TSTP Solution File: KLE148+2 by Otter---3.3

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : Otter---3.3
% Problem  : KLE148+2 : TPTP v8.1.0. Released v4.0.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : otter-tptp-script %s

% Computer : n020.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Wed Jul 27 13:00:51 EDT 2022

% Result   : Theorem 2.78s 2.94s
% Output   : Refutation 2.78s
% Verified : 
% SZS Type : Refutation
%            Derivation depth      :    9
%            Number of leaves      :   12
% Syntax   : Number of clauses     :   27 (  23 unt;   0 nHn;   6 RR)
%            Number of literals    :   31 (  20 equ;   6 neg)
%            Maximal clause size   :    2 (   1 avg)
%            Maximal term depth    :    5 (   2 avg)
%            Number of predicates  :    3 (   1 usr;   1 prp; 0-2 aty)
%            Number of functors    :    7 (   7 usr;   4 con; 0-2 aty)
%            Number of variables   :   39 (   6 sgn)

% Comments : 
%------------------------------------------------------------------------------
cnf(5,axiom,
    ( le_q(A,B)
    | addition(A,B) != B ),
    file('KLE148+2.p',unknown),
    [] ).

cnf(6,axiom,
    ( multiplication(dollar_c2,dollar_c1) = zero
    | ~ le_q(dollar_c2,multiplication(dollar_c2,strong_iteration(dollar_c1))) ),
    file('KLE148+2.p',unknown),
    [] ).

cnf(7,axiom,
    ( ~ le_q(multiplication(dollar_c2,strong_iteration(dollar_c1)),dollar_c2)
    | ~ le_q(dollar_c2,multiplication(dollar_c2,strong_iteration(dollar_c1))) ),
    file('KLE148+2.p',unknown),
    [] ).

cnf(9,axiom,
    addition(A,B) = addition(B,A),
    file('KLE148+2.p',unknown),
    [] ).

cnf(10,axiom,
    addition(A,addition(B,C)) = addition(addition(A,B),C),
    file('KLE148+2.p',unknown),
    [] ).

cnf(11,plain,
    addition(addition(A,B),C) = addition(A,addition(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[10])]),
    [iquote('copy,10,flip.1')] ).

cnf(13,axiom,
    addition(A,zero) = A,
    file('KLE148+2.p',unknown),
    [] ).

cnf(15,axiom,
    addition(A,A) = A,
    file('KLE148+2.p',unknown),
    [] ).

cnf(17,axiom,
    multiplication(A,multiplication(B,C)) = multiplication(multiplication(A,B),C),
    file('KLE148+2.p',unknown),
    [] ).

cnf(18,plain,
    multiplication(multiplication(A,B),C) = multiplication(A,multiplication(B,C)),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[17])]),
    [iquote('copy,17,flip.1')] ).

cnf(21,axiom,
    multiplication(A,one) = A,
    file('KLE148+2.p',unknown),
    [] ).

cnf(24,axiom,
    multiplication(A,addition(B,C)) = addition(multiplication(A,B),multiplication(A,C)),
    file('KLE148+2.p',unknown),
    [] ).

cnf(29,axiom,
    multiplication(zero,A) = zero,
    file('KLE148+2.p',unknown),
    [] ).

cnf(34,axiom,
    strong_iteration(A) = addition(multiplication(A,strong_iteration(A)),one),
    file('KLE148+2.p',unknown),
    [] ).

cnf(35,plain,
    addition(multiplication(A,strong_iteration(A)),one) = strong_iteration(A),
    inference(flip,[status(thm),theory(equality)],[inference(copy,[status(thm)],[34])]),
    [iquote('copy,34,flip.1')] ).

cnf(47,plain,
    le_q(A,A),
    inference(hyper,[status(thm)],[15,5]),
    [iquote('hyper,15,5')] ).

cnf(52,plain,
    addition(zero,A) = A,
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[9,13])]),
    [iquote('para_into,9.1.1,13.1.1,flip.1')] ).

cnf(71,plain,
    addition(A,addition(A,B)) = addition(A,B),
    inference(flip,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[11,15])]),
    [iquote('para_into,11.1.1.1,15.1.1,flip.1')] ).

cnf(117,plain,
    ( multiplication(dollar_c2,multiplication(dollar_c1,A)) = zero
    | ~ le_q(dollar_c2,multiplication(dollar_c2,strong_iteration(dollar_c1))) ),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_into,[status(thm),theory(equality)],[18,6]),29])]),
    [iquote('para_into,18.1.1.1,6.1.1,demod,29,flip.1')] ).

cnf(269,plain,
    addition(multiplication(A,multiplication(B,strong_iteration(B))),A) = multiplication(A,strong_iteration(B)),
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[35,24]),21])]),
    [iquote('para_from,35.1.1,24.1.1.2,demod,21,flip.1')] ).

cnf(531,plain,
    le_q(A,addition(A,B)),
    inference(hyper,[status(thm)],[71,5]),
    [iquote('hyper,71,5')] ).

cnf(557,plain,
    le_q(A,addition(B,A)),
    inference(para_into,[status(thm),theory(equality)],[531,9]),
    [iquote('para_into,531.1.2,9.1.1')] ).

cnf(3437,plain,
    le_q(A,multiplication(A,strong_iteration(B))),
    inference(para_from,[status(thm),theory(equality)],[269,557]),
    [iquote('para_from,269.1.1,557.1.2')] ).

cnf(3439,plain,
    multiplication(dollar_c2,multiplication(dollar_c1,A)) = zero,
    inference(hyper,[status(thm)],[3437,117]),
    [iquote('hyper,3437,117')] ).

cnf(3457,plain,
    multiplication(dollar_c2,strong_iteration(dollar_c1)) = dollar_c2,
    inference(flip,[status(thm),theory(equality)],[inference(demod,[status(thm),theory(equality)],[inference(para_from,[status(thm),theory(equality)],[3439,269]),52])]),
    [iquote('para_from,3439.1.1,269.1.1.1,demod,52,flip.1')] ).

cnf(3466,plain,
    ~ le_q(dollar_c2,dollar_c2),
    inference(demod,[status(thm),theory(equality)],[inference(back_demod,[status(thm)],[7]),3457,3457]),
    [iquote('back_demod,7,demod,3457,3457')] ).

cnf(3467,plain,
    $false,
    inference(binary,[status(thm)],[3466,47]),
    [iquote('binary,3466.1,47.1')] ).

%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.07/0.11  % Problem  : KLE148+2 : TPTP v8.1.0. Released v4.0.0.
% 0.07/0.12  % Command  : otter-tptp-script %s
% 0.13/0.33  % Computer : n020.cluster.edu
% 0.13/0.33  % Model    : x86_64 x86_64
% 0.13/0.33  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.13/0.33  % Memory   : 8042.1875MB
% 0.13/0.33  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.13/0.33  % CPULimit : 300
% 0.13/0.33  % WCLimit  : 300
% 0.13/0.33  % DateTime : Wed Jul 27 06:33:38 EDT 2022
% 0.13/0.33  % CPUTime  : 
% 1.97/2.11  ----- Otter 3.3f, August 2004 -----
% 1.97/2.11  The process was started by sandbox on n020.cluster.edu,
% 1.97/2.11  Wed Jul 27 06:33:38 2022
% 1.97/2.11  The command was "./otter".  The process ID is 22797.
% 1.97/2.11  
% 1.97/2.11  set(prolog_style_variables).
% 1.97/2.11  set(auto).
% 1.97/2.11     dependent: set(auto1).
% 1.97/2.11     dependent: set(process_input).
% 1.97/2.11     dependent: clear(print_kept).
% 1.97/2.11     dependent: clear(print_new_demod).
% 1.97/2.11     dependent: clear(print_back_demod).
% 1.97/2.11     dependent: clear(print_back_sub).
% 1.97/2.11     dependent: set(control_memory).
% 1.97/2.11     dependent: assign(max_mem, 12000).
% 1.97/2.11     dependent: assign(pick_given_ratio, 4).
% 1.97/2.11     dependent: assign(stats_level, 1).
% 1.97/2.11     dependent: assign(max_seconds, 10800).
% 1.97/2.11  clear(print_given).
% 1.97/2.11  
% 1.97/2.11  formula_list(usable).
% 1.97/2.11  all A (A=A).
% 1.97/2.11  all A B (addition(A,B)=addition(B,A)).
% 1.97/2.11  all C B A (addition(A,addition(B,C))=addition(addition(A,B),C)).
% 1.97/2.11  all A (addition(A,zero)=A).
% 1.97/2.11  all A (addition(A,A)=A).
% 1.97/2.11  all A B C (multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C)).
% 1.97/2.11  all A (multiplication(A,one)=A).
% 1.97/2.11  all A (multiplication(one,A)=A).
% 1.97/2.11  all A B C (multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C))).
% 1.97/2.11  all A B C (multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C))).
% 1.97/2.11  all A (multiplication(zero,A)=zero).
% 1.97/2.11  all A (addition(one,multiplication(A,star(A)))=star(A)).
% 1.97/2.11  all A (addition(one,multiplication(star(A),A))=star(A)).
% 1.97/2.11  all A B C (le_q(addition(multiplication(A,C),B),C)->le_q(multiplication(star(A),B),C)).
% 1.97/2.11  all A B C (le_q(addition(multiplication(C,A),B),C)->le_q(multiplication(B,star(A)),C)).
% 1.97/2.11  all A (strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one)).
% 1.97/2.11  all A B C (le_q(C,addition(multiplication(A,C),B))->le_q(C,multiplication(strong_iteration(A),B))).
% 1.97/2.11  all A (strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero))).
% 1.97/2.11  all A B (le_q(A,B)<->addition(A,B)=B).
% 1.97/2.11  -(all X0 X1 ((multiplication(X0,X1)=zero->le_q(multiplication(X0,strong_iteration(X1)),X0))&le_q(X0,multiplication(X0,strong_iteration(X1))))).
% 1.97/2.11  end_of_list.
% 1.97/2.11  
% 1.97/2.11  -------> usable clausifies to:
% 1.97/2.11  
% 1.97/2.11  list(usable).
% 1.97/2.11  0 [] A=A.
% 1.97/2.11  0 [] addition(A,B)=addition(B,A).
% 1.97/2.11  0 [] addition(A,addition(B,C))=addition(addition(A,B),C).
% 1.97/2.11  0 [] addition(A,zero)=A.
% 1.97/2.11  0 [] addition(A,A)=A.
% 1.97/2.11  0 [] multiplication(A,multiplication(B,C))=multiplication(multiplication(A,B),C).
% 1.97/2.11  0 [] multiplication(A,one)=A.
% 1.97/2.11  0 [] multiplication(one,A)=A.
% 1.97/2.11  0 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 1.97/2.11  0 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 1.97/2.11  0 [] multiplication(zero,A)=zero.
% 1.97/2.11  0 [] addition(one,multiplication(A,star(A)))=star(A).
% 1.97/2.11  0 [] addition(one,multiplication(star(A),A))=star(A).
% 1.97/2.11  0 [] -le_q(addition(multiplication(A,C),B),C)|le_q(multiplication(star(A),B),C).
% 1.97/2.11  0 [] -le_q(addition(multiplication(C,A),B),C)|le_q(multiplication(B,star(A)),C).
% 1.97/2.11  0 [] strong_iteration(A)=addition(multiplication(A,strong_iteration(A)),one).
% 1.97/2.11  0 [] -le_q(C,addition(multiplication(A,C),B))|le_q(C,multiplication(strong_iteration(A),B)).
% 1.97/2.11  0 [] strong_iteration(A)=addition(star(A),multiplication(strong_iteration(A),zero)).
% 1.97/2.11  0 [] -le_q(A,B)|addition(A,B)=B.
% 1.97/2.11  0 [] le_q(A,B)|addition(A,B)!=B.
% 1.97/2.11  0 [] multiplication($c2,$c1)=zero| -le_q($c2,multiplication($c2,strong_iteration($c1))).
% 1.97/2.11  0 [] -le_q(multiplication($c2,strong_iteration($c1)),$c2)| -le_q($c2,multiplication($c2,strong_iteration($c1))).
% 1.97/2.11  end_of_list.
% 1.97/2.11  
% 1.97/2.11  SCAN INPUT: prop=0, horn=1, equality=1, symmetry=0, max_lits=2.
% 1.97/2.11  
% 1.97/2.11  This is a Horn set with equality.  The strategy will be
% 1.97/2.11  Knuth-Bendix and hyper_res, with positive clauses in
% 1.97/2.11  sos and nonpositive clauses in usable.
% 1.97/2.11  
% 1.97/2.11     dependent: set(knuth_bendix).
% 1.97/2.11     dependent: set(anl_eq).
% 1.97/2.11     dependent: set(para_from).
% 1.97/2.11     dependent: set(para_into).
% 1.97/2.11     dependent: clear(para_from_right).
% 1.97/2.11     dependent: clear(para_into_right).
% 1.97/2.11     dependent: set(para_from_vars).
% 1.97/2.11     dependent: set(eq_units_both_ways).
% 1.97/2.11     dependent: set(dynamic_demod_all).
% 1.97/2.11     dependent: set(dynamic_demod).
% 1.97/2.11     dependent: set(order_eq).
% 1.97/2.11     dependent: set(back_demod).
% 1.97/2.11     dependent: set(lrpo).
% 1.97/2.11     dependent: set(hyper_res).
% 1.97/2.11     dependent: clear(order_hyper).
% 1.97/2.11  
% 1.97/2.11  ------------> process usable:
% 1.97/2.11  ** KEPT (pick-wt=13): 1 [] -le_q(addition(multiplication(A,B),C),B)|le_q(multiplication(star(A),C),B).
% 2.78/2.94  ** KEPT (pick-wt=13): 2 [] -le_q(addition(multiplication(A,B),C),A)|le_q(multiplication(C,star(B)),A).
% 2.78/2.94  ** KEPT (pick-wt=13): 3 [] -le_q(A,addition(multiplication(B,A),C))|le_q(A,multiplication(strong_iteration(B),C)).
% 2.78/2.94  ** KEPT (pick-wt=8): 4 [] -le_q(A,B)|addition(A,B)=B.
% 2.78/2.94  ** KEPT (pick-wt=8): 5 [] le_q(A,B)|addition(A,B)!=B.
% 2.78/2.94  ** KEPT (pick-wt=11): 6 [] multiplication($c2,$c1)=zero| -le_q($c2,multiplication($c2,strong_iteration($c1))).
% 2.78/2.94  ** KEPT (pick-wt=12): 7 [] -le_q(multiplication($c2,strong_iteration($c1)),$c2)| -le_q($c2,multiplication($c2,strong_iteration($c1))).
% 2.78/2.94  
% 2.78/2.94  ------------> process sos:
% 2.78/2.94  ** KEPT (pick-wt=3): 8 [] A=A.
% 2.78/2.94  ** KEPT (pick-wt=7): 9 [] addition(A,B)=addition(B,A).
% 2.78/2.94  ** KEPT (pick-wt=11): 11 [copy,10,flip.1] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.78/2.94  ---> New Demodulator: 12 [new_demod,11] addition(addition(A,B),C)=addition(A,addition(B,C)).
% 2.78/2.94  ** KEPT (pick-wt=5): 13 [] addition(A,zero)=A.
% 2.78/2.94  ---> New Demodulator: 14 [new_demod,13] addition(A,zero)=A.
% 2.78/2.94  ** KEPT (pick-wt=5): 15 [] addition(A,A)=A.
% 2.78/2.94  ---> New Demodulator: 16 [new_demod,15] addition(A,A)=A.
% 2.78/2.94  ** KEPT (pick-wt=11): 18 [copy,17,flip.1] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.78/2.94  ---> New Demodulator: 19 [new_demod,18] multiplication(multiplication(A,B),C)=multiplication(A,multiplication(B,C)).
% 2.78/2.94  ** KEPT (pick-wt=5): 20 [] multiplication(A,one)=A.
% 2.78/2.94  ---> New Demodulator: 21 [new_demod,20] multiplication(A,one)=A.
% 2.78/2.94  ** KEPT (pick-wt=5): 22 [] multiplication(one,A)=A.
% 2.78/2.94  ---> New Demodulator: 23 [new_demod,22] multiplication(one,A)=A.
% 2.78/2.94  ** KEPT (pick-wt=13): 24 [] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.78/2.94  ---> New Demodulator: 25 [new_demod,24] multiplication(A,addition(B,C))=addition(multiplication(A,B),multiplication(A,C)).
% 2.78/2.94  ** KEPT (pick-wt=13): 26 [] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.78/2.94  ---> New Demodulator: 27 [new_demod,26] multiplication(addition(A,B),C)=addition(multiplication(A,C),multiplication(B,C)).
% 2.78/2.94  ** KEPT (pick-wt=5): 28 [] multiplication(zero,A)=zero.
% 2.78/2.94  ---> New Demodulator: 29 [new_demod,28] multiplication(zero,A)=zero.
% 2.78/2.94  ** KEPT (pick-wt=9): 30 [] addition(one,multiplication(A,star(A)))=star(A).
% 2.78/2.94  ---> New Demodulator: 31 [new_demod,30] addition(one,multiplication(A,star(A)))=star(A).
% 2.78/2.94  ** KEPT (pick-wt=9): 32 [] addition(one,multiplication(star(A),A))=star(A).
% 2.78/2.94  ---> New Demodulator: 33 [new_demod,32] addition(one,multiplication(star(A),A))=star(A).
% 2.78/2.94  ** KEPT (pick-wt=9): 35 [copy,34,flip.1] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 2.78/2.94  ---> New Demodulator: 36 [new_demod,35] addition(multiplication(A,strong_iteration(A)),one)=strong_iteration(A).
% 2.78/2.94  ** KEPT (pick-wt=10): 38 [copy,37,flip.1] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 2.78/2.94  ---> New Demodulator: 39 [new_demod,38] addition(star(A),multiplication(strong_iteration(A),zero))=strong_iteration(A).
% 2.78/2.94    Following clause subsumed by 8 during input processing: 0 [copy,8,flip.1] A=A.
% 2.78/2.94    Following clause subsumed by 9 during input processing: 0 [copy,9,flip.1] addition(A,B)=addition(B,A).
% 2.78/2.94  >>>> Starting back demodulation with 12.
% 2.78/2.94  >>>> Starting back demodulation with 14.
% 2.78/2.94  >>>> Starting back demodulation with 16.
% 2.78/2.94  >>>> Starting back demodulation with 19.
% 2.78/2.94  >>>> Starting back demodulation with 21.
% 2.78/2.94  >>>> Starting back demodulation with 23.
% 2.78/2.94  >>>> Starting back demodulation with 25.
% 2.78/2.94  >>>> Starting back demodulation with 27.
% 2.78/2.94  >>>> Starting back demodulation with 29.
% 2.78/2.94  >>>> Starting back demodulation with 31.
% 2.78/2.94  >>>> Starting back demodulation with 33.
% 2.78/2.94  >>>> Starting back demodulation with 36.
% 2.78/2.94  >>>> Starting back demodulation with 39.
% 2.78/2.94  
% 2.78/2.94  ======= end of input processing =======
% 2.78/2.94  
% 2.78/2.94  =========== start of search ===========
% 2.78/2.94  
% 2.78/2.94  
% 2.78/2.94  Resetting weight limit to 9.
% 2.78/2.94  
% 2.78/2.94  
% 2.78/2.94  Resetting weight limit to 9.
% 2.78/2.94  
% 2.78/2.94  sos_size=1699
% 2.78/2.94  
% 2.78/2.94  
% 2.78/2.94  Resetting weight limit to 8.
% 2.78/2.94  
% 2.78/2.94  
% 2.78/2.94  Resetting weight limit to 8.
% 2.78/2.94  
% 2.78/2.94  sos_size=1921
% 2.78/2.94  
% 2.78/2.94  -------- PROOF -------- 
% 2.78/2.94  
% 2.78/2.94  ----> UNIT CONFLICT at   0.83 sec ----> 3467 [binary,3466.1,47.1] $F.
% 2.78/2.94  
% 2.78/2.94  Length of proof is 14.  Level of proof is 8.
% 2.78/2.94  
% 2.78/2.94  ---------------- PROOF ----------------
% 2.78/2.94  % SZS status Theorem
% 2.78/2.94  % SZS output start Refutation
% See solution above
% 2.78/2.94  ------------ end of proof -------------
% 2.78/2.94  
% 2.78/2.94  
% 2.78/2.94  Search stopped by max_proofs option.
% 2.78/2.94  
% 2.78/2.94  
% 2.78/2.94  Search stopped by max_proofs option.
% 2.78/2.94  
% 2.78/2.94  ============ end of search ============
% 2.78/2.94  
% 2.78/2.94  -------------- statistics -------------
% 2.78/2.94  clauses given                637
% 2.78/2.94  clauses generated          98185
% 2.78/2.94  clauses kept                3251
% 2.78/2.94  clauses forward subsumed   31609
% 2.78/2.94  clauses back subsumed        702
% 2.78/2.94  Kbytes malloced             6835
% 2.78/2.94  
% 2.78/2.94  ----------- times (seconds) -----------
% 2.78/2.94  user CPU time          0.83          (0 hr, 0 min, 0 sec)
% 2.78/2.94  system CPU time        0.01          (0 hr, 0 min, 0 sec)
% 2.78/2.94  wall-clock time        3             (0 hr, 0 min, 3 sec)
% 2.78/2.94  
% 2.78/2.94  That finishes the proof of the theorem.
% 2.78/2.94  
% 2.78/2.94  Process 22797 finished Wed Jul 27 06:33:41 2022
% 2.78/2.94  Otter interrupted
% 2.78/2.94  PROOF FOUND
%------------------------------------------------------------------------------