TSTP Solution File: KRS274^7 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : KRS274^7 : TPTP v6.1.0. Released v5.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n094.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:24:23 EDT 2014

% Result   : Timeout 300.04s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : KRS274^7 : TPTP v6.1.0. Released v5.5.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n094.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 08:44:31 CDT 2014
% % CPUTime  : 300.04 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL015^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x222f710>, <kernel.Type object at 0x222f998>) of role type named mu_type
% Using role type
% Declaring mu:Type
% FOF formula (<kernel.Constant object at 0x222fcf8>, <kernel.DependentProduct object at 0x222f710>) of role type named qmltpeq_type
% Using role type
% Declaring qmltpeq:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x222f050>, <kernel.DependentProduct object at 0x220ed40>) of role type named meq_prop_type
% Using role type
% Declaring meq_prop:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))) of role definition named meq_prop
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))))
% Defined: meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))
% FOF formula (<kernel.Constant object at 0x222f368>, <kernel.DependentProduct object at 0x2231638>) of role type named mnot_type
% Using role type
% Declaring mnot:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))) of role definition named mnot
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)))
% Defined: mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))
% FOF formula (<kernel.Constant object at 0x222f830>, <kernel.DependentProduct object at 0x2231830>) of role type named mor_type
% Using role type
% Declaring mor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))) of role definition named mor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))))
% Defined: mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))
% FOF formula (<kernel.Constant object at 0x222f830>, <kernel.DependentProduct object at 0x22313f8>) of role type named mbox_type
% Using role type
% Declaring mbox:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))) of role definition named mbox
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))))
% Defined: mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x222f560>, <kernel.DependentProduct object at 0x2231830>) of role type named mforall_prop_type
% Using role type
% Declaring mforall_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))) of role definition named mforall_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))))
% Defined: mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))
% FOF formula (<kernel.Constant object at 0x2231518>, <kernel.DependentProduct object at 0x2231a28>) of role type named mtrue_type
% Using role type
% Declaring mtrue:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True)) of role definition named mtrue
% A new definition: (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True))
% Defined: mtrue:=(fun (W:fofType)=> True)
% FOF formula (<kernel.Constant object at 0x2231a28>, <kernel.DependentProduct object at 0x22315a8>) of role type named mfalse_type
% Using role type
% Declaring mfalse:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mfalse) (mnot mtrue)) of role definition named mfalse
% A new definition: (((eq (fofType->Prop)) mfalse) (mnot mtrue))
% Defined: mfalse:=(mnot mtrue)
% FOF formula (<kernel.Constant object at 0x22316c8>, <kernel.DependentProduct object at 0x2231248>) of role type named mand_type
% Using role type
% Declaring mand:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))) of role definition named mand
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))))
% Defined: mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))
% FOF formula (<kernel.Constant object at 0x2231248>, <kernel.DependentProduct object at 0x2231170>) of role type named mimplies_type
% Using role type
% Declaring mimplies:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))) of role definition named mimplies
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)))
% Defined: mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))
% FOF formula (<kernel.Constant object at 0x2231170>, <kernel.DependentProduct object at 0x2231518>) of role type named mimplied_type
% Using role type
% Declaring mimplied:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))) of role definition named mimplied
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)))
% Defined: mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))
% FOF formula (<kernel.Constant object at 0x22316c8>, <kernel.DependentProduct object at 0x2231a28>) of role type named mequiv_type
% Using role type
% Declaring mequiv:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))) of role definition named mequiv
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))))
% Defined: mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))
% FOF formula (<kernel.Constant object at 0x2231518>, <kernel.DependentProduct object at 0x2211368>) of role type named mxor_type
% Using role type
% Declaring mxor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))) of role definition named mxor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))))
% Defined: mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))
% FOF formula (<kernel.Constant object at 0x2231518>, <kernel.DependentProduct object at 0x2211440>) of role type named mdia_type
% Using role type
% Declaring mdia:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))) of role definition named mdia
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))))
% Defined: mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))
% FOF formula (<kernel.Constant object at 0x2211128>, <kernel.DependentProduct object at 0x1e39710>) of role type named exists_in_world_type
% Using role type
% Declaring exists_in_world:(mu->(fofType->Prop))
% FOF formula (forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V)))) of role axiom named nonempty_ax
% A new axiom: (forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V))))
% FOF formula (<kernel.Constant object at 0x2211128>, <kernel.DependentProduct object at 0x1e395a8>) of role type named mforall_ind_type
% Using role type
% Declaring mforall_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W))))) of role definition named mforall_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W)))))
% Defined: mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W))))
% FOF formula (<kernel.Constant object at 0x1e39878>, <kernel.DependentProduct object at 0x1e39560>) of role type named mexists_ind_type
% Using role type
% Declaring mexists_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))) of role definition named mexists_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))))
% Defined: mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))
% FOF formula (<kernel.Constant object at 0x1e39560>, <kernel.DependentProduct object at 0x1e39830>) of role type named mexists_prop_type
% Using role type
% Declaring mexists_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))) of role definition named mexists_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))))
% Defined: mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))
% FOF formula (<kernel.Constant object at 0x1e39908>, <kernel.DependentProduct object at 0x1e39c20>) of role type named mreflexive_type
% Using role type
% Declaring mreflexive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))) of role definition named mreflexive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))))
% Defined: mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))
% FOF formula (<kernel.Constant object at 0x1e39c20>, <kernel.DependentProduct object at 0x1e39b90>) of role type named msymmetric_type
% Using role type
% Declaring msymmetric:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))) of role definition named msymmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))))
% Defined: msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))
% FOF formula (<kernel.Constant object at 0x1e39b90>, <kernel.DependentProduct object at 0x1e39c68>) of role type named mserial_type
% Using role type
% Declaring mserial:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))) of role definition named mserial
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))))
% Defined: mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))
% FOF formula (<kernel.Constant object at 0x1e39c68>, <kernel.DependentProduct object at 0x1e397e8>) of role type named mtransitive_type
% Using role type
% Declaring mtransitive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))) of role definition named mtransitive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))))
% Defined: mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))
% FOF formula (<kernel.Constant object at 0x1e397e8>, <kernel.DependentProduct object at 0x1e39f80>) of role type named meuclidean_type
% Using role type
% Declaring meuclidean:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))) of role definition named meuclidean
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))))
% Defined: meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))
% FOF formula (<kernel.Constant object at 0x1e39f80>, <kernel.DependentProduct object at 0x1e39e18>) of role type named mpartially_functional_type
% Using role type
% Declaring mpartially_functional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))) of role definition named mpartially_functional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))))
% Defined: mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))
% FOF formula (<kernel.Constant object at 0x1e39e18>, <kernel.DependentProduct object at 0x1e39b90>) of role type named mfunctional_type
% Using role type
% Declaring mfunctional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))) of role definition named mfunctional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))))
% Defined: mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))
% FOF formula (<kernel.Constant object at 0x1e39b90>, <kernel.DependentProduct object at 0x1e39b00>) of role type named mweakly_dense_type
% Using role type
% Declaring mweakly_dense:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))) of role definition named mweakly_dense
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))))
% Defined: mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))
% FOF formula (<kernel.Constant object at 0x1e39b00>, <kernel.DependentProduct object at 0x1e39dd0>) of role type named mweakly_connected_type
% Using role type
% Declaring mweakly_connected:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))) of role definition named mweakly_connected
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))))
% Defined: mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))
% FOF formula (<kernel.Constant object at 0x1e39dd0>, <kernel.DependentProduct object at 0x1e39c20>) of role type named mweakly_directed_type
% Using role type
% Declaring mweakly_directed:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))) of role definition named mweakly_directed
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))))
% Defined: mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))
% FOF formula (<kernel.Constant object at 0x1e39560>, <kernel.DependentProduct object at 0x1e39fc8>) of role type named mvalid_type
% Using role type
% Declaring mvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))) of role definition named mvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))))
% Defined: mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))
% FOF formula (<kernel.Constant object at 0x1e39dd0>, <kernel.DependentProduct object at 0x1e39b48>) of role type named msatisfiable_type
% Using role type
% Declaring msatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))) of role definition named msatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))))
% Defined: msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))
% FOF formula (<kernel.Constant object at 0x1e39fc8>, <kernel.DependentProduct object at 0x221e560>) of role type named mcountersatisfiable_type
% Using role type
% Declaring mcountersatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))) of role definition named mcountersatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))))
% Defined: mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))
% FOF formula (<kernel.Constant object at 0x1e39560>, <kernel.DependentProduct object at 0x221e248>) of role type named minvalid_type
% Using role type
% Declaring minvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))) of role definition named minvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))))
% Defined: minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL013^5.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x222f638>, <kernel.DependentProduct object at 0x222fe60>) of role type named rel_s4_type
% Using role type
% Declaring rel_s4:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x222fef0>, <kernel.DependentProduct object at 0x222fea8>) of role type named mbox_s4_type
% Using role type
% Declaring mbox_s4:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mbox_s4) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V))))) of role definition named mbox_s4
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mbox_s4) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V)))))
% Defined: mbox_s4:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x222fea8>, <kernel.DependentProduct object at 0x222f7a0>) of role type named mdia_s4_type
% Using role type
% Declaring mdia_s4:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mdia_s4) (fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi))))) of role definition named mdia_s4
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mdia_s4) (fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi)))))
% Defined: mdia_s4:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi))))
% FOF formula (mreflexive rel_s4) of role axiom named a1
% A new axiom: (mreflexive rel_s4)
% FOF formula (mtransitive rel_s4) of role axiom named a2
% A new axiom: (mtransitive rel_s4)
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL015^1.ax, trying next directory
% FOF formula (forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W))) of role axiom named cumulative_ax
% A new axiom: (forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W)))
% FOF formula (<kernel.Constant object at 0x1e549e0>, <kernel.DependentProduct object at 0x1e54320>) of role type named female_type
% Using role type
% Declaring female:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1e54f80>, <kernel.DependentProduct object at 0x1e54680>) of role type named male_type
% Using role type
% Declaring male:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1e548c0>, <kernel.DependentProduct object at 0x1e543b0>) of role type named parent_type
% Using role type
% Declaring parent:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x1e54320>, <kernel.DependentProduct object at 0x2230b00>) of role type named q3_type
% Using role type
% Declaring q3:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1e54680>, <kernel.Constant object at 0x1e548c0>) of role type named john_type
% Using role type
% Declaring john:mu
% FOF formula (forall (V:fofType), ((exists_in_world john) V)) of role axiom named existence_of_john_ax
% A new axiom: (forall (V:fofType), ((exists_in_world john) V))
% FOF formula (<kernel.Constant object at 0x2230f38>, <kernel.Constant object at 0x1e54b00>) of role type named bob_type
% Using role type
% Declaring bob:mu
% FOF formula (forall (V:fofType), ((exists_in_world bob) V)) of role axiom named existence_of_bob_ax
% A new axiom: (forall (V:fofType), ((exists_in_world bob) V))
% FOF formula (<kernel.Constant object at 0x2230b00>, <kernel.Constant object at 0x1e54b00>) of role type named ann_type
% Using role type
% Declaring ann:mu
% FOF formula (forall (V:fofType), ((exists_in_world ann) V)) of role axiom named existence_of_ann_ax
% A new axiom: (forall (V:fofType), ((exists_in_world ann) V))
% FOF formula (<kernel.Constant object at 0x22300e0>, <kernel.Constant object at 0x1e548c0>) of role type named mary_type
% Using role type
% Declaring mary:mu
% FOF formula (forall (V:fofType), ((exists_in_world mary) V)) of role axiom named existence_of_mary_ax
% A new axiom: (forall (V:fofType), ((exists_in_world mary) V))
% FOF formula (<kernel.Constant object at 0x1e548c0>, <kernel.Constant object at 0x1e543b0>) of role type named paul_type
% Using role type
% Declaring paul:mu
% FOF formula (forall (V:fofType), ((exists_in_world paul) V)) of role axiom named existence_of_paul_ax
% A new axiom: (forall (V:fofType), ((exists_in_world paul) V))
% FOF formula (<kernel.Constant object at 0x1e543b0>, <kernel.Constant object at 0x222fa28>) of role type named jane_type
% Using role type
% Declaring jane:mu
% FOF formula (forall (V:fofType), ((exists_in_world jane) V)) of role axiom named existence_of_jane_ax
% A new axiom: (forall (V:fofType), ((exists_in_world jane) V))
% FOF formula (mvalid (mbox_s4 ((mand (female mary)) ((mand (female ann)) ((mand (female jane)) ((mand (male bob)) ((mand (male john)) ((mand (male paul)) ((mand ((parent bob) mary)) ((mand ((parent bob) ann)) ((mand ((parent john) paul)) ((parent mary) jane)))))))))))) of role axiom named abox
% A new axiom: (mvalid (mbox_s4 ((mand (female mary)) ((mand (female ann)) ((mand (female jane)) ((mand (male bob)) ((mand (male john)) ((mand (male paul)) ((mand ((parent bob) mary)) ((mand ((parent bob) ann)) ((mand ((parent john) paul)) ((parent mary) jane))))))))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((mimplies (mbox_s4 (male X))) (mbox_s4 (mnot (female X))))))) of role axiom named tbox
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((mimplies (mbox_s4 (male X))) (mbox_s4 (mnot (female X)))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((mequiv (q3 X)) (mexists_ind (fun (Y:mu)=> ((mand (mbox_s4 ((parent Y) X))) (mforall_ind (fun (Z:mu)=> ((mimplies (mbox_s4 ((parent Y) Z))) ((qmltpeq Z) X))))))))))) of role axiom named query
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((mequiv (q3 X)) (mexists_ind (fun (Y:mu)=> ((mand (mbox_s4 ((parent Y) X))) (mforall_ind (fun (Z:mu)=> ((mimplies (mbox_s4 ((parent Y) Z))) ((qmltpeq Z) X)))))))))))
% FOF formula (mvalid ((mand (q3 jane)) (q3 paul))) of role conjecture named con
% Conjecture to prove = (mvalid ((mand (q3 jane)) (q3 paul))):Prop
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(mvalid ((mand (q3 jane)) (q3 paul)))']
% Parameter mu:Type.
% Parameter fofType:Type.
% Parameter qmltpeq:(mu->(mu->(fofType->Prop))).
% Definition meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)):((fofType->Prop)->(fofType->Prop)).
% Definition mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Definition mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mtrue:=(fun (W:fofType)=> True):(fofType->Prop).
% Definition mfalse:=(mnot mtrue):(fofType->Prop).
% Definition mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Parameter exists_in_world:(mu->(fofType->Prop)).
% Axiom nonempty_ax:(forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V)))).
% Definition mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W)))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))):((fofType->(fofType->Prop))->Prop).
% Definition msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))):((fofType->(fofType->Prop))->Prop).
% Definition mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))):((fofType->(fofType->Prop))->Prop).
% Definition meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))):((fofType->(fofType->Prop))->Prop).
% Definition mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))):((fofType->Prop)->Prop).
% Definition msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))):((fofType->Prop)->Prop).
% Definition mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))):((fofType->Prop)->Prop).
% Definition minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))):((fofType->Prop)->Prop).
% Parameter rel_s4:(fofType->(fofType->Prop)).
% Definition mbox_s4:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V)))):((fofType->Prop)->(fofType->Prop)).
% Definition mdia_s4:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi)))):((fofType->Prop)->(fofType->Prop)).
% Axiom a1:(mreflexive rel_s4).
% Axiom a2:(mtransitive rel_s4).
% Axiom cumulative_ax:(forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W))).
% Parameter female:(mu->(fofType->Prop)).
% Parameter male:(mu->(fofType->Prop)).
% Parameter parent:(mu->(mu->(fofType->Prop))).
% Parameter q3:(mu->(fofType->Prop)).
% Parameter john:mu.
% Axiom existence_of_john_ax:(forall (V:fofType), ((exists_in_world john) V)).
% Parameter bob:mu.
% Axiom existence_of_bob_ax:(forall (V:fofType), ((exists_in_world bob) V)).
% Parameter ann:mu.
% Axiom existence_of_ann_ax:(forall (V:fofType), ((exists_in_world ann) V)).
% Parameter mary:mu.
% Axiom existence_of_mary_ax:(forall (V:fofType), ((exists_in_world mary) V)).
% Parameter paul:mu.
% Axiom existence_of_paul_ax:(forall (V:fofType), ((exists_in_world paul) V)).
% Parameter jane:mu.
% Axiom existence_of_jane_ax:(forall (V:fofType), ((exists_in_world jane) V)).
% Axiom abox:(mvalid (mbox_s4 ((mand (female mary)) ((mand (female ann)) ((mand (female jane)) ((mand (male bob)) ((mand (male john)) ((mand (male paul)) ((mand ((parent bob) mary)) ((mand ((parent bob) ann)) ((mand ((parent john) paul)) ((parent mary) jane)))))))))))).
% Axiom tbox:(mvalid (mforall_ind (fun (X:mu)=> ((mimplies (mbox_s4 (male X))) (mbox_s4 (mnot (female X))))))).
% Axiom query:(mvalid (mforall_ind (fun (X:mu)=> ((mequiv (q3 X)) (mexists_ind (fun (Y:mu)=> ((mand (mbox_s4 ((parent Y) X))) (mforall_ind (fun (Z:mu)=> ((mimplies (mbox_s4 ((parent Y) Z))) ((qmltpeq Z) X))))))))))).
% Trying to prove (mvalid ((mand (q3 jane)) (q3 paul)))
% Found existence_of_john_ax0:=(existence_of_john_ax W0):((exists_in_world john) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X) W0)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x1:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x1:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x1:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x1:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x1:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of ((q3 paul) W)
% Found (x2 x1) as proof of False
% Found (fun (x2:((mnot (q3 paul)) W))=> (x2 x1)) as proof of False
% Found (fun (x2:((mnot (q3 paul)) W))=> (x2 x1)) as proof of (((mnot (q3 paul)) W)->False)
% Found x1:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of ((q3 jane) W)
% Found (x2 x1) as proof of False
% Found (fun (x2:((mnot (q3 jane)) W))=> (x2 x1)) as proof of False
% Found (fun (x2:((mnot (q3 jane)) W))=> (x2 x1)) as proof of (((mnot (q3 jane)) W)->False)
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x1:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of ((q3 jane) W)
% Found (x2 x1) as proof of False
% Found (fun (x2:((mnot (q3 jane)) W))=> (x2 x1)) as proof of False
% Found (fun (x2:((mnot (q3 jane)) W))=> (x2 x1)) as proof of (((mnot (q3 jane)) W)->False)
% Found x1:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of ((q3 paul) W)
% Found (x2 x1) as proof of False
% Found (fun (x2:((mnot (q3 paul)) W))=> (x2 x1)) as proof of False
% Found (fun (x2:((mnot (q3 paul)) W))=> (x2 x1)) as proof of (((mnot (q3 paul)) W)->False)
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found existence_of_bob_ax0:=(existence_of_bob_ax W0):((exists_in_world bob) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X) W0)
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_bob_ax0:=(existence_of_bob_ax W0):((exists_in_world bob) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_john_ax0:=(existence_of_john_ax W0):((exists_in_world john) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_john_ax0:=(existence_of_john_ax W0):((exists_in_world john) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_john_ax0:=(existence_of_john_ax W0):((exists_in_world john) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x1:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x1:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x2:((exists_in_world X0) W0)
% Found x2 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_bob_ax0:=(existence_of_bob_ax W0):((exists_in_world bob) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_bob_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_john_ax0:=(existence_of_john_ax W0):((exists_in_world john) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 paul) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 paul) W))
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x0:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found x0:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x0 as proof of (((q3 X) W0)->False)
% Found existence_of_jane_ax0:=(existence_of_jane_ax W0):((exists_in_world jane) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_jane_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_paul_ax0:=(existence_of_paul_ax W0):((exists_in_world paul) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_paul_ax W0) as proof of ((exists_in_world X0) W0)
% Found x1:((mnot (q3 jane)) W)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x1:((mnot (q3 paul)) W)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of (((q3 X) W0)->False)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found existence_of_mary_ax0:=(existence_of_mary_ax W0):((exists_in_world mary) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_mary_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_john_ax0:=(existence_of_john_ax W0):((exists_in_world john) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_john_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found existence_of_ann_ax0:=(existence_of_ann_ax W0):((exists_in_world ann) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found (existence_of_ann_ax W0) as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x1:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found x1 as proof of ((q3 jane) W)
% Found (x2 x1) as proof of False
% Found (fun (x2:((mnot (q3 jane)) W))=> (x2 x1)) as proof of False
% Found (fun (x2:((mnot (q3 jane)) W))=> (x2 x1)) as proof of (((mnot (q3 jane)) W)->False)
% Found x1:((q3 X) W0)
% Instantiate: X:=paul:mu;W0:=W:fofType
% Found x1 as proof of ((q3 paul) W)
% Found (x2 x1) as proof of False
% Found (fun (x2:((mnot (q3 paul)) W))=> (x2 x1)) as proof of False
% Found (fun (x2:((mnot (q3 paul)) W))=> (x2 x1)) as proof of (((mnot (q3 paul)) W)->False)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x3:((exists_in_world X0) W0)
% Found x3 as proof of ((exists_in_world X0) W0)
% Found x2:((q3 X) W0)
% Instantiate: X:=jane:mu;W0:=W:fofType
% Found (fun (x2:((q3 X) W0))=> x2) as proof of ((q3 jane) W)
% Found (fun (x2:((q3 X) W0))=> x2) as proof of (((q3 X) W0)->((q3 jane) W))
% Found x2:((q3 X) W0)
% Instantiate: X:=pa
% EOF
%------------------------------------------------------------------------------