TSTP Solution File: KLE169-10 by Twee---2.4.2

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Twee---2.4.2
% Problem  : KLE169-10 : TPTP v8.1.2. Released v7.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof

% Computer : n001.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 05:36:09 EDT 2023

% Result   : Unsatisfiable 0.19s 0.47s
% Output   : Proof 0.19s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.00/0.12  % Problem  : KLE169-10 : TPTP v8.1.2. Released v7.5.0.
% 0.00/0.13  % Command  : parallel-twee %s --tstp --conditional-encoding if --smaller --drop-non-horn --give-up-on-saturation --explain-encoding --formal-proof
% 0.12/0.33  % Computer : n001.cluster.edu
% 0.12/0.33  % Model    : x86_64 x86_64
% 0.12/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.33  % Memory   : 8042.1875MB
% 0.12/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.33  % CPULimit : 300
% 0.12/0.33  % WCLimit  : 300
% 0.12/0.33  % DateTime : Tue Aug 29 11:44:52 EDT 2023
% 0.12/0.34  % CPUTime  : 
% 0.19/0.47  Command-line arguments: --lhs-weight 9 --flip-ordering --complete-subsets --normalise-queue-percent 10 --cp-renormalise-threshold 10
% 0.19/0.47  
% 0.19/0.47  % SZS status Unsatisfiable
% 0.19/0.47  
% 0.19/0.48  % SZS output start Proof
% 0.19/0.48  Axiom 1 (multiplicative_left_identity): multiplication(one, X) = X.
% 0.19/0.48  Axiom 2 (additive_idempotence): addition(X, X) = X.
% 0.19/0.48  Axiom 3 (additive_commutativity): addition(X, Y) = addition(Y, X).
% 0.19/0.48  Axiom 4 (an): sigma = addition(a, b).
% 0.19/0.48  Axiom 5 (additive_associativity): addition(X, addition(Y, Z)) = addition(addition(X, Y), Z).
% 0.19/0.48  Axiom 6 (ifeq_axiom): ifeq3(X, X, Y, Z) = Y.
% 0.19/0.48  Axiom 7 (ifeq_axiom_001): ifeq2(X, X, Y, Z) = Y.
% 0.19/0.48  Axiom 8 (right_distributivity): multiplication(X, addition(Y, Z)) = addition(multiplication(X, Y), multiplication(X, Z)).
% 0.19/0.48  Axiom 9 (left_distributivity): multiplication(addition(X, Y), Z) = addition(multiplication(X, Z), multiplication(Y, Z)).
% 0.19/0.48  Axiom 10 (star_unfold_right): leq(addition(one, multiplication(X, star(X))), star(X)) = true.
% 0.19/0.48  Axiom 11 (order): ifeq3(addition(X, Y), Y, leq(X, Y), true) = true.
% 0.19/0.48  Axiom 12 (order_1): ifeq2(leq(X, Y), true, addition(X, Y), Y) = Y.
% 0.19/0.48  
% 0.19/0.48  Lemma 13: addition(X, addition(X, Y)) = addition(X, Y).
% 0.19/0.48  Proof:
% 0.19/0.48    addition(X, addition(X, Y))
% 0.19/0.48  = { by axiom 5 (additive_associativity) }
% 0.19/0.48    addition(addition(X, X), Y)
% 0.19/0.48  = { by axiom 2 (additive_idempotence) }
% 0.19/0.48    addition(X, Y)
% 0.19/0.48  
% 0.19/0.48  Lemma 14: addition(X, multiplication(Y, X)) = multiplication(addition(Y, one), X).
% 0.19/0.48  Proof:
% 0.19/0.48    addition(X, multiplication(Y, X))
% 0.19/0.48  = { by axiom 1 (multiplicative_left_identity) R->L }
% 0.19/0.48    addition(multiplication(one, X), multiplication(Y, X))
% 0.19/0.48  = { by axiom 9 (left_distributivity) R->L }
% 0.19/0.48    multiplication(addition(one, Y), X)
% 0.19/0.48  = { by axiom 3 (additive_commutativity) }
% 0.19/0.48    multiplication(addition(Y, one), X)
% 0.19/0.48  
% 0.19/0.48  Lemma 15: addition(one, multiplication(addition(X, one), star(X))) = star(X).
% 0.19/0.48  Proof:
% 0.19/0.48    addition(one, multiplication(addition(X, one), star(X)))
% 0.19/0.48  = { by lemma 14 R->L }
% 0.19/0.48    addition(one, addition(star(X), multiplication(X, star(X))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) R->L }
% 0.19/0.48    addition(one, addition(multiplication(X, star(X)), star(X)))
% 0.19/0.48  = { by axiom 5 (additive_associativity) }
% 0.19/0.48    addition(addition(one, multiplication(X, star(X))), star(X))
% 0.19/0.48  = { by axiom 7 (ifeq_axiom_001) R->L }
% 0.19/0.48    ifeq2(true, true, addition(addition(one, multiplication(X, star(X))), star(X)), star(X))
% 0.19/0.48  = { by axiom 10 (star_unfold_right) R->L }
% 0.19/0.48    ifeq2(leq(addition(one, multiplication(X, star(X))), star(X)), true, addition(addition(one, multiplication(X, star(X))), star(X)), star(X))
% 0.19/0.48  = { by axiom 12 (order_1) }
% 0.19/0.48    star(X)
% 0.19/0.48  
% 0.19/0.48  Goal 1 (a): leq(multiplication(a, multiplication(b, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))) = true.
% 0.19/0.48  Proof:
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a))))
% 0.19/0.48  = { by lemma 15 R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), multiplication(addition(one, multiplication(addition(sigma, one), star(sigma))), multiplication(a, multiplication(sigma, a))))
% 0.19/0.48  = { by lemma 13 R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), multiplication(addition(one, addition(one, multiplication(addition(sigma, one), star(sigma)))), multiplication(a, multiplication(sigma, a))))
% 0.19/0.48  = { by lemma 15 }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), multiplication(addition(one, star(sigma)), multiplication(a, multiplication(sigma, a))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), multiplication(addition(star(sigma), one), multiplication(a, multiplication(sigma, a))))
% 0.19/0.48  = { by lemma 14 R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 4 (an) }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(addition(a, b), a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(addition(b, a), a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by lemma 13 R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(addition(b, addition(b, a)), a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(addition(b, addition(a, b)), a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 4 (an) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(addition(b, sigma), a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 9 (left_distributivity) }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, addition(multiplication(b, a), multiplication(sigma, a))), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, addition(multiplication(sigma, a), multiplication(b, a))), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 8 (right_distributivity) }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(addition(multiplication(a, multiplication(sigma, a)), multiplication(a, multiplication(b, a))), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 5 (additive_associativity) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), addition(multiplication(a, multiplication(b, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a))))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(addition(multiplication(a, multiplication(b, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))), multiplication(a, multiplication(sigma, a))))
% 0.19/0.48  = { by axiom 5 (additive_associativity) R->L }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(b, a)), addition(multiplication(star(sigma), multiplication(a, multiplication(sigma, a))), multiplication(a, multiplication(sigma, a)))))
% 0.19/0.48  = { by axiom 3 (additive_commutativity) }
% 0.19/0.48    leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a))))))
% 0.19/0.48  = { by axiom 6 (ifeq_axiom) R->L }
% 0.19/0.48    ifeq3(addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a))))), addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a))))), leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))), true)
% 0.19/0.48  = { by lemma 13 R->L }
% 0.19/0.48    ifeq3(addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))), addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a))))), leq(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(b, a)), addition(multiplication(a, multiplication(sigma, a)), multiplication(star(sigma), multiplication(a, multiplication(sigma, a)))))), true)
% 0.19/0.48  = { by axiom 11 (order) }
% 0.19/0.48    true
% 0.19/0.48  % SZS output end Proof
% 0.19/0.48  
% 0.19/0.48  RESULT: Unsatisfiable (the axioms are contradictory).
%------------------------------------------------------------------------------