TSTP Solution File: KRS140+1 by SuperZenon---0.0.1

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : SuperZenon---0.0.1
% Problem  : KRS140+1 : TPTP v8.1.0. Released v3.1.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : run_super_zenon -p0 -itptp -om -max-time %d %s

% Computer : n023.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 600s
% DateTime : Sun Jul 17 03:32:01 EDT 2022

% Result   : Theorem 240.31s 240.55s
% Output   : Proof 240.31s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KRS140+1 : TPTP v8.1.0. Released v3.1.0.
% 0.03/0.13  % Command  : run_super_zenon -p0 -itptp -om -max-time %d %s
% 0.13/0.34  % Computer : n023.cluster.edu
% 0.13/0.34  % Model    : x86_64 x86_64
% 0.13/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.34  % Memory   : 8042.1875MB
% 0.13/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.34  % CPULimit : 300
% 0.13/0.34  % WCLimit  : 600
% 0.13/0.34  % DateTime : Tue Jun  7 15:29:53 EDT 2022
% 0.13/0.34  % CPUTime  : 
% 240.31/240.55  % SZS status Theorem
% 240.31/240.55  (* PROOF-FOUND *)
% 240.31/240.55  (* BEGIN-PROOF *)
% 240.31/240.55  % SZS output start Proof
% 240.31/240.55  1. (All X, ((cowlThing X) /\ (-. (cowlNothing X)))) (-. (All X, ((cowlThing X) /\ (-. (cowlNothing X)))))   ### Axiom
% 240.31/240.55  2. (-. (xsd_integer T_0)) (xsd_integer T_0)   ### Axiom
% 240.31/240.55  3. (-. (-. (xsd_integer T_0))) (-. (xsd_integer T_0))   ### NotNot 2
% 240.31/240.55  4. (-. (xsd_string T_0)) (-. (xsd_integer T_0))   ### Definition-Pseudo(xsd_string) 3
% 240.31/240.55  5. (-. (-. (xsd_integer T_0))) (-. (xsd_integer T_0))   ### Axiom
% 240.31/240.55  6. (xsd_string T_0) (-. (-. (xsd_integer T_0)))   ### Definition-Pseudo(xsd_string) 5
% 240.31/240.55  7. (-. ((xsd_string T_0) <=> (-. (xsd_integer T_0))))   ### NotEquiv 4 6
% 240.31/240.55  8. (-. (All X, ((xsd_string X) <=> (-. (xsd_integer X)))))   ### NotAllEx 7
% 240.31/240.55  9. (rsymProp T_1 T_2) (-. (rsymProp T_2 T_1))   ### Sym(rsymProp)
% 240.31/240.55  10. ((ia) != T_1) (T_1 = (ia))   ### Sym(=)
% 240.31/240.55  11. ((ib) != T_1) (T_1 = (ib))   ### Sym(=)
% 240.31/240.55  12. ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) ((ib) != T_1) ((ia) != T_1) (rsymProp T_1 T_2)   ### DisjTree 9 10 11
% 240.31/240.55  13. (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2) ((ia) != T_1) ((ib) != T_1)   ### All 12
% 240.31/240.55  14. (rsymProp T_2 T_3) (-. (rsymProp T_2 T_3))   ### Axiom
% 240.31/240.55  15. ((ia) != T_3) (T_3 = (ia))   ### Sym(=)
% 240.31/240.55  16. (rsymProp T_1 T_2) (-. (rsymProp T_2 T_1))   ### Sym(rsymProp)
% 240.31/240.55  17. (T_1 != T_1)   ### Refl(=)
% 240.31/240.55  18. (T_1 != T_1)   ### Refl(=)
% 240.31/240.55  19. (T_3 != T_3)   ### Refl(=)
% 240.31/240.55  20. (rsymProp T_1 T_2) (-. (rsymProp T_1 T_2))   ### Axiom
% 240.31/240.55  21. ((ia) != T_2) (T_2 = (ia))   ### Sym(=)
% 240.31/240.55  22. ((ib) != T_2) (T_2 = (ib))   ### Sym(=)
% 240.31/240.55  23. ((rsymProp T_1 T_2) => ((T_2 = (ia)) \/ (T_2 = (ib)))) ((ib) != T_2) ((ia) != T_2) (rsymProp T_1 T_2)   ### DisjTree 20 21 22
% 240.31/240.55  24. (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2) ((ia) != T_2) ((ib) != T_2)   ### All 23
% 240.31/240.55  25. (T_3 != T_2) (T_3 = (ib)) ((ia) != T_2) (rsymProp T_1 T_2) (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib)))))   ### Trans 19 24
% 240.31/240.55  26. (rsymProp T_2 T_3) (-. (rsymProp T_2 T_3))   ### Axiom
% 240.31/240.55  27. (-. (rsymProp T_2 T_2)) (rsymProp T_2 T_2)   ### Axiom
% 240.31/240.55  28. (((T_3 = T_2) /\ (rsymProp T_2 T_3)) => (rsymProp T_2 T_2)) (-. (rsymProp T_2 T_2)) (rsymProp T_2 T_3) (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2) ((ia) != T_2) (T_3 = (ib))   ### DisjTree 25 26 27
% 240.31/240.55  29. (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_3 = (ib)) ((ia) != T_2) (rsymProp T_1 T_2) (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) (-. (rsymProp T_2 T_2))   ### All 28
% 240.31/240.55  30. (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_2 T_2)) (rsymProp T_2 T_3) (rsymProp T_1 T_2) ((ia) != T_2) (T_3 = (ib)) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2)))   ### All 29
% 240.31/240.55  31. (T_2 != T_1) (T_1 = (ia)) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_3 = (ib)) (rsymProp T_1 T_2) (rsymProp T_2 T_3) (-. (rsymProp T_2 T_2)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib))))))   ### TransEq-sym 17 18 30
% 240.31/240.55  32. (T_1 != T_1)   ### Refl(=)
% 240.31/240.55  33. (T_1 != T_1)   ### Refl(=)
% 240.31/240.55  34. (T_2 = (ia)) ((ia) != T_2)   ### Sym(=)
% 240.31/240.55  35. (T_2 != T_1) (T_1 = (ia)) (T_2 = (ia))   ### TransEq-sym 32 33 34
% 240.31/240.55  36. (T_1 != T_1)   ### Refl(=)
% 240.31/240.55  37. (T_2 != T_2)   ### Refl(=)
% 240.31/240.55  38. (T_3 = (ib)) ((ib) != T_3)   ### Sym(=)
% 240.31/240.55  39. (T_2 != T_3) (T_2 = (ib)) (T_3 = (ib))   ### Trans 37 38
% 240.31/240.55  40. (-. (rsymProp T_1 T_3)) (rsymProp T_1 T_2) (T_3 = (ib)) (T_2 = (ib))   ### P-NotP 36 39
% 240.31/240.55  41. ((rsymProp T_2 T_2) => ((T_2 = (ia)) \/ (T_2 = (ib)))) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp T_2 T_3) (rsymProp T_1 T_2) (T_3 = (ib)) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_1 = (ia)) (T_2 != T_1)   ### DisjTree 31 35 40
% 240.31/240.55  42. (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (T_2 != T_1) (T_1 = (ia)) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_3 = (ib)) (rsymProp T_1 T_2) (rsymProp T_2 T_3) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3))   ### All 41
% 240.31/240.55  43. ((ib) != T_1) (T_1 = (ib))   ### Sym(=)
% 240.31/240.55  44. ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) ((ib) != T_1) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp T_2 T_3) (T_3 = (ib)) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_2 != T_1) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2)   ### DisjTree 16 42 43
% 240.31/240.55  45. (rsymProp T_1 T_2) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (T_2 != T_1) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_3 = (ib)) (rsymProp T_2 T_3) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3)) ((ib) != T_1)   ### All 44
% 240.31/240.55  46. (T_3 != T_3)   ### Refl(=)
% 240.31/240.55  47. ((ib) != T_1) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp T_2 T_3) (T_3 = (ib)) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2)   ### P-NotP 45 46
% 240.31/240.55  48. (rsymProp T_1 T_2) (All C, (((T_3 = T_2) /\ (rsymProp C T_3)) => (rsymProp C T_2))) (T_3 = (ib)) (rsymProp T_2 T_3) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3)) ((ib) != T_1)   ### All 47
% 240.31/240.55  49. (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) ((ib) != T_1) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp T_2 T_3) (T_3 = (ib)) (rsymProp T_1 T_2)   ### All 48
% 240.31/240.55  50. ((rsymProp T_2 T_3) => ((T_3 = (ia)) \/ (T_3 = (ib)))) (rsymProp T_1 T_2) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3)) ((ib) != T_1) (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) ((ia) != T_3) (rsymProp T_2 T_3)   ### DisjTree 14 15 49
% 240.31/240.55  51. (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) ((ia) != T_3) (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) ((ib) != T_1) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp T_1 T_2)   ### All 50
% 240.31/240.55  52. (rsymProp (ia) (ia)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3)) (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) (rsymProp T_2 T_3) ((ib) != T_1) (rsymProp T_1 T_2) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib)))))   ### P-NotP-sym(rsymProp) 13 51
% 240.31/240.55  53. (rsymProp T_1 T_2) (-. (rsymProp T_1 T_2))   ### Axiom
% 240.31/240.55  54. (T_2 != T_2)   ### Refl(=)
% 240.31/240.55  55. (T_2 != T_2)   ### Refl(=)
% 240.31/240.55  56. (rsymProp T_2 T_3) (-. (rsymProp T_2 T_3))   ### Axiom
% 240.31/240.55  57. ((ia) != T_3) (T_3 = (ia))   ### Sym(=)
% 240.31/240.55  58. ((ib) != T_3) (T_3 = (ib))   ### Sym(=)
% 240.31/240.55  59. ((rsymProp T_2 T_3) => ((T_3 = (ia)) \/ (T_3 = (ib)))) ((ib) != T_3) ((ia) != T_3) (rsymProp T_2 T_3)   ### DisjTree 56 57 58
% 240.31/240.55  60. (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) ((ia) != T_3) ((ib) != T_3)   ### All 59
% 240.31/240.55  61. (T_2 != T_3) (T_2 = (ia)) ((ib) != T_3) (rsymProp T_2 T_3) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib)))))   ### TransEq 54 55 60
% 240.31/240.55  62. (rsymProp T_1 T_2) (-. (rsymProp T_2 T_1))   ### Sym(rsymProp)
% 240.31/240.55  63. ((ia) != T_1) (T_1 = (ia))   ### Sym(=)
% 240.31/240.55  64. (T_2 != T_2)   ### Refl(=)
% 240.31/240.55  65. (T_1 = (ib)) ((ib) != T_1)   ### Sym(=)
% 240.31/240.55  66. (T_2 != T_1) (T_2 = (ib)) (T_1 = (ib))   ### Trans 64 65
% 240.31/240.55  67. (T_3 != T_3)   ### Refl(=)
% 240.31/240.55  68. (-. (rsymProp T_1 T_3)) (rsymProp T_2 T_3) (T_1 = (ib)) (T_2 = (ib))   ### P-NotP 66 67
% 240.31/240.55  69. ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) (T_2 = (ib)) (rsymProp T_2 T_3) (-. (rsymProp T_1 T_3)) ((ia) != T_1) (rsymProp T_1 T_2)   ### DisjTree 62 63 68
% 240.31/240.55  70. ((rsymProp T_1 T_2) => ((T_2 = (ia)) \/ (T_2 = (ib)))) ((ia) != T_1) (-. (rsymProp T_1 T_3)) ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) ((ib) != T_3) (T_2 != T_3) (rsymProp T_1 T_2)   ### DisjTree 53 61 69
% 240.31/240.55  71. (rsymProp T_1 T_2) (-. (rsymProp T_1 T_2))   ### Axiom
% 240.31/240.55  72. (-. (rsymProp T_1 T_3)) (rsymProp T_1 T_3)   ### Axiom
% 240.31/240.55  73. (((T_2 = T_3) /\ (rsymProp T_1 T_2)) => (rsymProp T_1 T_3)) (rsymProp T_1 T_2) ((ib) != T_3) (rsymProp T_2 T_3) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) (-. (rsymProp T_1 T_3)) ((ia) != T_1) ((rsymProp T_1 T_2) => ((T_2 = (ia)) \/ (T_2 = (ib))))   ### DisjTree 70 71 72
% 240.31/240.57  74. (All C, (((T_2 = T_3) /\ (rsymProp C T_2)) => (rsymProp C T_3))) ((rsymProp T_1 T_2) => ((T_2 = (ia)) \/ (T_2 = (ib)))) ((ia) != T_1) (-. (rsymProp T_1 T_3)) ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) ((ib) != T_3) (rsymProp T_1 T_2)   ### All 73
% 240.31/240.57  75. (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2) ((ib) != T_3) (rsymProp T_2 T_3) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) ((rsymProp T_2 T_1) => ((T_1 = (ia)) \/ (T_1 = (ib)))) (-. (rsymProp T_1 T_3)) ((ia) != T_1) (All C, (((T_2 = T_3) /\ (rsymProp C T_2)) => (rsymProp C T_3)))   ### All 74
% 240.31/240.57  76. (All C, (((T_2 = T_3) /\ (rsymProp C T_2)) => (rsymProp C T_3))) ((ia) != T_1) (-. (rsymProp T_1 T_3)) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) ((ib) != T_3) (rsymProp T_1 T_2) (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib)))))   ### All 75
% 240.31/240.57  77. (All B, (All C, (((T_2 = B) /\ (rsymProp C T_2)) => (rsymProp C B)))) (All Y, ((rsymProp T_1 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2) ((ib) != T_3) (rsymProp T_2 T_3) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (-. (rsymProp T_1 T_3)) ((ia) != T_1)   ### All 76
% 240.31/240.57  78. (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) ((ia) != T_1) (-. (rsymProp T_1 T_3)) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_2 T_3) ((ib) != T_3) (rsymProp T_1 T_2) (All B, (All C, (((T_2 = B) /\ (rsymProp C T_2)) => (rsymProp C B))))   ### All 77
% 240.31/240.57  79. (rsymProp (ia) (ia)) (All B, (All C, (((T_2 = B) /\ (rsymProp C T_2)) => (rsymProp C B)))) (rsymProp T_1 T_2) ((ib) != T_3) (rsymProp T_2 T_3) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib))))))   ### P-NotP-sym(rsymProp) 78 60
% 240.31/240.57  80. (rsymProp (ib) (ib)) (All B, (All C, (((T_2 = B) /\ (rsymProp C T_2)) => (rsymProp C B)))) (All Y, ((rsymProp T_2 Y) => ((Y = (ia)) \/ (Y = (ib))))) (rsymProp T_1 T_2) (rsymProp T_2 T_3) (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ia) (ia))   ### P-NotP-sym(rsymProp) 52 79
% 240.31/240.57  81. (rsymProp (ia) (ia)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3)) (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) (rsymProp T_2 T_3) (rsymProp T_1 T_2) (All B, (All C, (((T_2 = B) /\ (rsymProp C T_2)) => (rsymProp C B)))) (rsymProp (ib) (ib))   ### All 80
% 240.31/240.57  82. (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B))))) (rsymProp (ib) (ib)) (rsymProp T_1 T_2) (rsymProp T_2 T_3) (All B, (All C, (((T_3 = B) /\ (rsymProp C T_3)) => (rsymProp C B)))) (-. (rsymProp T_1 T_3)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ia) (ia))   ### All 81
% 240.31/240.57  83. (rsymProp (ia) (ia)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (-. (rsymProp T_1 T_3)) (rsymProp T_2 T_3) (rsymProp T_1 T_2) (rsymProp (ib) (ib)) (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B)))))   ### All 82
% 240.31/240.57  84. (-. (((rsymProp T_1 T_2) /\ (rsymProp T_2 T_3)) => (rsymProp T_1 T_3))) (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B))))) (rsymProp (ib) (ib)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ia) (ia))   ### ConjTree 83
% 240.31/240.57  85. (-. (All Z, (((rsymProp T_1 T_2) /\ (rsymProp T_2 Z)) => (rsymProp T_1 Z)))) (rsymProp (ia) (ia)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ib) (ib)) (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B)))))   ### NotAllEx 84
% 240.31/240.57  86. (-. (All Y, (All Z, (((rsymProp T_1 Y) /\ (rsymProp Y Z)) => (rsymProp T_1 Z))))) (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B))))) (rsymProp (ib) (ib)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ia) (ia))   ### NotAllEx 85
% 240.31/240.57  87. (-. (All X, (All Y, (All Z, (((rsymProp X Y) /\ (rsymProp Y Z)) => (rsymProp X Z)))))) (rsymProp (ia) (ia)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ib) (ib)) (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B)))))   ### NotAllEx 86
% 240.31/240.57  88. (rsymProp (ia) (ia)) (-. (rsymProp (ia) (ia)))   ### Axiom
% 240.31/240.57  89. (cowlThing (ia)) (-. (cowlThing (ia)))   ### Axiom
% 240.31/240.57  90. (-. ((rsymProp (ia) (ia)) /\ (cowlThing (ia)))) (cowlThing (ia)) (rsymProp (ia) (ia))   ### NotAnd 88 89
% 240.31/240.57  91. (-. (Ex X, ((rsymProp (ia) X) /\ (cowlThing X)))) (rsymProp (ia) (ia)) (cowlThing (ia))   ### NotExists 90
% 240.31/240.57  92. (-. ((All X, ((cowlThing X) /\ (-. (cowlNothing X)))) /\ ((All X, ((xsd_string X) <=> (-. (xsd_integer X)))) /\ ((All X, (All Y, (All Z, (((rsymProp X Y) /\ (rsymProp Y Z)) => (rsymProp X Z))))) /\ (Ex X, ((rsymProp (ia) X) /\ (cowlThing X))))))) (cowlThing (ia)) (All A, (All B, (All C, (((A = B) /\ (rsymProp C A)) => (rsymProp C B))))) (rsymProp (ib) (ib)) (All X, (All Y, ((rsymProp X Y) => ((Y = (ia)) \/ (Y = (ib)))))) (rsymProp (ia) (ia)) (All X, ((cowlThing X) /\ (-. (cowlNothing X))))   ### DisjTree 1 8 87 91
% 240.31/240.57  % SZS output end Proof
% 240.31/240.57  (* END-PROOF *)
%------------------------------------------------------------------------------