TSTP Solution File: LCL158-1 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : LCL158-1 : TPTP v8.1.0. Released v1.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n006.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:03:43 EDT 2022

% Result   : Unsatisfiable 1.89s 2.10s
% Output   : Refutation 1.89s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   11
%            Number of leaves      :   13
% Syntax   : Number of clauses     :   48 (  48 unt;   0 nHn;   9 RR)
%            Number of literals    :   48 (  47 equ;   5 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :    9 (   9 usr;   3 con; 0-2 aty)
%            Number of variables   :   58 (   7 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    and_star(xor(truth,x),x) != falsehood,
    file('LCL158-1.p',unknown),
    [] ).

cnf(2,axiom,
    A = A,
    file('LCL158-1.p',unknown),
    [] ).

cnf(4,axiom,
    implies(truth,A) = A,
    file('LCL158-1.p',unknown),
    [] ).

cnf(5,axiom,
    implies(implies(A,B),implies(implies(B,C),implies(A,C))) = truth,
    file('LCL158-1.p',unknown),
    [] ).

cnf(7,axiom,
    implies(implies(A,B),B) = implies(implies(B,A),A),
    file('LCL158-1.p',unknown),
    [] ).

cnf(8,axiom,
    implies(implies(not(A),not(B)),implies(B,A)) = truth,
    file('LCL158-1.p',unknown),
    [] ).

cnf(10,axiom,
    or(A,B) = implies(not(A),B),
    file('LCL158-1.p',unknown),
    [] ).

cnf(13,axiom,
    or(A,B) = or(B,A),
    file('LCL158-1.p',unknown),
    [] ).

cnf(14,axiom,
    and(A,B) = not(or(not(A),not(B))),
    file('LCL158-1.p',unknown),
    [] ).

cnf(16,plain,
    not(or(not(A),not(B))) = and(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[14])]),
    [iquote('copy,14,flip.1')] ).

cnf(18,axiom,
    and(and(A,B),C) = and(A,and(B,C)),
    file('LCL158-1.p',unknown),
    [] ).

cnf(20,axiom,
    xor(A,B) = or(and(A,not(B)),and(not(A),B)),
    file('LCL158-1.p',unknown),
    [] ).

cnf(22,axiom,
    and_star(A,B) = not(or(not(A),not(B))),
    file('LCL158-1.p',unknown),
    [] ).

cnf(24,plain,
    and_star(A,B) = and(A,B),
    inference(demod,[status(thm),theory(equality)],[inference(copy,[status(thm)],[22]),16]),
    [iquote('copy,22,demod,16')] ).

cnf(26,axiom,
    not(truth) = falsehood,
    file('LCL158-1.p',unknown),
    [] ).

cnf(27,plain,
    implies(not(A),B) = or(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(29,plain,
    and(xor(truth,x),x) != falsehood,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),24]),
    [iquote('back_demod,1,demod,24')] ).

cnf(32,plain,
    implies(A,implies(implies(A,B),B)) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[5,4]),4]),
    [iquote('para_into,5.1.1.1,3.1.1,demod,4')] ).

cnf(36,plain,
    implies(implies(A,truth),implies(B,implies(A,B))) = truth,
    inference(para_into,[status(thm),theory(equality)],[5,4]),
    [iquote('para_into,5.1.1.2.1,3.1.1')] ).

cnf(50,plain,
    implies(implies(A,truth),truth) = implies(A,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[7,4])]),
    [iquote('para_into,7.1.1.1,3.1.1,flip.1')] ).

cnf(59,plain,
    or(A,B) = implies(not(B),A),
    inference(para_into,[status(thm),theory(equality)],[10,13]),
    [iquote('para_into,10.1.1,13.1.1')] ).

cnf(60,plain,
    implies(not(A),B) = or(B,A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[59])]),
    [iquote('copy,59,flip.1')] ).

cnf(61,plain,
    or(truth,A) = implies(falsehood,A),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[27,26])]),
    [iquote('para_into,27.1.1.1,25.1.1,flip.1')] ).

cnf(73,plain,
    implies(implies(not(A),falsehood),A) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[8,26]),4]),
    [iquote('para_into,8.1.1.1.2,25.1.1,demod,4')] ).

cnf(95,plain,
    or(A,truth) = implies(falsehood,A),
    inference(para_into,[status(thm),theory(equality)],[61,13]),
    [iquote('para_into,61.1.1,13.1.1')] ).

cnf(97,plain,
    implies(not(A),truth) = implies(falsehood,A),
    inference(para_into,[status(thm),theory(equality)],[95,10]),
    [iquote('para_into,95.1.1,10.1.1')] ).

cnf(127,plain,
    implies(implies(falsehood,falsehood),truth) = truth,
    inference(para_into,[status(thm),theory(equality)],[73,26]),
    [iquote('para_into,73.1.1.1.1,25.1.1')] ).

cnf(129,plain,
    implies(or(falsehood,A),A) = truth,
    inference(para_into,[status(thm),theory(equality)],[73,60]),
    [iquote('para_into,73.1.1.1,60.1.1')] ).

cnf(147,plain,
    implies(implies(implies(falsehood,falsehood),A),implies(A,A)) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[127,5]),50]),
    [iquote('para_from,127.1.1,5.1.1.2.2,demod,50')] ).

cnf(155,plain,
    implies(implies(not(falsehood),A),A) = truth,
    inference(para_into,[status(thm),theory(equality)],[129,10]),
    [iquote('para_into,129.1.1.1,10.1.1')] ).

cnf(219,plain,
    implies(implies(A,implies(not(falsehood),A)),implies(not(falsehood),A)) = A,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[155,7]),4])]),
    [iquote('para_from,155.1.1,7.1.1.1,demod,4,flip.1')] ).

cnf(232,plain,
    implies(A,A) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[32,4]),4]),
    [iquote('para_into,32.1.1.2.1,3.1.1,demod,4')] ).

cnf(242,plain,
    implies(A,truth) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[147]),232,4,232]),
    [iquote('back_demod,147,demod,232,4,232')] ).

cnf(248,plain,
    implies(falsehood,A) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[97]),242])]),
    [iquote('back_demod,97,demod,242,flip.1')] ).

cnf(250,plain,
    implies(A,implies(B,A)) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[36]),242,4]),
    [iquote('back_demod,36,demod,242,4')] ).

cnf(252,plain,
    or(A,truth) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[95]),248]),
    [iquote('back_demod,95,demod,248')] ).

cnf(254,plain,
    or(truth,A) = truth,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[61]),248]),
    [iquote('back_demod,61,demod,248')] ).

cnf(255,plain,
    implies(not(falsehood),A) = A,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[219]),250,4]),
    [iquote('back_demod,219,demod,250,4')] ).

cnf(263,plain,
    or(not(A),A) = truth,
    inference(para_into,[status(thm),theory(equality)],[232,60]),
    [iquote('para_into,231.1.1,60.1.1')] ).

cnf(279,plain,
    and(or(and(truth,not(x)),and(falsehood,x)),x) != falsehood,
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[20,29]),26]),
    [iquote('para_from,20.1.1,29.1.1.1,demod,26')] ).

cnf(280,plain,
    not(falsehood) = truth,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[255,232])]),
    [iquote('para_into,255.1.1,231.1.1,flip.1')] ).

cnf(283,plain,
    or(A,falsehood) = A,
    inference(para_into,[status(thm),theory(equality)],[255,60]),
    [iquote('para_into,255.1.1,60.1.1')] ).

cnf(295,plain,
    and(A,falsehood) = falsehood,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[280,16]),252,26])]),
    [iquote('para_from,280.1.1,15.1.1.1.2,demod,252,26,flip.1')] ).

cnf(297,plain,
    and(falsehood,A) = falsehood,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[280,16]),254,26])]),
    [iquote('para_from,280.1.1,15.1.1.1.1,demod,254,26,flip.1')] ).

cnf(302,plain,
    and(truth,and(not(x),x)) != falsehood,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[279]),297,283,18]),
    [iquote('back_demod,279,demod,297,283,18')] ).

cnf(335,plain,
    and(not(A),A) = falsehood,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[263,16]),26])]),
    [iquote('para_from,263.1.1,15.1.1.1,demod,26,flip.1')] ).

cnf(338,plain,
    falsehood != falsehood,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[302]),335,295]),
    [iquote('back_demod,302,demod,335,295')] ).

cnf(339,plain,
    $false,
    inference(binary,[status(thm)],[338,2]),
    [iquote('binary,338.1,2.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.11  % Problem  : LCL158-1 : TPTP v8.1.0. Released v1.0.0.
% 0.03/0.12  % Command  : otter-tptp-script %s
% 0.12/0.33  % Computer : n006.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Wed Jul 27 09:14:01 EDT 2022
% 0.12/0.33  % CPUTime  : 
% 1.89/2.09  ----- Otter 3.3f, August 2004 -----
% 1.89/2.09  The process was started by sandbox on n006.cluster.edu,
% 1.89/2.09  Wed Jul 27 09:14:02 2022
% 1.89/2.09  The command was "./otter".  The process ID is 30015.
% 1.89/2.09  
% 1.89/2.09  set(prolog_style_variables).
% 1.89/2.09  set(auto).
% 1.89/2.09     dependent: set(auto1).
% 1.89/2.09     dependent: set(process_input).
% 1.89/2.09     dependent: clear(print_kept).
% 1.89/2.09     dependent: clear(print_new_demod).
% 1.89/2.09     dependent: clear(print_back_demod).
% 1.89/2.09     dependent: clear(print_back_sub).
% 1.89/2.09     dependent: set(control_memory).
% 1.89/2.09     dependent: assign(max_mem, 12000).
% 1.89/2.09     dependent: assign(pick_given_ratio, 4).
% 1.89/2.09     dependent: assign(stats_level, 1).
% 1.89/2.09     dependent: assign(max_seconds, 10800).
% 1.89/2.09  clear(print_given).
% 1.89/2.09  
% 1.89/2.09  list(usable).
% 1.89/2.09  0 [] A=A.
% 1.89/2.09  0 [] implies(truth,X)=X.
% 1.89/2.09  0 [] implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))=truth.
% 1.89/2.09  0 [] implies(implies(X,Y),Y)=implies(implies(Y,X),X).
% 1.89/2.09  0 [] implies(implies(not(X),not(Y)),implies(Y,X))=truth.
% 1.89/2.09  0 [] or(X,Y)=implies(not(X),Y).
% 1.89/2.09  0 [] or(or(X,Y),Z)=or(X,or(Y,Z)).
% 1.89/2.09  0 [] or(X,Y)=or(Y,X).
% 1.89/2.09  0 [] and(X,Y)=not(or(not(X),not(Y))).
% 1.89/2.09  0 [] and(and(X,Y),Z)=and(X,and(Y,Z)).
% 1.89/2.09  0 [] and(X,Y)=and(Y,X).
% 1.89/2.09  0 [] xor(X,Y)=or(and(X,not(Y)),and(not(X),Y)).
% 1.89/2.09  0 [] xor(X,Y)=xor(Y,X).
% 1.89/2.09  0 [] and_star(X,Y)=not(or(not(X),not(Y))).
% 1.89/2.09  0 [] and_star(and_star(X,Y),Z)=and_star(X,and_star(Y,Z)).
% 1.89/2.09  0 [] and_star(X,Y)=and_star(Y,X).
% 1.89/2.09  0 [] not(truth)=falsehood.
% 1.89/2.09  0 [] and_star(xor(truth,x),x)!=falsehood.
% 1.89/2.09  end_of_list.
% 1.89/2.09  
% 1.89/2.09  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.89/2.09  
% 1.89/2.09  All clauses are units, and equality is present; the
% 1.89/2.09  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.89/2.09  
% 1.89/2.09     dependent: set(knuth_bendix).
% 1.89/2.09     dependent: set(anl_eq).
% 1.89/2.09     dependent: set(para_from).
% 1.89/2.09     dependent: set(para_into).
% 1.89/2.09     dependent: clear(para_from_right).
% 1.89/2.09     dependent: clear(para_into_right).
% 1.89/2.09     dependent: set(para_from_vars).
% 1.89/2.09     dependent: set(eq_units_both_ways).
% 1.89/2.09     dependent: set(dynamic_demod_all).
% 1.89/2.09     dependent: set(dynamic_demod).
% 1.89/2.09     dependent: set(order_eq).
% 1.89/2.09     dependent: set(back_demod).
% 1.89/2.09     dependent: set(lrpo).
% 1.89/2.09  
% 1.89/2.09  ------------> process usable:
% 1.89/2.09  ** KEPT (pick-wt=7): 1 [] and_star(xor(truth,x),x)!=falsehood.
% 1.89/2.09  
% 1.89/2.09  ------------> process sos:
% 1.89/2.09  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.89/2.09  ** KEPT (pick-wt=5): 3 [] implies(truth,A)=A.
% 1.89/2.09  ---> New Demodulator: 4 [new_demod,3] implies(truth,A)=A.
% 1.89/2.09  ** KEPT (pick-wt=13): 5 [] implies(implies(A,B),implies(implies(B,C),implies(A,C)))=truth.
% 1.89/2.09  ---> New Demodulator: 6 [new_demod,5] implies(implies(A,B),implies(implies(B,C),implies(A,C)))=truth.
% 1.89/2.09  ** KEPT (pick-wt=11): 7 [] implies(implies(A,B),B)=implies(implies(B,A),A).
% 1.89/2.09  ** KEPT (pick-wt=11): 8 [] implies(implies(not(A),not(B)),implies(B,A))=truth.
% 1.89/2.09  ---> New Demodulator: 9 [new_demod,8] implies(implies(not(A),not(B)),implies(B,A))=truth.
% 1.89/2.09  ** KEPT (pick-wt=8): 10 [] or(A,B)=implies(not(A),B).
% 1.89/2.09  ** KEPT (pick-wt=11): 11 [] or(or(A,B),C)=or(A,or(B,C)).
% 1.89/2.09  ---> New Demodulator: 12 [new_demod,11] or(or(A,B),C)=or(A,or(B,C)).
% 1.89/2.09  ** KEPT (pick-wt=7): 13 [] or(A,B)=or(B,A).
% 1.89/2.09  ** KEPT (pick-wt=10): 15 [copy,14,flip.1] not(or(not(A),not(B)))=and(A,B).
% 1.89/2.09  ---> New Demodulator: 16 [new_demod,15] not(or(not(A),not(B)))=and(A,B).
% 1.89/2.09  ** KEPT (pick-wt=11): 17 [] and(and(A,B),C)=and(A,and(B,C)).
% 1.89/2.09  ---> New Demodulator: 18 [new_demod,17] and(and(A,B),C)=and(A,and(B,C)).
% 1.89/2.09  ** KEPT (pick-wt=7): 19 [] and(A,B)=and(B,A).
% 1.89/2.09  ** KEPT (pick-wt=13): 20 [] xor(A,B)=or(and(A,not(B)),and(not(A),B)).
% 1.89/2.09  ** KEPT (pick-wt=7): 21 [] xor(A,B)=xor(B,A).
% 1.89/2.09  ** KEPT (pick-wt=7): 23 [copy,22,demod,16] and_star(A,B)=and(A,B).
% 1.89/2.09  ---> New Demodulator: 24 [new_demod,23] and_star(A,B)=and(A,B).
% 1.89/2.09    Following clause subsumed by 2 during input processing: 0 [demod,24,24,18,24,24] and(A,and(B,C))=and(A,and(B,C)).
% 1.89/2.09    Following clause subsumed by 19 during input processing: 0 [demod,24,24] and(A,B)=and(B,A).
% 1.89/2.09  ** KEPT (pick-wt=4): 25 [] not(truth)=falsehood.
% 1.89/2.09  ---> New Demodulator: 26 [new_demod,25] not(truth)=falsehood.
% 1.89/2.09    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.89/2.09  >>>> Starting back demodulation with 4.
% 1.89/2.09  >>>> Starting back demodulation with 6.
% 1.89/2.09    Following clause subsumed by 7 during input processing: 0 [copy,7,flip.1] implies(implies(A,B),B)=implies(implies(B,A),A).
% 1.89/2.09  >>>> Starting back demodulation with 9.
% 1.89/2.09  ** KEPT (pick-wt=8): 27 [copy,10,flip.1] implies(not(A),B)=or(A,B).
% 1.89/2.10  >>>> Starting back demodulation with 12.
% 1.89/2.10    Following clause subsumed by 13 during input processing: 0 [copy,13,flip.1] or(A,B)=or(B,A).
% 1.89/2.10  >>>> Starting back demodulation with 16.
% 1.89/2.10  >>>> Starting back demodulation with 18.
% 1.89/2.10    Following clause subsumed by 19 during input processing: 0 [copy,19,flip.1] and(A,B)=and(B,A).
% 1.89/2.10  ** KEPT (pick-wt=13): 28 [copy,20,flip.1] or(and(A,not(B)),and(not(A),B))=xor(A,B).
% 1.89/2.10    Following clause subsumed by 21 during input processing: 0 [copy,21,flip.1] xor(A,B)=xor(B,A).
% 1.89/2.10  >>>> Starting back demodulation with 24.
% 1.89/2.10      >> back demodulating 1 with 24.
% 1.89/2.10  >>>> Starting back demodulation with 26.
% 1.89/2.10    Following clause subsumed by 10 during input processing: 0 [copy,27,flip.1] or(A,B)=implies(not(A),B).
% 1.89/2.10    Following clause subsumed by 20 during input processing: 0 [copy,28,flip.1] xor(A,B)=or(and(A,not(B)),and(not(A),B)).
% 1.89/2.10  
% 1.89/2.10  ======= end of input processing =======
% 1.89/2.10  
% 1.89/2.10  =========== start of search ===========
% 1.89/2.10  
% 1.89/2.10  -------- PROOF -------- 
% 1.89/2.10  
% 1.89/2.10  ----> UNIT CONFLICT at   0.01 sec ----> 339 [binary,338.1,2.1] $F.
% 1.89/2.10  
% 1.89/2.10  Length of proof is 34.  Level of proof is 10.
% 1.89/2.10  
% 1.89/2.10  ---------------- PROOF ----------------
% 1.89/2.10  % SZS status Unsatisfiable
% 1.89/2.10  % SZS output start Refutation
% See solution above
% 1.89/2.10  ------------ end of proof -------------
% 1.89/2.10  
% 1.89/2.10  
% 1.89/2.10  Search stopped by max_proofs option.
% 1.89/2.10  
% 1.89/2.10  
% 1.89/2.10  Search stopped by max_proofs option.
% 1.89/2.10  
% 1.89/2.10  ============ end of search ============
% 1.89/2.10  
% 1.89/2.10  -------------- statistics -------------
% 1.89/2.10  clauses given                 44
% 1.89/2.10  clauses generated            426
% 1.89/2.10  clauses kept                 196
% 1.89/2.10  clauses forward subsumed     366
% 1.89/2.10  clauses back subsumed          0
% 1.89/2.10  Kbytes malloced             2929
% 1.89/2.10  
% 1.89/2.10  ----------- times (seconds) -----------
% 1.89/2.10  user CPU time          0.01          (0 hr, 0 min, 0 sec)
% 1.89/2.10  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.89/2.10  wall-clock time        1             (0 hr, 0 min, 1 sec)
% 1.89/2.10  
% 1.89/2.10  That finishes the proof of the theorem.
% 1.89/2.10  
% 1.89/2.10  Process 30015 finished Wed Jul 27 09:14:03 2022
% 1.89/2.10  Otter interrupted
% 1.89/2.10  PROOF FOUND
%------------------------------------------------------------------------------