TSTP Solution File: KLE169-10 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE169-10 : TPTP v8.1.0. Released v7.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n005.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:54 EDT 2022

% Result   : Unsatisfiable 1.80s 2.04s
% Output   : Refutation 1.80s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :   10
%            Number of leaves      :   13
% Syntax   : Number of clauses     :   29 (  29 unt;   0 nHn;   6 RR)
%            Number of literals    :   29 (  28 equ;   2 neg)
%            Maximal clause size   :    1 (   1 avg)
%            Maximal term depth    :    6 (   2 avg)
%            Number of predicates  :    2 (   0 usr;   1 prp; 0-2 aty)
%            Number of functors    :   11 (  11 usr;   5 con; 0-4 aty)
%            Number of variables   :   50 (  11 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(1,axiom,
    le_q(multiplication(a,multiplication(b,a)),multiplication(star(sigma),multiplication(a,multiplication(sigma,a)))) != true,
    file('KLE169-10.p',unknown),
    [] ).

cnf(4,axiom,
    ife_q3(A,A,B,C) = B,
    file('KLE169-10.p',unknown),
    [] ).

cnf(6,axiom,
    ife_q2(A,A,B,C) = B,
    file('KLE169-10.p',unknown),
    [] ).

cnf(9,axiom,
    addition(A,B) = addition(B,A),
    file('KLE169-10.p',unknown),
    [] ).

cnf(10,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE169-10.p',unknown),
    [] ).

cnf(12,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(15,axiom,
    addition(A,A) = A,
    file('KLE169-10.p',unknown),
    [] ).

cnf(23,axiom,
    multiplication(one,A) = A,
    file('KLE169-10.p',unknown),
    [] ).

cnf(25,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE169-10.p',unknown),
    [] ).

cnf(26,axiom,
    multiplication(addition(A,B),C) = addition(multiplication(A,C),multiplication(B,C)),
    file('KLE169-10.p',unknown),
    [] ).

cnf(32,axiom,
    ife_q2(le_q(A,B),true,addition(A,B),B) = B,
    file('KLE169-10.p',unknown),
    [] ).

cnf(34,axiom,
    ife_q3(addition(A,B),B,le_q(A,B),true) = true,
    file('KLE169-10.p',unknown),
    [] ).

cnf(36,axiom,
    le_q(addition(one,multiplication(A,star(A))),star(A)) = true,
    file('KLE169-10.p',unknown),
    [] ).

cnf(44,axiom,
    sigma = addition(a,b),
    file('KLE169-10.p',unknown),
    [] ).

cnf(45,plain,
    addition(a,b) = sigma,
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[44])]),
    [iquote('copy,44,flip.1')] ).

cnf(47,plain,
    addition(b,a) = sigma,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,45])]),
    [iquote('para_into,9.1.1,45.1.1,flip.1')] ).

cnf(55,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,15])]),
    [iquote('para_into,11.1.1.1,15.1.1,flip.1')] ).

cnf(57,plain,
    addition(A,addition(B,C)) = addition(B,addition(A,C)),
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[12,9]),12]),
    [iquote('para_into,11.1.1.1,9.1.1,demod,12')] ).

cnf(120,plain,
    multiplication(sigma,A) = addition(multiplication(b,A),multiplication(a,A)),
    inference(para_into,[status(thm),theory(equality)],[26,47]),
    [iquote('para_into,26.1.1.1,47.1.1')] ).

cnf(124,plain,
    le_q(multiplication(a,multiplication(b,a)),addition(multiplication(star(sigma),multiplication(a,multiplication(b,a))),multiplication(star(sigma),multiplication(a,multiplication(a,a))))) != true,
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[1]),120,25,25]),
    [iquote('back_demod,1,demod,120,25,25')] ).

cnf(188,plain,
    le_q(A,addition(A,B)) = true,
    inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[34,55]),4]),
    [iquote('para_into,34.1.1.1,55.1.1,demod,4')] ).

cnf(216,plain,
    addition(one,addition(multiplication(A,star(A)),star(A))) = star(A),
    inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[36,32]),12,6]),
    [iquote('para_from,36.1.1,32.1.1.1,demod,12,6')] ).

cnf(415,plain,
    le_q(A,addition(B,addition(A,C))) = true,
    inference(para_from,[status(thm),theory(equality)],[57,188]),
    [iquote('para_from,57.1.1,188.1.1.2')] ).

cnf(931,plain,
    le_q(one,addition(A,star(B))) = true,
    inference(para_from,[status(thm),theory(equality)],[216,415]),
    [iquote('para_from,216.1.1,415.1.1.2.2')] ).

cnf(937,plain,
    addition(multiplication(A,star(A)),star(A)) = star(A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[216,32]),931,6])]),
    [iquote('para_from,216.1.1,32.1.1.3,demod,931,6,flip.1')] ).

cnf(938,plain,
    addition(A,multiplication(star(B),A)) = multiplication(star(B),A),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[216,26]),23,937])]),
    [iquote('para_from,216.1.1,26.1.1.1,demod,23,937,flip.1')] ).

cnf(1054,plain,
    le_q(A,addition(B,multiplication(star(C),A))) = true,
    inference(para_from,[status(thm),theory(equality)],[938,415]),
    [iquote('para_from,938.1.1,415.1.1.2.2')] ).

cnf(1076,plain,
    le_q(A,addition(multiplication(star(B),A),C)) = true,
    inference(para_into,[status(thm),theory(equality)],[1054,9]),
    [iquote('para_into,1054.1.1.2,9.1.1')] ).

cnf(1078,plain,
    $false,
    inference(binary,[status(thm)],[1076,124]),
    [iquote('binary,1076.1,124.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.03/0.12  % Problem  : KLE169-10 : TPTP v8.1.0. Released v7.5.0.
% 0.03/0.13  % Command  : otter-tptp-script %s
% 0.12/0.34  % Computer : n005.cluster.edu
% 0.12/0.34  % Model    : x86_64 x86_64
% 0.12/0.34  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.12/0.34  % Memory   : 8042.1875MB
% 0.12/0.34  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.12/0.34  % CPULimit : 300
% 0.12/0.34  % WCLimit  : 300
% 0.12/0.34  % DateTime : Wed Jul 27 06:26:35 EDT 2022
% 0.12/0.34  % CPUTime  : 
% 1.72/1.93  ----- Otter 3.3f, August 2004 -----
% 1.72/1.93  The process was started by sandbox on n005.cluster.edu,
% 1.72/1.93  Wed Jul 27 06:26:35 2022
% 1.72/1.93  The command was "./otter".  The process ID is 2051.
% 1.72/1.93  
% 1.72/1.93  set(prolog_style_variables).
% 1.72/1.93  set(auto).
% 1.72/1.93     dependent: set(auto1).
% 1.72/1.93     dependent: set(process_input).
% 1.72/1.93     dependent: clear(print_kept).
% 1.72/1.93     dependent: clear(print_new_demod).
% 1.72/1.93     dependent: clear(print_back_demod).
% 1.72/1.93     dependent: clear(print_back_sub).
% 1.72/1.93     dependent: set(control_memory).
% 1.72/1.93     dependent: assign(max_mem, 12000).
% 1.72/1.93     dependent: assign(pick_given_ratio, 4).
% 1.72/1.93     dependent: assign(stats_level, 1).
% 1.72/1.93     dependent: assign(max_seconds, 10800).
% 1.72/1.93  clear(print_given).
% 1.72/1.93  
% 1.72/1.93  list(usable).
% 1.72/1.93  0 [] A=A.
% 1.72/1.93  0 [] ife_q3(A,A,B,C)=B.
% 1.72/1.93  0 [] ife_q2(A,A,B,C)=B.
% 1.72/1.93  0 [] ife_q(A,A,B,C)=B.
% 1.72/1.93  0 [] addition(A,B)=addition(B,A).
% 1.72/1.93  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.72/1.93  0 [] addition(A,zero)=A.
% 1.72/1.93  0 [] addition(A,A)=A.
% 1.72/1.93  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.72/1.93  0 [] multiplication(A,one)=A.
% 1.72/1.93  0 [] multiplication(one,A)=A.
% 1.72/1.93  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.72/1.93  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.72/1.93  0 [] multiplication(A,zero)=zero.
% 1.72/1.93  0 [] multiplication(zero,A)=zero.
% 1.72/1.93  0 [] ife_q2(le_q(A,B),true,addition(A,B),B)=B.
% 1.72/1.93  0 [] ife_q3(addition(A,B),B,le_q(A,B),true)=true.
% 1.72/1.93  0 [] le_q(addition(one,multiplication(A,star(A))),star(A))=true.
% 1.72/1.93  0 [] le_q(addition(one,multiplication(star(A),A)),star(A))=true.
% 1.72/1.93  0 [] ife_q(le_q(addition(multiplication(A,B),C),B),true,le_q(multiplication(star(A),C),B),true)=true.
% 1.72/1.93  0 [] ife_q(le_q(addition(multiplication(A,B),C),A),true,le_q(multiplication(C,star(B)),A),true)=true.
% 1.72/1.93  0 [] sigma=addition(a,b).
% 1.72/1.93  0 [] le_q(multiplication(a,multiplication(b,a)),multiplication(star(sigma),multiplication(a,multiplication(sigma,a))))!=true.
% 1.72/1.93  end_of_list.
% 1.72/1.93  
% 1.72/1.93  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=1.
% 1.72/1.93  
% 1.72/1.93  All clauses are units, and equality is present; the
% 1.72/1.93  strategy will be Knuth-Bendix with positive clauses in sos.
% 1.72/1.93  
% 1.72/1.93     dependent: set(knuth_bendix).
% 1.72/1.93     dependent: set(anl_eq).
% 1.72/1.93     dependent: set(para_from).
% 1.72/1.93     dependent: set(para_into).
% 1.72/1.93     dependent: clear(para_from_right).
% 1.72/1.93     dependent: clear(para_into_right).
% 1.72/1.93     dependent: set(para_from_vars).
% 1.72/1.93     dependent: set(eq_units_both_ways).
% 1.72/1.93     dependent: set(dynamic_demod_all).
% 1.72/1.93     dependent: set(dynamic_demod).
% 1.72/1.93     dependent: set(order_eq).
% 1.72/1.93     dependent: set(back_demod).
% 1.72/1.93     dependent: set(lrpo).
% 1.72/1.93  
% 1.72/1.93  ------------> process usable:
% 1.72/1.93  ** KEPT (pick-wt=16): 1 [] le_q(multiplication(a,multiplication(b,a)),multiplication(star(sigma),multiplication(a,multiplication(sigma,a))))!=true.
% 1.72/1.93  
% 1.72/1.93  ------------> process sos:
% 1.72/1.93  ** KEPT (pick-wt=3): 2 [] A=A.
% 1.72/1.93  ** KEPT (pick-wt=7): 3 [] ife_q3(A,A,B,C)=B.
% 1.72/1.93  ---> New Demodulator: 4 [new_demod,3] ife_q3(A,A,B,C)=B.
% 1.72/1.93  ** KEPT (pick-wt=7): 5 [] ife_q2(A,A,B,C)=B.
% 1.72/1.93  ---> New Demodulator: 6 [new_demod,5] ife_q2(A,A,B,C)=B.
% 1.72/1.93  ** KEPT (pick-wt=7): 7 [] ife_q(A,A,B,C)=B.
% 1.72/1.93  ---> New Demodulator: 8 [new_demod,7] ife_q(A,A,B,C)=B.
% 1.72/1.93  ** KEPT (pick-wt=7): 9 [] addition(A,B)=addition(B,A).
% 1.72/1.93  ** KEPT (pick-wt=11): 11 [copy,10,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.72/1.93  ---> New Demodulator: 12 [new_demod,11] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 1.72/1.93  ** KEPT (pick-wt=5): 13 [] addition(A,zero)=A.
% 1.72/1.93  ---> New Demodulator: 14 [new_demod,13] addition(A,zero)=A.
% 1.72/1.93  ** KEPT (pick-wt=5): 15 [] addition(A,A)=A.
% 1.72/1.93  ---> New Demodulator: 16 [new_demod,15] addition(A,A)=A.
% 1.72/1.93  ** KEPT (pick-wt=11): 18 [copy,17,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.72/1.93  ---> New Demodulator: 19 [new_demod,18] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 1.72/1.93  ** KEPT (pick-wt=5): 20 [] multiplication(A,one)=A.
% 1.72/1.93  ---> New Demodulator: 21 [new_demod,20] multiplication(A,one)=A.
% 1.72/1.93  ** KEPT (pick-wt=5): 22 [] multiplication(one,A)=A.
% 1.72/1.93  ---> New Demodulator: 23 [new_demod,22] multiplication(one,A)=A.
% 1.72/1.93  ** KEPT (pick-wt=13): 24 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.72/1.93  ---> New Demodulator: 25 [new_demod,24] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.80/2.04  ** KEPT (pick-wt=13): 26 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.80/2.04  ---> New Demodulator: 27 [new_demod,26] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.80/2.04  ** KEPT (pick-wt=5): 28 [] multiplication(A,zero)=zero.
% 1.80/2.04  ---> New Demodulator: 29 [new_demod,28] multiplication(A,zero)=zero.
% 1.80/2.04  ** KEPT (pick-wt=5): 30 [] multiplication(zero,A)=zero.
% 1.80/2.04  ---> New Demodulator: 31 [new_demod,30] multiplication(zero,A)=zero.
% 1.80/2.04  ** KEPT (pick-wt=11): 32 [] ife_q2(le_q(A,B),true,addition(A,B),B)=B.
% 1.80/2.04  ---> New Demodulator: 33 [new_demod,32] ife_q2(le_q(A,B),true,addition(A,B),B)=B.
% 1.80/2.04  ** KEPT (pick-wt=11): 34 [] ife_q3(addition(A,B),B,le_q(A,B),true)=true.
% 1.80/2.04  ---> New Demodulator: 35 [new_demod,34] ife_q3(addition(A,B),B,le_q(A,B),true)=true.
% 1.80/2.04  ** KEPT (pick-wt=11): 36 [] le_q(addition(one,multiplication(A,star(A))),star(A))=true.
% 1.80/2.04  ---> New Demodulator: 37 [new_demod,36] le_q(addition(one,multiplication(A,star(A))),star(A))=true.
% 1.80/2.04  ** KEPT (pick-wt=11): 38 [] le_q(addition(one,multiplication(star(A),A)),star(A))=true.
% 1.80/2.04  ---> New Demodulator: 39 [new_demod,38] le_q(addition(one,multiplication(star(A),A)),star(A))=true.
% 1.80/2.04  ** KEPT (pick-wt=18): 40 [] ife_q(le_q(addition(multiplication(A,B),C),B),true,le_q(multiplication(star(A),C),B),true)=true.
% 1.80/2.04  ---> New Demodulator: 41 [new_demod,40] ife_q(le_q(addition(multiplication(A,B),C),B),true,le_q(multiplication(star(A),C),B),true)=true.
% 1.80/2.04  ** KEPT (pick-wt=18): 42 [] ife_q(le_q(addition(multiplication(A,B),C),A),true,le_q(multiplication(C,star(B)),A),true)=true.
% 1.80/2.04  ---> New Demodulator: 43 [new_demod,42] ife_q(le_q(addition(multiplication(A,B),C),A),true,le_q(multiplication(C,star(B)),A),true)=true.
% 1.80/2.04  ** KEPT (pick-wt=5): 45 [copy,44,flip.1] addition(a,b)=sigma.
% 1.80/2.04  ---> New Demodulator: 46 [new_demod,45] addition(a,b)=sigma.
% 1.80/2.04    Following clause subsumed by 2 during input processing: 0 [copy,2,flip.1] A=A.
% 1.80/2.04  >>>> Starting back demodulation with 4.
% 1.80/2.04  >>>> Starting back demodulation with 6.
% 1.80/2.04  >>>> Starting back demodulation with 8.
% 1.80/2.04    Following clause subsumed by 9 during input processing: 0 [copy,9,flip.1] addition(A,B)=addition(B,A).
% 1.80/2.04  >>>> Starting back demodulation with 12.
% 1.80/2.04  >>>> Starting back demodulation with 14.
% 1.80/2.04  >>>> Starting back demodulation with 16.
% 1.80/2.04  >>>> Starting back demodulation with 19.
% 1.80/2.04  >>>> Starting back demodulation with 21.
% 1.80/2.04  >>>> Starting back demodulation with 23.
% 1.80/2.04  >>>> Starting back demodulation with 25.
% 1.80/2.04  >>>> Starting back demodulation with 27.
% 1.80/2.04  >>>> Starting back demodulation with 29.
% 1.80/2.04  >>>> Starting back demodulation with 31.
% 1.80/2.04  >>>> Starting back demodulation with 33.
% 1.80/2.04  >>>> Starting back demodulation with 35.
% 1.80/2.04  >>>> Starting back demodulation with 37.
% 1.80/2.04  >>>> Starting back demodulation with 39.
% 1.80/2.04  >>>> Starting back demodulation with 41.
% 1.80/2.04  >>>> Starting back demodulation with 43.
% 1.80/2.04  >>>> Starting back demodulation with 46.
% 1.80/2.04  
% 1.80/2.04  ======= end of input processing =======
% 1.80/2.04  
% 1.80/2.04  =========== start of search ===========
% 1.80/2.04  
% 1.80/2.04  
% 1.80/2.04  Resetting weight limit to 11.
% 1.80/2.04  
% 1.80/2.04  
% 1.80/2.04  Resetting weight limit to 11.
% 1.80/2.04  
% 1.80/2.04  sos_size=244
% 1.80/2.04  
% 1.80/2.04  -------- PROOF -------- 
% 1.80/2.04  
% 1.80/2.04  ----> UNIT CONFLICT at   0.12 sec ----> 1078 [binary,1076.1,124.1] $F.
% 1.80/2.04  
% 1.80/2.04  Length of proof is 15.  Level of proof is 9.
% 1.80/2.04  
% 1.80/2.04  ---------------- PROOF ----------------
% 1.80/2.04  % SZS status Unsatisfiable
% 1.80/2.04  % SZS output start Refutation
% See solution above
% 1.80/2.04  ------------ end of proof -------------
% 1.80/2.04  
% 1.80/2.04  
% 1.80/2.04  Search stopped by max_proofs option.
% 1.80/2.04  
% 1.80/2.04  
% 1.80/2.04  Search stopped by max_proofs option.
% 1.80/2.04  
% 1.80/2.04  ============ end of search ============
% 1.80/2.04  
% 1.80/2.04  -------------- statistics -------------
% 1.80/2.04  clauses given                268
% 1.80/2.04  clauses generated          11265
% 1.80/2.04  clauses kept                 590
% 1.80/2.04  clauses forward subsumed    7053
% 1.80/2.04  clauses back subsumed         22
% 1.80/2.04  Kbytes malloced             5859
% 1.80/2.04  
% 1.80/2.04  ----------- times (seconds) -----------
% 1.80/2.04  user CPU time          0.12          (0 hr, 0 min, 0 sec)
% 1.80/2.04  system CPU time        0.00          (0 hr, 0 min, 0 sec)
% 1.80/2.04  wall-clock time        2             (0 hr, 0 min, 2 sec)
% 1.80/2.04  
% 1.80/2.04  That finishes the proof of the theorem.
% 1.80/2.04  
% 1.80/2.04  Process 2051 finished Wed Jul 27 06:26:37 2022
% 1.80/2.04  Otter interrupted
% 1.80/2.04  PROOF FOUND
%------------------------------------------------------------------------------