,X107)),or(X106,or(X105,X107)))) )
      & ( ~ is_a_theorem(implies(or(esk50_0,or(esk51_0,esk52_0)),or(esk51_0,or(esk50_0,esk52_0))))
        | r4 ) ),
    inference(fof_nnf,[status(thm)],[inference(shift_quantors,[status(thm)],[inference(skolemize,[status(esa)],[inference(variable_rename,[status(thm)],[inference(fof_nnf,[status(thm)],[r4])])])])]) ).

fof(c_0_176,negated_conjecture,
    ~ r4,
    inference(fof_nnf,[status(thm)],[c_0_167]) ).

cnf(c_0_177,plain,
    is_a_theorem(implies(implies(X1,X2),implies(implies(X3,X2),implies(or(X1,X3),X2)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[c_0_168,c_0_169])]) ).

cnf(c_0_178,plain,
    ( is_a_theorem(or(X1,X2))
    | ~ is_a_theorem(implies(implies(X2,X3),X1)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_170,c_0_171]),c_0_127]) ).

cnf(c_0_179,plain,
    ( equiv(X1,X2) = implies(X2,X1)
    | ~ is_a_theorem(equiv(X1,X2)) ),
    inference(spm,[status(thm)],[c_0_172,c_0_144]) ).

cnf(c_0_180,plain,
    equiv(or(X1,implies(X1,X2)),X3) = X3,
    inference(spm,[status(thm)],[c_0_173,c_0_174]) ).

cnf(c_0_181,plain,
    ( X1 = implies(X2,X2)
    | ~ is_a_theorem(X1) ),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_157]),c_0_145])]) ).

cnf(c_0_182,plain,
    and(X1,X1) = X1,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_108]),c_0_78])]) ).

cnf(c_0_183,plain,
    ( r4
    | ~ is_a_theorem(implies(or(esk50_0,or(esk51_0,esk52_0)),or(esk51_0,or(esk50_0,esk52_0)))) ),
    inference(split_conjunct,[status(thm)],[c_0_175]) ).

cnf(c_0_184,negated_conjecture,
    ~ r4,
    inference(split_conjunct,[status(thm)],[c_0_176]) ).

cnf(c_0_185,plain,
    ( is_a_theorem(implies(implies(X1,X2),implies(or(X3,X1),X2)))
    | ~ is_a_theorem(implies(X3,X2)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_177]) ).

cnf(c_0_186,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(or(X1,X3),X2)) ),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_178,c_0_52]),c_0_127]) ).

cnf(c_0_187,plain,
    is_a_theorem(implies(X1,or(X2,not(not(X1))))),
    inference(spm,[status(thm)],[c_0_166,c_0_61]) ).

cnf(c_0_188,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(implies(X3,X1),X2)) ),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_170,c_0_142]),c_0_127]),c_0_127]) ).

cnf(c_0_189,plain,
    ( implies(X1,or(X2,implies(X2,X3))) = X1
    | ~ is_a_theorem(X1) ),
    inference(spm,[status(thm)],[c_0_179,c_0_180]) ).

cnf(c_0_190,plain,
    implies(X1,implies(X1,X2)) = implies(X1,X2),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_98,c_0_65]),c_0_76])]) ).

cnf(c_0_191,plain,
    implies(X1,X1) = implies(X2,X2),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_181,c_0_108]),c_0_182]) ).

cnf(c_0_192,plain,
    ~ is_a_theorem(implies(or(esk50_0,or(esk51_0,esk52_0)),or(esk51_0,or(esk50_0,esk52_0)))),
    inference(sr,[status(thm)],[c_0_183,c_0_184]) ).

cnf(c_0_193,plain,
    ( is_a_theorem(implies(or(X1,X2),X3))
    | ~ is_a_theorem(implies(X2,X3))
    | ~ is_a_theorem(implies(X1,X3)) ),
    inference(spm,[status(thm)],[c_0_51,c_0_185]) ).

cnf(c_0_194,plain,
    is_a_theorem(implies(X1,or(X2,or(X1,X3)))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_186,c_0_187]),c_0_104]) ).

cnf(c_0_195,plain,
    ( is_a_theorem(implies(X1,X2))
    | ~ is_a_theorem(implies(or(X3,X1),X2)) ),
    inference(spm,[status(thm)],[c_0_188,c_0_52]) ).

cnf(c_0_196,plain,
    or(X1,implies(X1,X2)) = implies(esk1_0,esk1_0),
    inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_189,c_0_65]),c_0_190]),c_0_191]),c_0_157]),c_0_190]),c_0_191]) ).

cnf(c_0_197,plain,
    ~ is_a_theorem(implies(or(esk51_0,esk52_0),or(esk51_0,or(esk50_0,esk52_0)))),
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_192,c_0_193]),c_0_194])]) ).

cnf(c_0_198,plain,
    is_a_theorem(implies(X1,or(X2,or(X3,X1)))),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_195,c_0_187]),c_0_104]) ).

cnf(c_0_199,plain,
    implies(X1,or(X1,X2)) = implies(esk1_0,esk1_0),
    inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_61,c_0_196]),c_0_52]) ).

cnf(c_0_200,plain,
    $false,
    inference(cn,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(rw,[status(thm)],[inference(spm,[status(thm)],[c_0_197,c_0_193]),c_0_198]),c_0_199]),c_0_83])]),
    [proof] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.12  % Problem    : LCL457+1 : TPTP v8.1.2. Released v3.3.0.
% 0.07/0.14  % Command    : run_E %s %d THM
% 0.13/0.35  % Computer : n007.cluster.edu
% 0.13/0.35  % Model    : x86_64 x86_64
% 0.13/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.35  % Memory   : 8042.1875MB
% 0.13/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.35  % CPULimit   : 300
% 0.13/0.35  % WCLimit    : 300
% 0.13/0.35  % DateTime   : Fri May  3 08:51:20 EDT 2024
% 0.13/0.35  % CPUTime    : 
% 0.19/0.48  Running first-order theorem proving
% 0.19/0.48  Running: /export/starexec/sandbox2/solver/bin/eprover --delete-bad-limit=2000000000 --definitional-cnf=24 -s --print-statistics -R --print-version --proof-object --auto-schedule=8 --cpu-limit=300 /export/starexec/sandbox2/tmp/tmp.yjvhPK1nwG/E---3.1_16008.p
% 15.85/2.50  # Version: 3.1.0
% 15.85/2.50  # Preprocessing class: FSMSSLSSSSSNFFN.
% 15.85/2.50  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 15.85/2.50  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 1500s (5) cores
% 15.85/2.50  # Starting new_bool_3 with 300s (1) cores
% 15.85/2.50  # Starting new_bool_1 with 300s (1) cores
% 15.85/2.50  # Starting sh5l with 300s (1) cores
% 15.85/2.50  # G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with pid 16121 completed with status 0
% 15.85/2.50  # Result found by G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 15.85/2.50  # Preprocessing class: FSMSSLSSSSSNFFN.
% 15.85/2.50  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 15.85/2.50  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 1500s (5) cores
% 15.85/2.50  # No SInE strategy applied
% 15.85/2.50  # Search class: FGUSF-FFMM21-MFFFFFNN
% 15.85/2.50  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 15.85/2.50  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 750s (1) cores
% 15.85/2.50  # Starting G-E--_107_B42_F1_PI_SE_Q4_CS_SP_PS_S0YI with 151s (1) cores
% 15.85/2.50  # Starting H----_047_C09_12_F1_AE_ND_CS_SP_S5PRR_S2S with 151s (1) cores
% 15.85/2.50  # Starting U----_207d_00_B07_00_F1_SE_PI_CS_SP_PS_S5PRR_RG_S04AN with 151s (1) cores
% 15.85/2.50  # Starting G-E--_208_C09_12_F1_SE_CS_SP_PS_S5PRR_S04AN with 151s (1) cores
% 15.85/2.50  # G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with pid 16134 completed with status 0
% 15.85/2.50  # Result found by G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI
% 15.85/2.50  # Preprocessing class: FSMSSLSSSSSNFFN.
% 15.85/2.50  # Scheduled 4 strats onto 8 cores with 300 seconds (2400 total)
% 15.85/2.50  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 1500s (5) cores
% 15.85/2.50  # No SInE strategy applied
% 15.85/2.50  # Search class: FGUSF-FFMM21-MFFFFFNN
% 15.85/2.50  # Scheduled 6 strats onto 5 cores with 1500 seconds (1500 total)
% 15.85/2.50  # Starting G-E--_208_C18_F1_SE_CS_SP_PS_S5PRR_RG_S04AI with 750s (1) cores
% 15.85/2.50  # Preprocessing time       : 0.003 s
% 15.85/2.50  # Presaturation interreduction done
% 15.85/2.50  
% 15.85/2.50  # Proof found!
% 15.85/2.50  # SZS status Theorem
% 15.85/2.50  # SZS output start CNFRefutation
% See solution above
% 15.85/2.50  # Parsed axioms                        : 53
% 15.85/2.50  # Removed by relevancy pruning/SinE    : 0
% 15.85/2.50  # Initial clauses                      : 82
% 15.85/2.50  # Removed in clause preprocessing      : 0
% 15.85/2.50  # Initial clauses in saturation        : 82
% 15.85/2.50  # Processed clauses                    : 25539
% 15.85/2.50  # ...of these trivial                  : 703
% 15.85/2.50  # ...subsumed                          : 22446
% 15.85/2.50  # ...remaining for further processing  : 2390
% 15.85/2.50  # Other redundant clauses eliminated   : 0
% 15.85/2.50  # Clauses deleted for lack of memory   : 0
% 15.85/2.50  # Backward-subsumed                    : 105
% 15.85/2.50  # Backward-rewritten                   : 576
% 15.85/2.50  # Generated clauses                    : 238358
% 15.85/2.50  # ...of the previous two non-redundant : 213813
% 15.85/2.50  # ...aggressively subsumed             : 0
% 15.85/2.50  # Contextual simplify-reflections      : 2
% 15.85/2.50  # Paramodulations                      : 238358
% 15.85/2.50  # Factorizations                       : 0
% 15.85/2.50  # NegExts                              : 0
% 15.85/2.50  # Equation resolutions                 : 0
% 15.85/2.50  # Disequality decompositions           : 0
% 15.85/2.50  # Total rewrite steps                  : 256452
% 15.85/2.50  # ...of those cached                   : 241200
% 15.85/2.50  # Propositional unsat checks           : 0
% 15.85/2.50  #    Propositional check models        : 0
% 15.85/2.50  #    Propositional check unsatisfiable : 0
% 15.85/2.50  #    Propositional clauses             : 0
% 15.85/2.50  #    Propositional clauses after purity: 0
% 15.85/2.50  #    Propositional unsat core size     : 0
% 15.85/2.50  #    Propositional preprocessing time  : 0.000
% 15.85/2.50  #    Propositional encoding time       : 0.000
% 15.85/2.50  #    Propositional solver time         : 0.000
% 15.85/2.50  #    Success case prop preproc time    : 0.000
% 15.85/2.50  #    Success case prop encoding time   : 0.000
% 15.85/2.50  #    Success case prop solver time     : 0.000
% 15.85/2.50  # Current number of processed clauses  : 1650
% 15.85/2.50  #    Positive orientable unit clauses  : 165
% 15.85/2.50  #    Positive unorientable unit clauses: 25
% 15.85/2.50  #    Negative unit clauses             : 8
% 15.85/2.50  #    Non-unit-clauses                  : 1452
% 15.85/2.50  # Current number of unprocessed clauses: 180964
% 15.85/2.50  # ...number of literals in the above   : 380717
% 15.85/2.50  # Current number of archived formulas  : 0
% 15.85/2.50  # Current number of archived clauses   : 740
% 15.85/2.50  # Clause-clause subsumption calls (NU) : 367363
% 15.85/2.50  # Rec. Clause-clause subsumption calls : 340166
% 15.85/2.50  # Non-unit clause-clause subsumptions  : 18968
% 15.85/2.50  # Unit Clause-clause subsumption calls : 6499
% 15.85/2.50  # Rewrite failures with RHS unbound    : 0
% 15.85/2.50  # BW rewrite match attempts            : 7256
% 15.85/2.50  # BW rewrite match successes           : 667
% 15.85/2.50  # Condensation attempts                : 0
% 15.85/2.50  # Condensation successes               : 0
% 15.85/2.50  # Termbank termtop insertions          : 3396051
% 15.85/2.50  # Search garbage collected termcells   : 1095
% 15.85/2.50  
% 15.85/2.50  # -------------------------------------------------
% 15.85/2.50  # User time                : 1.888 s
% 15.85/2.50  # System time              : 0.075 s
% 15.85/2.50  # Total time               : 1.963 s
% 15.85/2.50  # Maximum resident set size: 1996 pages
% 15.85/2.50  
% 15.85/2.50  # -------------------------------------------------
% 15.85/2.50  # User time                : 9.404 s
% 15.85/2.50  # System time              : 0.457 s
% 15.85/2.50  # Total time               : 9.861 s
% 15.85/2.50  # Maximum resident set size: 1736 pages
% 15.85/2.50  % E---3.1 exiting
% 15.85/2.50  % E exiting
%------------------------------------------------------------------------------